Mathematic Slovaca

Bind Chandra Tripathy; Sabita Mahanta

On a class of difference sequences related to the ℓ^{p} space defined by Orlicz functions

Mathematica Slovaca, Vol. 57 (2007), No. 2, [171]--178
Persistent URL: http://dml.cz/dmlcz/136945

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 2007

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

ON A CLASS OF DIFFERENCE SEQUENCES RELATED TO THE ℓ^{p} SPACE DEFINED BY ORLICZ FUNCTIONS

Binod Chandra Tripathy - Sabita Mahanta
(Communicated by Pavel Kostyrko)

Abstract

In this article we introduce the difference sequence space $m(M, \Delta, \phi)$ using the Orlicz function. We study its different properties like solidity, completeness etc. Also we obtain some inclusion relations involving the space $m(M, \Delta, \phi)$.

1. Introduction

Throughout the article $w, \ell_{\infty}, \ell^{p}$ denote the spaces of all, bounded and p-absolutely summable sequences respectively. The zero sequence is denoted by θ. The sequence space $m(\phi)$ was introduced by Sargent [12], who studied some of its properties and obtained its relationship with the space ℓ^{p}. Later on it was investigated from sequence space point of view by R ath and Tripathy [10], Tripathy [13], Tripathy and Sen [14], Tripathy and Mahanta [15] and others.

The notion of difference sequence space was introduced by Kiz maz [4]. He studied the properties of the difference sequence spaces

$$
X(\Delta)=\left\{x=\left(x_{k}\right) \in w:\left(\Delta x_{k}\right) \in X\right\}
$$

where $\Delta x_{k}=x_{k}-x_{k+1}$ for all $k \in \mathbb{N}$ and for $X=\ell_{\infty}, c$ and c_{0}.

[^0]An Orlicz function is a function $M:[0, \infty) \rightarrow[0, \infty)$, which is continuous, non-decreasing and convex, with $M(0)=0, M(x)>0$ for $x>0$ and $M(x) \rightarrow \infty$ as $x \rightarrow \infty$.

An Orlicz function M is said to satisfy Δ_{2}-condition for all values of x, if there exists a constant $K>0$, such that $M(2 x) \leq K M(x)$, for all values of $x \geq 0$.

If the convexity of Orlicz function is replaced by $M(x+y) \leq M(x)+M(y)$, then this function is called the modulus function, introduced by Nakano [7]. It was further investigated from sequence space point of view by Ruckle [11] and many others.

Remark. An Orlicz function satisfies the inequality $M(\lambda x) \leq \lambda M(x)$ for all λ with $0<\lambda<1$.

2. Definition and background

Let \wp_{s} denotes the class of all subsets of \mathbb{N}, that do not contain more than s elements. Throughout (ϕ_{n}) represents a non-decreasing sequence of strictly positive real numbers such that $n \phi_{n+1} \leq(n+1) \phi_{n}$ for all $n \in \mathbb{N}$. By Φ we denote the class of all these sequences (ϕ_{n}).

The sequence space $m(\phi)$ introduced by Sargent [12] is defined as follows:

$$
m(\phi)=\left\{\left(x_{k}\right) \in w:\left\|\left(x_{k}\right)\right\|_{m(\phi)}=\sup _{s \geq 1, \sigma \in \wp_{s}} \frac{1}{\phi_{s}} \sum_{k \in \sigma}\left|x_{k}\right|<\infty\right\} .
$$

Lindenstrauss and Tzafriri [5] used the notion of Orlicz function and introduced the sequence space

$$
\ell_{M}=\left\{\left(x_{k}\right) \in w: \sum_{k=1}^{\infty} M\left(\frac{\left|x_{k}\right|}{\rho}\right)<\infty \text { for some } \rho>0\right\} .
$$

The space ℓ_{M} with the norm

$$
\left\|\left(x_{k}\right)\right\|=\inf \left\{\rho>0: \sum_{k=1}^{\infty} M\left(\frac{\left|x_{k}\right|}{\rho}\right) \leq 1\right\}
$$

becomes a Banach space, which is called an Orlicz sequence space. The space ℓ_{M} is closely related to the space ℓ^{p}, which is an Orlicz sequence space with $M(x)=x^{p}$ for $1 \leq p<\infty$.

In the later stage different Orlicz sequence spaces were introduced and studied by Et [2], Esi and Et [1], Parashar and Choudhary [9], Nuray and Gülcü [8] and many others.

In this article we shall use the following known sequence spaces defined by Orlicz functions:

$$
\begin{aligned}
\ell_{1}(M, \Delta) & =\left\{x=\left(x_{k}\right) \in w: \sum_{k=1}^{\infty} M\left(\frac{\left|\Delta x_{k}\right|}{\rho}\right)<\infty \text { for some } \rho>0\right\} \\
\ell_{\infty}(M, \Delta) & =\left\{x=\left(x_{k}\right) \in w: \sup _{k \geq 1} M\left(\frac{\left|\Delta x_{k}\right|}{\rho}\right)<\infty \text { for some } \rho>0\right\}
\end{aligned}
$$

(see for instance Mursaleen et.al [6]).
In this article we introduce the following sequence spaces:

$$
m(M, \Delta, \phi)=\left\{\left(x_{k}\right) \in w: \sup _{\substack{s \geq 1, \sigma \in \mathfrak{\wp}_{s}}} \frac{1}{\phi_{s}} \sum_{k \in \sigma} M\left(\frac{\left|\Delta x_{k}\right|}{\rho}\right)<\infty \text { for some } \rho>0\right\}
$$

Taking $X=\mathbb{C}$, the set of complex numbers, from the section Particular Cases of Tripathy and Mahanta [15], we have that the space $m(M, \phi)$ is a Banach space under the norm

$$
\left\|\left(x_{k}\right)\right\|=\inf \left\{\rho>0: \sup _{s \geq 1, \sigma \in \wp_{s}} \frac{1}{\phi_{s}} \sum_{k \in \sigma} M\left(\frac{\left|x_{k}\right|}{\rho}\right) \leq 1\right\}
$$

A sequence space E is said to be solid (or normal) if $\left(\alpha_{k} x_{k}\right) \in E$, whenever $\left(x_{k}\right) \in E$ and for all sequences $\left(\alpha_{k}\right)$ of scalars such that $\left|\alpha_{k}\right| \leq 1$ for all $k \in \mathbb{N}$.

A sequence space E is a said to be symmetric if $\left(x_{n}\right) \in E$ implies $\left(x_{\pi(n)}\right) \in E$, where $\pi(n)$ is a permutation of the elements of \mathbb{N}.

The following results will be used for establishing some results of this article.
Lemma 1. (Sargent [12, Lemma 10]) In order that $m(\phi) \subseteq m(\psi)$, it is necessary and sufficient that $\sup _{s \geq 1} \frac{\phi_{s}}{\psi_{s}}<\infty$.

Lemma 2. (S argent [12, Lemma 11])
(a) $\ell_{1} \subseteq m(\phi) \subseteq \ell_{\infty}$ for all $\phi \in \Phi$.
(b) $m(\phi)=\ell_{1}$ if and only if $\lim _{s \rightarrow \infty} \phi_{s}<\infty$.
(c) $m(\phi)=\ell_{\infty}$ if and only if $\lim _{s \rightarrow \infty} \frac{\phi_{s}}{s}>0$.

Taking $m=1$, i.e., considering only the first difference, we have the following results from Theorem 2.2 of Et and Nuray [3].

Lemma 3. If X is a Banach space normed by $\|\cdot\|$, then $X(\Delta)$ is also a Banach space normed by $\|x\|_{\Delta}=\left|x_{1}\right|+\|\Delta x\|$.

3. Main results

In this section we prove some results involving the sequence space $m(M, \Delta, \phi)$.
Theorem 1. The space $m(M, \Delta, \phi)$ is a linear space.
Proof. Let $\left(x_{k}\right),\left(y_{k}\right) \in m(M, \Delta, \phi)$ and $\alpha, \beta \in \mathbb{C}$. Then there exists positive numbers ρ_{1}, ρ_{2} such that

$$
\sup _{s \geq 1, \sigma \in \wp_{s}} \frac{1}{\phi_{s}} \sum_{k \in \sigma} M\left(\frac{\left|\Delta x_{k}\right|}{\rho_{1}}\right)<\infty
$$

and

$$
\sup _{s \geq 1, \sigma \in \wp_{s}} \frac{1}{\phi_{s}} \sum_{k \in \sigma} M\left(\frac{\left|\Delta y_{k}\right|}{\rho_{2}}\right)<\infty .
$$

Let $\rho_{3}=\max \left(2|\alpha| \rho_{1}, 2|\beta| \rho_{2}\right)$. Since M is non-decreasing convex function,

$$
\begin{aligned}
& \sum_{k \in \sigma} M\left(\frac{\left|\Delta\left(\alpha x_{k}+\beta y_{k}\right)\right|}{\rho_{3}}\right) \leq \sum_{k \in \sigma} M\left(\frac{\left|\alpha \Delta x_{k}\right|}{\rho_{3}}+\frac{\left|\beta \Delta y_{k}\right|}{\rho_{3}}\right) \\
& <\sum_{k \in \sigma} M\left(\frac{\left|\Delta x_{k}\right|}{\rho_{1}}\right)+\sum_{k \in \sigma} M\left(\frac{\left|\Delta y_{k}\right|}{\rho_{2}}\right) \\
& \Longrightarrow \quad \sup _{\substack{s \geq 1, \sigma \in \wp_{s}}} \frac{1}{\phi_{s}} \sum_{k \in \sigma} M\left(\frac{\left|\Delta\left(\alpha x_{k}+\beta y_{k}\right)\right|}{\rho_{3}}\right) \\
& \leq \sup _{\substack{s \geq 1, \sigma \in \wp_{s}}} \frac{1}{\phi_{s}} \sum_{k \in \sigma} M\left(\frac{\left|\Delta x_{k}\right|}{\rho_{1}}\right)+\sup _{\substack{s \geq 1, \sigma \in \wp_{s}}} \frac{1}{\phi_{s}} \sum_{k \in \sigma} M\left(\frac{\left|\Delta y_{k}\right|}{\rho_{2}}\right)<\infty . \\
& \Longrightarrow\left(\alpha x_{k}+\beta y_{k}\right) \in m(M, \Delta, \phi) \text {. }
\end{aligned}
$$

Hence $m(M, \Delta, \phi)$ is a linear space.
Lemma 4. The space $m(M, \Delta, \phi)$ is a normed linear space, normed by $h_{\Delta}\left(\left(x_{k}\right)\right)=\left|x_{1}\right|+\inf \left\{\rho>0: \sup _{s \geq 1, \sigma \in \wp_{s}} \frac{1}{\phi_{s}} \sum_{k \in \sigma} M\left(\frac{\left|\Delta x_{k}\right|}{\rho}\right) \leq 1\right\}$.

Proof. Clearly $h_{\Delta}\left(\left(-x_{k}\right)\right)=h_{\Delta}\left(\left(x_{k}\right)\right)$. Next $x=\theta$ implies $\Delta x_{k}=0$ and as such $M(0)=0$, therefore $h_{\Delta}(\theta)=0$. It can be easily shown that $h_{\Delta}\left(\left(x_{k}\right)\right)=0$ $\Longrightarrow x=\theta$.

ON A CLASS OF DIFFERENCE SEQUENCES RELATED TO THE ℓ^{p} SPACE

Next let $\rho_{1}>0, \rho_{2}>0$ be such that

$$
\sup _{s \geq 1, \sigma \in \wp_{s}} \frac{1}{\phi_{s}} \sum_{k \in \sigma} M\left(\frac{\left|\Delta x_{k}\right|}{\rho_{1}}\right) \leq 1
$$

and

$$
\sup _{s \geq 1, \sigma \in \wp_{s}} \frac{1}{\phi_{s}} \sum_{k \in \sigma} M\left(\frac{\left|\Delta y_{k}\right|}{\rho_{2}}\right) \leq 1 .
$$

Let $\rho=\rho_{1}+\rho_{2}$. Then we have

$$
\begin{aligned}
& \sup _{s>1, \sigma \in \wp_{s}} \frac{1}{\phi_{s}} \sum_{k \in \sigma} M\left(\frac{\left|\Delta\left(x_{k}+y_{k}\right)\right|}{\rho}\right) \\
\leq & \frac{\rho_{1}}{\rho_{1}+\rho_{2}} \cdot \sup _{s \geq 1, \sigma \in \wp_{s}} \frac{1}{\phi_{s}} \sum_{k \in \sigma} M\left(\frac{\left|\Delta x_{k}\right|}{\rho_{1}}\right)+\frac{\rho_{2}}{\rho_{1}+\rho_{2}} \cdot \sup _{s \geq 1, \sigma \in \wp_{s}} \frac{1}{\phi_{s}} \sum_{k \in \sigma} M\left(\frac{\left|\Delta y_{k}\right|}{\rho_{2}}\right) .
\end{aligned}
$$

Since $\rho_{1}>0, \rho_{2}>0$, so by the definition of h_{Δ}, we have

$$
h_{\Delta}\left(\left(x_{k}+y_{k}\right)\right) \leq h_{\Delta}\left(\left(x_{k}\right)\right)+h_{\Delta}\left(\left(y_{k}\right)\right) .
$$

Finally the continuity of the scalar multiplication follows from the following equality,

$$
\begin{aligned}
h_{\Delta}\left(\lambda\left(x_{k}\right)\right) & =\left|\lambda x_{1}\right|+\inf \left\{\rho>0: \sup _{s \geq 1, \sigma \in \wp_{s}} \frac{1}{\phi_{s}} \sum_{k \in \sigma} M\left(\frac{\left|\Delta \lambda x_{k}\right|}{\rho}\right) \leq 1\right\} \\
& =|\lambda| h_{\Delta}\left(\left(x_{k}\right)\right) .
\end{aligned}
$$

This completes the proof of the theorem.
Theorem 2. $m(M, \Delta, \phi) \subseteq m(M, \Delta, \psi)$ if and only if $\sup _{s \geq 1} \frac{\phi_{s}}{\psi_{s}}<\infty$.
Proof. By taking $y_{k}=M\left(\frac{\left|\Delta x_{k}\right|}{\rho}\right)$ in Lemma 1, it can be proved that $m(M, \Delta, \phi)$ $\subseteq m(M, \Delta, \psi)$ if and only if $\sup _{s \geq 1} \frac{\phi_{s}}{\psi_{s}}<\infty$.

Corollary 3. $m(M, \Delta, \phi)=m(M, \Delta, \psi)$ if and only if $\sup _{s \geq 1} \frac{\phi_{s}}{\psi_{s}}<\infty$ and

$$
\sup _{s \geq 1} \frac{\psi_{s}}{\phi_{s}}<\infty .
$$

Theorem 4. Let M, M_{1}, M_{2} be Orlicz functions satisfying Δ_{2}-condition. Then
(i) $m\left(M_{1}, \Delta, \phi\right) \subseteq m\left(M \circ M_{1}, \Delta, \phi\right)$.
(ii) $m\left(M_{1}, \Delta, \phi\right) \cap m\left(M_{2}, \Delta, \phi\right) \subseteq m\left(M_{1}+M_{2}, \Delta, \phi\right)$.

Proof.
(i) Let $\left(x_{k}\right) \in m\left(M_{1}, \Delta, \phi\right)$. Then there exists $\rho>0$ such that

$$
\sup _{s \geq 1, \sigma \in \wp_{s}} \frac{1}{\phi_{s}} \sum_{k \in \sigma} M_{1}\left(\frac{\left|\Delta x_{k}\right|}{\rho}\right)<\infty
$$

Let $0<\varepsilon<1$ and δ, with $0<\delta<1$, such that $M(t)<\delta$ for $0 \leq t<\delta$.
Let $y_{k}=M_{1}\left(\frac{\left|\Delta x_{k}\right|}{\rho}\right)$ and for any $\sigma \in \wp_{s}$ let

$$
\sum_{k \in \sigma} M\left(y_{k}\right)=\sum_{1} M\left(y_{k}\right)+\sum_{2} M\left(y_{k}\right)
$$

where the first summation is over $y_{k} \leq \delta$ and the second is over $y_{k}>\delta$.
By the Remark

$$
\begin{equation*}
\sum_{1} M\left(y_{k}\right) \leq M(1) \sum_{1} y_{k} \leq M(2) \sum_{1} y_{k} \tag{1}
\end{equation*}
$$

For $y_{k}>\delta$ we have,

$$
y_{k}<\frac{y_{k}}{\delta} \leq 1+\frac{y_{k}}{\delta}
$$

Since M is non-decreasing and convex, so

$$
M\left(y_{k}\right)<M\left(1+\frac{y_{k}}{\delta}\right)<\frac{1}{2} M(2)+\frac{1}{2} M\left(\frac{2 y_{k}}{\delta}\right)
$$

Since M satisfies Δ_{2}-condition, so

$$
M\left(y_{k}\right)<\frac{1}{2} K \frac{y_{k}}{\delta} M(2)+\frac{1}{2} K \frac{y_{k}}{\delta} M(2)<K \frac{y_{k}}{\delta} M(2)
$$

Hence

$$
\begin{equation*}
\sum_{2} M\left(y_{k}\right) \leq \max \left(1, K \delta^{-1} M(2)\right) \sum_{2} y_{k} \tag{2}
\end{equation*}
$$

From (1) and (2), it follows that $\left(x_{k}\right) \in m\left(M \circ M_{1}, \Delta, \phi\right)$.
(ii) Let $\left(x_{k}\right) \in m\left(M_{1}, \Delta, \phi\right) \cap m\left(M_{2}, \Delta, \phi\right)$. Then there exists $\rho_{1}>0, \rho_{2}>0$ such that

$$
\sup _{s \geq 1, \sigma \in \wp_{s}} \frac{1}{\phi_{s}} \sum_{k \in \sigma} M_{1}\left(\frac{\left|\Delta x_{k}\right|}{\rho_{1}}\right)<\infty
$$

and

$$
\sup _{s \geq 1, \sigma \in \wp_{s}} \frac{1}{\phi_{s}} \sum_{k \in \sigma} M_{2}\left(\frac{\left|\Delta x_{k}\right|}{\rho_{2}}\right)<\infty
$$

Let $\rho_{3}=\max \left(\rho_{1}, \rho_{2}\right)$.
The remaining part of the proof follows from the inequality

$$
\sum_{k \in \sigma}\left(M_{1}+M_{2}\right)\left(\frac{\left|\Delta x_{k}\right|}{\rho_{3}}\right) \leq \sum_{k \in \sigma} M_{1}\left(\frac{\left|\Delta x_{k}\right|}{\rho_{1}}\right)+\sum_{k \in \sigma} M_{2}\left(\frac{\left|\Delta x_{k}\right|}{\rho_{2}}\right)
$$

Taking $M_{1}(x)=x$ in Theorem 5(i), we have the following result.
Corollary 5. Let M be an Orlicz function satisfying Δ_{2}-condition. Then $m(\Delta, \phi) \subseteq m(M, \Delta, \phi)$.
Theorem 6.
(a) $\ell_{1}(M, \Delta) \subseteq m(M, \Delta, \phi) \subseteq \ell_{\infty}(M, \Delta)$.
(b) $m(M, \Delta, \phi)=\ell_{1}(M, \Delta)$ if and only if $\sup _{s \geq 1} \phi_{s}<\infty$.
(c) $m(M, \Delta, \phi)=\ell_{\infty}(M, \Delta)$ if and only if $\sup _{s \geq 1} \frac{s}{\phi_{s}}<\infty$.

Proof.
(a) The result follows from Lemma 2, by taking $y_{k}=M\left(\frac{\left|\Delta x_{k}\right|}{\rho}\right)$.
(b) The result follows from the point of view of Lemma 2.
(c) The result follows from the point of view of Lemma 2.

From Lemma 3 and the fact that $m(M, \phi)$ is a Banach space, the following result follows.

Theorem 7. The space $m(M, \Delta, \phi)$ is complete.
The following result is a routine work.
Proposition 8. The space $m(M, \Delta, \phi)$ is a BK-space.
Proposition 9. The space $m(M, \Delta, \phi)$ is not solid in general.
Proof. To show that the space is not solid in general, consider the following example.

Example 1. Let $\phi_{k}=1$ and $x_{k}=1$ for all $k \in \mathbb{N}$. Consider $\lambda_{k}=(-1)^{k}$ for all $k \in \mathbb{N}$ and $M(x)=x$. Then $\left(x_{k}\right) \in m(M, \Delta, \phi)$ but $\left(\lambda_{k} x_{k}\right) \notin m(M, \Delta, \phi)$.
Proposition 10. The space $m(M, \Delta, \phi)$ is not symmetric in general.
Proof. To show that the space is not symmetric in general, consider the following example.

Example 2. Let $M(x)=x$ and $\phi_{k}=k$ for all $k \in \mathbb{N}$. Then the sequence $\left(x_{k}\right)$ define by $x_{k}=k$ for all $k \in \mathbb{N}$ is in $m(M, \Delta, \phi)$. Consider the sequence $\left(y_{k}\right)$, the rearrangement of $\left(x_{k}\right)$ defined as follows
$\left(y_{k}\right)=\left(x_{1}, x_{2}, x_{4}, x_{3}, x_{9}, x_{5}, x_{16}, x_{6}, x_{25}, x_{7}, x_{36}, x_{8}, x_{49}, x_{10}, x_{64}, x_{11},-,-,-,-\right)$.
Then $\left(y_{k}\right) \notin m(M, \Delta, \phi)$. Hence the space $m(M, \Delta, \phi)$ is not symmetric in general.
Acknowledgement. The authors thank the referees for their comments.

BINOD CHANDRA TRIPATHY - SABITA MAHANTA

REFERENCES

[1] ESI, A.-ET, M.: Some new sequence spaces defined by sequence of Orlicz functions, Indian J. Pure Appl. Math. 31 (2000), 967-972.
[2] ET, M.: On Some new Orlicz sequence spaces, J. Anal. 9 (2001), 21-28.
[3] ET, M.-NURAY, F.: Δ^{m}-statistical convergence, Indian J. Pure Appl. Math. 32 (2001), 961-969.
[4] KIZMAZ, H.: On certain sequence spaces, Canad. Math. Bull. 24 (1981), 169-176.
[5] LINDENSTRAUSS, J.-TZAFRIRI, L.: On Orlicz sequence spaces, Isreal J. Math. 10 (1971), 379-390.
[6] MURSALEEN-KHAN A. M.-QAMARUDDIN: Difference sequence spaces defined by Orlicz function, Demonstratio Math. 32 (1999), 145-150.
[7] NAKANO, H.: Concave modulars, J. Math. Soc. Japan 5 (1953), 29-49.
[8] NURAY, F.-GÜLCÜ, A.: Some new sequence spaces defined by Orlicz functions, Indian J. Pure Appl. Math. 26 (1995), 1169-1176.
[9] PARASHAR, S. D.-CHOUDHARY, B.: Sequence spaces defined by Orlicz functions, Indian J. Pure Appl. Math. 25 (1994), 419-428.
[10] RATH, D.-TRIPATHY, B. C.: Characterization of certain matrix operations, J. Orissa Math. Soc. 8 (1989), 121-134.
[11] RUCKLE, W. H.: FK spaces in which the sequence of coordinate vector is bounded, Canad. J. Math. 25 (1973), 973-978.
[12] SARGENT, W. L. C.: Some sequence spaces related to ℓ^{p} spaces, J. London Math. Soc. (2) 35 (1960), 161-171.
[13] TRIPATHY, B. C.: Matrix maps on the power series convergent on the unit disc, J. Anal. 6 (1998), 27-31.
[14] TRIPATHY, B. C.-SEN, M.: On a new class of sequences related to the space ℓ^{p}, Tamkang J. Math. 33 (2002), 167-171.
[15] TRIPATHY, B. C.-MAHANTA, S.: On a class of sequences related to the ℓ^{p} space defined by Orlicz functions, Soochow J. Math. 29 (2003), 379-391.

Received 13.9.2004
Revised 29.3.2005

Mathematical Sciences Division
Institute of Advanced Study
in Science and Technology
Paschim Boragaon
Garchuk
Guwahati-781 035
INDIA
E-mail: tripathybc@yahoo.com tripathybc@rediffmail.com sabitamahanta@yahoo.co.in

[^0]: 2000 Mathematics Subject Classification: Primary 40A05, 46A45, 46E30.
 Keywords: completeness, Orlicz function, difference sequence space, solid space, symmetric space.

