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On elementary moves that

generate all spherical latin trades

Aleš Drápal

Abstract. We show how to generate all spherical latin trades by elementary moves
from a base set. If the base set consists only of a single trade of size four and
the moves are applied only to one of the mates, then three elementary moves
are needed. If the base set consists of all bicyclic trades (indecomposable latin
trades with only two rows) and the moves are applied to both mates, then one
move suffices. Many statements of the paper pertain to all latin trades, not only
to spherical ones.

Keywords: latin trade, spherical latin bi-trade, planar Eulerian triangulation

Classification: 05B15

The earliest papers on latin bi-trades [7], [8] emphasized their interpretation
as partial latin squares (equivalently, partial quasigroups). Only later [9], [11] the
attention turned to the underlying geometric structure. Presently this approach
seems to be prevalent, cf. [2], [3], [4], [21], [22], [17], [16]. Here we shall rely mainly
upon the notion of the trading surface (τ1, τ2, τ3) which was obtained [12], [13] as a
result of an effort to get a description of latin bi-trades that is naturally connected
both to algebra and geometry (a formal definition appears in Section 3).

From every trading surface one can derive a cubic 3-connected bipartite graph
by regarding triangles as additional points, and turning each arrow of τi into a
pair of edges that connect the points of the arrow with the point representing
the triangle adjacent to the arrow. The cycles of τi become the faces of the
graph. By attributing to such a face the colour i, we see that the graph is
face 3-colourable. This process can be reversed when we start from a face 3-
colourable cubic 3-connected bipartite graph upon a surface (the orientation of
arrows depends upon the ordering of colours). This observation is the essence of a
result by Cavenagh and Lisoněk [5] in which they have shown that trading spheres
are equivalent to black-and-white (i.e., Eulerian) triangulations of the sphere (the
dual notion to planar bipartite cubic 3-connected graphs). The only nontrivial
fact needed for this connection is a classical result of Heawood [18] by which a
spherical triangulation is 3-colourable if and only if all vertices are of even order.

The graphs dual to the planar Eulerian triangulations can be obtained from
the octahedron by the two moves of Batagelj [1], and their generation received
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a lot of attention, e.g. [19]. In this paper we obtain the same kind of results in the
language of latin bi-trades. What is gained when we translate our results back?

Firstly, we shall show that only one of the Batagelj’s moves suffices when we
start from the bicyclic bi-trades (these can be represented upon two rows by
using a cyclic shift. The corresponding graph has a form of a double wheel). The
configuration needed for this move contains in its graph version a central vertex.
We shall show, secondly, that the move needs to be applied, up to few exceptional
configurations, only to cases when the central vertex is, say, black (this assumes
that the vertices are divided into black and white throughout the generation). The
exceptional configurations correspond to certain subgraphs that can be obtained
by a slight modification of the graphs that represent bicyclic bi-trades. Thirdly,
we shall obtain new results pertaining to the structure of cycles of length four
to which the reduction move can be applied (these cycles correspond to what we
shall call a seed).

The core of the results can be found already in [10]. However, I originally
thought that the three moves are indispensable. After learning through the work
of Cavenagh and Lisoněk [5] about the connection to the moves of Batagelj [1], I
realized that the number of moves can be diminished.

The importance of spherical latin bi-trades has been recently confirmed
not only by the fact that they are equivalent to planar (i.e. spherical) Euler-
ian (i.e. black-and-white) triangulations [5], but also by a recent result that every
spherical latin trade can be embedded into the operational table of a finite abelian
group. There are two independent and different proofs of this fact [6], [14].

Recent developments in the area seem to indicate that for many tasks the
permutational representation used in this paper is less economical than the stan-
dard triangulation approach. Using this approach one can present a much shorter
proof that all spherical latin bi-trades can be obtained from bicyclic bi-trades
by a single move [15]. Nevertheless, the permutational representation represents
an important facet of theory and is essential for some connections (which is well
illustrated, say, by [4]).

1. Trading surfaces

Consider two partial latin squares L1 and L2 that have identical shapes (i.e. a
cell (i, j) is occupied in either both of them, or in none of them). Call L1 and L2

row balanced if the set of symbols occurring in L1 in row i is the same as the set of
symbols that appear in the row i in L2, for every row i. If an analogous condition
holds for all columns, then L1 and L2 are said to be column balanced . Call a pair
(L1, L2) a latin bi-trade if L1 and L2 have identical shapes, are row-balanced and
column-balanced, and agree in no cell of their common shape.

Latin squares can be treated as tables or as triple sets, and the same holds for
latin trades. It is straightforward to see that an equivalent definition of a latin bi-
trade is that of a pair (T ◦, T ∗), where both T ◦ and T ∗ are subsets of A1×A2×A3

such that:
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(R1) sets T ◦ and T ∗ are disjoint;
(R2) for all (a1, a2, a3) ∈ T ◦ and all r, s ∈ {1, 2, 3}, r 6= s, there exists exactly

one (b1, b2, b3) ∈ T ∗ with ar = br and as = bs;
(R3) for all (b1, b2, b3) ∈ T ∗ and all r, s ∈ {1, 2, 3}, r 6= s, there exists exactly

one (a1, a2, a3) ∈ T ◦ with ar = br and as = bs.

Condition (R2) describes, in fact, a mapping βt : T ◦ → T ∗, (a1, a2, a3) 7→
(b1, b2, b3), where {r, s, t} = {1, 2, 3}, and condition (R3) states that this mapping
is invertible. By setting σs,r = β−1

s βr we obtain a permutation of T ◦, with
σs,r = σ−1

r,s and σt,sσs,r = σt,r. Thus τ1τ2τ3 is the identity mapping of T ◦ if
τ1 = σ2,3, τ2 = σ3,1 and τ3 = σ1,2. One can also write τi = σi+1,i−1, where
the indices are computed modulo 3. The mappings τi will be called structural

permutations of the latin bi-trade (T ◦, T ∗), and (τ1, τ2, τ3) will be also known
as its structural triple. This terminology comes from [13], where one can find a
somewhat more detailed exposition.

The cyclic decomposition of τ1 yields cycles that retain the first coordinate
(which identifies rows). Similarly τ2 retains columns and τ3 retains symbol values.
In other words, if a cycle ρ of τi, i ∈ {1, 2, 3}, moves a = (a1, a2, a3) ∈ T ◦, then ai

is an invariant of ρ. We shall say that ai is the value of ρ. Any two coordinates of
a determine the third one uniquely, and so the structural permutations τi satisfy
these conditions:

(P1) a cycle of τr has at most one point in common with a cycle of τs, whenever
1 ≤ r < s ≤ 3; and

(P2) all permutations τi, 1 ≤ i ≤ 3, are fixed point free and τ1τ2τ3 is the
identity.

Latin trades are often studied as fragments of a latin square of a given order.
That is not our case, since here their intrinsic structure is the main subject of
our interest. In such a context it seems reasonable to assume, as in [13], two
additional conditions:

(R4) the sets A1, A2 and A3 are pairwise disjoint; and
(R5) for all α ∈

⋃
Ai, 1 ≤ i ≤ 3, there exists (a1, a2, a3) ∈ T ◦ with ai = α.

It is easy to construct latin bi-trades where there exist two distinct cycles of
a structural permutation that yield the same value. If this never occurs, for all
three structural permutations, then the bi-trade is called separated . In Section 2
we shall see that from every latin bi-trade one can derive essentially only one
separated latin bi-trade.

Separated latin bi-trades can be equivalently considered as triples of permuta-
tions that satisfy conditions (P1) and (P2). This is proved in [13] and we shall
restate the result in Section 2. Conditions (P1) and (P2) seem to be the best
starting point to realize that with each latin bi-trade one can associate an ori-
ented combinatorial surface (or a union of oriented combinatorial surfaces). The
vertices of such a surface are points of the set X that is permuted by permutations
τi (we have X = T ◦ in our original setting). The edges are all pairs {x, τi(x)},
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x ∈ X and i ∈ {1, 2, 3}, and there are two kinds of 2-cells (which will be called
faces here, for simplicity):

Cyclic faces correspond to the cycles of τi, i ∈ {1, 2, 3}, and triangular faces

correspond to all triples (x1, x2, x3), where τi(xi) = xi−1. The orientation will be
considered fixed by the mappings τi; each pair (x, τi(x)) thus yields an oriented

edge.
This geometric interpretation of bi-trades was known to the author since the

early nineties, but the first published source seems to be [11]. A more detailed
exposition of the basic idea can be found in [20], and [13] is probably the first
paper where the connection is used to obtain structural results. The bulk of these
results comes from the thesis [10], and this is true also for this paper. However,
when [10] was being prepared, I did not realize how simply one can define the
corresponding combinatorial surface, and that made the original text very formal
and nearly impenetrable, even for the author.

2. Separated latin bi-trades

Let (T ◦, T ∗) be a latin bi-trade, and let (τ1, τ2, τ3) be its structural triple. Our
first lemma is in fact a restatement of the definition of τi.

Lemma 2.1. Assume i ∈ {1, 2, 3}. Then τi sends (a1, a2, a3) ∈ T ◦ to (a′1, a
′
2, a

′
3) ∈

T ◦ if and only if there exists (b1, b2, b3) ∈ T ∗ such that bj 6= aj exactly when
j ≡ i− 1 mod 3, and bk 6= a′k exactly when k ≡ i+ 1 mod 3.

Lemma 2.2. For each i ∈ {1, 2, 3} let ρi be a cycle of τi, and let bi ∈ Ai be the
value if ρi. Then:

(i) cycles ρ1, ρ2 and ρ3 meet in a common point b ∈ T ◦ if and only if b =
(b1, b2, b3);

(ii) there exist points x1, x2, x3 ∈ T ◦ such that ρi(xi−1) = xi+1 for every
i ∈ {1, 2, 3} if and only if (b1, b2, b3) ∈ T ∗.

Proof: Any triple of T ◦ is determined by any two of its coordinates, and gives
rise to the three cycles that move it. The part (i) is hence clear. To get the
converse implication of part (ii), consider b = (b1, b2, b3) ∈ T ∗. By (R3) there
exist triples xi ∈ T ◦, i ∈ {1, 2, 3}, that differ from b only in the ith coordinate.
But then τi sends xi−1 to xi+1, by Lemma 2.1. To see the direct implication,
consider i ∈ {1, 2, 3}, set xi−1 = (a1, a2, a3), xi+1 = ρi(xi−1) = (a′1, a

′
2, a

′
3) and

determine b = (b1, b2, b3) in the same way as in Lemma 2.1. Both xi−1 and xi+1

agree with b in two coordinates, and hence the choice of b does not depend upon
the choice of i. The value of ρi is clearly equal to bi = ai = a′i. �

In addition to (T ◦, T ∗) consider now a latin bi-trade (S◦, S∗). Assume that
Ai and Bi, i ∈ {1, 2, 3}, are the projections of T ◦ and S◦, respectively. (Thus
both T ◦ and T ∗ are subsets of A1 × A2 × A3, while S◦ and S∗ are subsets of
B1×B2×B3.) A triple (ϕ1, ϕ2, ϕ3), where ϕi : Ai → Bi are bijections, 1 ≤ i ≤ 3,
is called an isotopy when every (a1, a2, a3) ∈ A1 × A2 × A3 belongs to T ◦ (or
to T ∗) if and only (ϕ1(a1), ϕ2(a2), ϕ3(a3)) belongs to S◦ (or to S∗).
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A more general notion is obtained when mappings ϕi : Ai → Bi are assumed
to fulfil conditions

(a1, a2, a3) ∈ T ◦ ⇒ (ϕ1(a1), ϕ2(a2), ϕ3(a3)) ∈ S◦ and

(a1, a2, a3) ∈ T ∗ ⇒ (ϕ1(a1), ϕ2(a2), ϕ3(a3)) ∈ S∗.

Such a triple of mappings will be called for the purposes of this section a
homotopy. Homotopies in this sense can be regarded as morphisms in the category
of latin bi-trades, and then isotopies become isomorphisms. Since at this point
there is no clear benefit from such an abstract approach, we shall not develop
theory further in this direction. Similarly, we shall leave aside a general treatment
of coverings, and will directly define an injective covering:

A homotopy (ϕ1, ϕ2, ϕ3) : (T ◦, T ∗) → (S◦, S∗) is called an injective covering if
for all (b1, b2, b3) ∈ S◦ (or S∗) there exists exactly one (a1, a2, a3) ∈ T ◦ (or T ∗)
such that

(ϕ1(a1), ϕ2(a2), ϕ3(a3)) = (b1, b2, b3).

Every homotopy (ϕ1, ϕ2, ϕ3) : (T ◦, T ∗) → (S◦, S∗) yields a mapping ϕ : T ◦ →
S◦ that sends each (a1, a2, a3) ∈ T ◦ to (ϕ1(a1), ϕ2(a2), ϕ3(a3)) ∈ S◦. This map-
ping will be called the point mapping of the homotopy (ϕ1, ϕ2, ϕ3).

Lemma 2.3. Let (ϕ1, ϕ2, ϕ3) : (T ◦, T ∗) → (S◦, S∗) be a homotopy of latin bi-
trades, and let ϕ : T ◦ → S◦ be the associated point mapping. The homotopy is
an injective covering if and only if ϕ is a bijection. Furthermore,

ϕτi = σiϕ for all i ∈ {1, 2, 3},

where τi and σi are the structural permutations of (T ◦, T ∗) and (S◦, S∗), respec-
tively.

Proof: Choose i ∈ {1, 2, 3} and a = (a1, a2, a3) ∈ T ◦. Let a′ = (a′1, a
′
2, a

′
3) equal

τi(a1, a2, a3), and let (b1, b2, b3) ∈ T ∗ be as in Lemma 2.1. Triples ϕ(a) and ϕ(a′)
belong to S◦ and agree in the ith coordinate. The triple (ϕ1(b1), ϕ2(b2), ϕ3(b3))
belongs to S∗, and agrees with ϕ(a) in the (i− 1)th coordinate and with ϕ(a′) in
the (i+ 1)th coordinate. Hence σiϕ(a) = ϕ(a′) = ϕτi(a), by Lemma 2.1 again.

If (ϕ1, ϕ2, ϕ3) is a covering, then ϕ is a bijection, by definition. Suppose that ϕ
is a bijection, and consider (c1, c2, c3) ∈ S∗. For each i ∈ {1, 2, 3} choose a cycle
γi of σi in such a way that ci is the value of γi, and put ρi = ϕ−1γiϕ. We have
ϕ−1σiϕ = τi, by the preceding part of the proof, and hence ρi has to be a cycle
of τi. Define bi as the value of ρi, and note that ϕi(bi) = ci, 1 ≤ i ≤ 3. Since the
triangle configurations of Lemma 2.2, part (ii), are transferred by the mapping
ϕ−1, there must be (b1, b2, b3) ∈ T ∗. This triple is in T ∗ the unique one with

(ϕ1(b1), ϕ2(b2), ϕ3(b3)) = (c1, c2, c3),

since the triangle configurations are transferred in a one-to-one manner. �
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Lemma 2.4. Let (T ◦, T ∗) and (S◦, S∗) be latin bi-trades with structural permu-
tations τi and σi, respectively, and suppose that the bi-trade (T ◦, T ∗) is separated.
Then for every bijection ϕ : T ◦ → S◦ such that ϕτi = σiϕ, 1 ≤ i ≤ 3, there exists
exactly one injective covering (ϕ1, ϕ2, ϕ3) : (T ◦, T ∗) → (S◦, S∗) such that ϕ is its
point mapping.

Proof: Let ρ be a cycle of τi, i ∈ {1, 2, 3}. Then ϕρϕ−1 is a cycle of σi. Denote
by α the value of ρ, by β the value of ϕσϕ−1, and define ϕi so that ϕi(α) = β.
This makes ϕ well defined, since α determines ρ in a unique way. The bijection ϕ
transfers intersections of cycles and their triangle configurations in a one-to-one
manner, and so the rest follows from Lemma 2.2. �

Proposition 2.5. Let (ϕ1, ϕ2, ϕ3) : (S◦, S∗) → (U◦, U∗) and (ψ1, ψ2, ψ3) :
(T ◦, T ∗) → (U◦, U∗) be injective coverings of latin bi-trades. Suppose that
the bi-trade (S◦, S∗) is separated. Then there exists a unique injective cover-
ing (γ1, γ2, γ3) : (S◦, S∗) → (T ◦, T ∗) such that

(ψ1, ψ2, ψ3)(γ1, γ2, γ3) = (ϕ1, ϕ2, ϕ3).

If the bi-trade (T ◦, T ∗) is also separated, then the triple (γ1, γ2, γ3) yields an
isotopy of (S◦, S∗) and (T ◦, T ∗).

Proof: Denote by ϕ : S◦ → U◦ and ψ : T ◦ → U◦ the associated point mappings,
respectively, and put γ = ψ−1ϕ. From Lemmas 2.3 and 2.4 we see that γ is a point
mapping of some injective covering (γ1, γ2, γ3). There is only one such covering,
by the uniqueness clause of Lemma 2.4. The composition (ψ1, ψ2, ψ3)(γ1, γ2, γ3)
yields a covering (S◦, S∗) → (U◦, U∗) with the point mapping equal to ψγ = ϕ.
Since the point mapping of an injective covering determines the covering uniquely,
by Lemma 2.4, the composition has to agree with (ϕ1, ϕ2, ϕ3).

If (S◦, S∗) = (T ◦, T ∗) and ϕi = ψi for all i ∈ {1, 2, 3}, then each γi has to be
equal to the identity mapping, because it is determined uniquely. It follows, in
a standard way, that each γi is invertible when (T ◦, T ∗) is also a separated latin
bi-trade. �

Proposition 2.5 shows that if a latin bi-trade (T ◦, T ∗) can be injectively cov-
ered by a separated latin bi-trade, then this covering is unique up to isotopism.
To prove the existence of the covering we first show that conditions (P1) and
(P2) suffice to construct a separated latin bi-trade. This is proved in [13] as
Proposition 1.4. We repeat the proof since our statement is slightly more general.

Proposition 2.6. Let τi, 1 ≤ i ≤ 3, be permutations of a set X that satisfy (P1)
and (P2). Denote by Ai, 1 ≤ i ≤ 3, the set of all cycles of the permutation τi.
Define T ◦, T ∗ ⊆ A1 ×A2 ×A3 by

(ρ1, ρ2, ρ3) ∈ T ◦ ⇔ all ρi, 1 ≤ i ≤ 3, are incident to some x ∈ X , and
(ρ1, ρ2, ρ3) ∈ T ∗ ⇔ there exist elements xi ∈ X , i ∈ {1, 2, 3}, such that

ρi moves xi−1 to xi+1.
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Then (T ◦, T ∗) is a separated latin bi-trade with structural permutations equal
to ψτiψ

−1, 1 ≤ i ≤ 3, where ψ : X → T ◦ sends x ∈ X to the triple (ρ1, ρ2, ρ3)
consisting of those ρj which move x, 1 ≤ j ≤ 3.

Proof: Conditions (R4) and (R5) are obvious. Choose i ∈ {1, 2, 3} and consider
an element x ∈ X . For j ∈ {1, 2, 3}, j 6= i, denote by ρj the cycle of τj that moves

x. Put xi−1 = ρi+1(x), xi+1 = ρ−1
i−1(x) and xi = x. Since τi−1τiτi+1(x) = x, there

must exist unique ρi ∈ Ai that maps xi−1 to xi+1, and we see that (ρ1, ρ2, ρ3) ∈
T ∗, and that this triple is fully determined by ρi−1 and ρi+1.

The point x determines a triple of T ◦, where the jth coordinate, j 6= i, coincides
with ρj . Note that we have verified, in fact, condition (R2). Let ρ be the ith
coordinate of the triple determined by x. The cycle ρi−1 meets ρ in x and meets
ρi in τi−1(x). These intersections cannot coincide since τi−1 is fixed point free.
Hence ρ 6= ρi, and this yields condition (R1).

Consider now (ρ1, ρ2, ρ3) ∈ T ∗. Cycles ρi−1 ∈ Ai−1 and ρi+1 ∈ Ai+1 move the
point xi, and there exists a unique cycle ρ ∈ Ai that moves xi as well. Thus by
changing ρi to ρ we get the unique triple of T ◦ that agrees with (ρ1, ρ2, ρ3) in the
coordinates j ≡ i ± 1 mod 3, and that gives condition (R3). The ith structural
permutation of (T ◦, T ∗) clearly moves the triple determined by xi−1 to the triple
determined by xi+1, and so we see that the structural permutation is equal to
ψτiψ

−1. The cycles of ψτiψ
−1 are of the form ψρψ−1, where ρ ∈ Ai, and the

value of ψρψ−1 is ρ. The value hence determines each cycle uniquely, and so the
latin bi-trade (T ◦, T ∗) is really separated. �

Consider now a latin bi-trade (S◦, S∗). Let (τ1, τ2, τ3) be its structural triple.
The triple satisfies conditions (P1) and (P2), and hence we can construct a
separated latin bi-trade (T ◦, T ∗) by means of Proposition 2.6. The mapping
ψ−1 : T ◦ → S◦ defined in the proposition satisfies conditions of Lemma 2.4, and
hence it is a point mapping of an injective covering (T ◦, T ∗) → (S◦, S∗). This
covering is unique, by Lemma 2.4 again, and from the proof of Lemma 2.4 we see
that it maps the value of a cycle upon the value of the cycle image. In our case
this yields an injective covering that maps each cycle ρ of τi upon the value of ρ
in (S◦, S∗). We can hence conclude this section by the following theorem.

Theorem 2.7. Let (T ◦, T ∗) be a latin bi-trade with structural triple (τ1, τ2, τ3).
For each cycle ρ of τi denote by λi(ρ) the value of ρ, 1 ≤ i ≤ 3. Then there exists
a unique latin bi-trade (S◦, S∗) such that (λ1, λ2, λ3) : (S◦, S∗) → (T ◦, T ∗) is an
injective covering. This latin bi-trade is separated and is isotopic to any other
separated latin bi-trade that yields an injective covering of (T ◦, T ∗).

3. The trading sphere

In Section 2 we have seen that the study of separated latin bi-trades can be
reduced to the study of permutation triples (τ1, τ2, τ3) that satisfy (P1) and (P2).

If (τ1, τ2, τ3) is such a triple, then we associate with it an oriented combinatorial
surface that consists of cyclic and triangular faces (see Section 1). Every point
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x ∈ X belongs exactly to three triangular faces and to three cyclic faces. These
six faces form the star of x.

There are also other ways how to define a surface structure upon a latin bi-
trade; the advantage of the present approach seems to rest in transparency of the
local structure of the point stars. We shall now connect the genus of the surface
with the structure of the trading permutations.

The aggregate number o of cycles in all three permutations τi is called the
permutational order , and the number s of elements of the set X is called the
size. These notions can be related directly to the triple (τ1, τ2, τ3), or to a latin
bi-trade which yields it. It is clear that the associated geometric structure is a
combinatorial surface (and not a union of at least two combinatorial surfaces) if
and only if the permutations τi generate on X a transitive permutation group. In
such a case we shall say that (τ1, τ2, τ3) is a trading surface on X .

The number of faces, edges and vertices of the surface can be easily expressed
in terms of o and s. By doing so, the Euler identity for connected surfaces yields

2 + s = o+ g.

For the detailed proof see, e.g., [13, Proposition 1.5]. A trading surface with
g = 0 is called a trading sphere. We have seen that every trading sphere satisfies
o = 2 + s.

Let us remark that trading surfaces with g ≥ 1 can be obtained from trading
spheres by a cut-and-paste construction [13].

Proposition 3.1. Let (τ1, τ2, τ3) determine a trading sphere. Then among all
cycles of τi, 1 ≤ i ≤ 3, there exist at least six that are of length two.

Proof: Let 2 ≤ ℓ1 ≤ · · · ≤ ℓo be the lengths of all cycles. If ℓ6 ≥ 3, then
3s =

∑
ℓj ≥ 3o− 5 = 3s+ 1, a contradiction. �

We shall describe in the next sections three different ways how to expand locally
a triple (τ1, τ2, τ3) into (τ ′1, τ

′
2, τ

′
3) so that one of the triples determines a trading

sphere if and only if the other does. Given a trading sphere (σ1, σ2, σ3) of size > 4
we shall then use Proposition 3.1 to identify an expansion (τ ′1, τ

′
2, τ

′
3) = (σ1, σ2, σ3).

4. Triangle and trapezium expansions

Let us assume that τi, 1 ≤ i ≤ 3, are permutations of a set X that satisfy
conditions (P1) and (P2). Sequence x3x2x1 of elements of X is called a triangle if
there exists j ∈ {1, 2, 3} such that τj(x3) = x2 and τj−1(x2) = x1 (then τj+1(x1) =
x3, of course). We regard triangles as cyclic sequences, and in principle we allow
for any value of j to occur. However, our default assumption is that of j = 1,
which gives τi(xi−1) = xi+1, for every i ∈ {1, 2, 3}. For each i ∈ {1, 2, 3} there
thus exists a cycle (. . . xi−1 xi+1 . . . ) of τi, and these three cycles will be called
the sides of x3x2x1.

In the constructions below we will use elements y1, y2 and y3. Unless stated
otherwise, they will be assumed to be pairwise distinct, and disjunct to X .
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For a triangle x = x3x2x1 define τxi , i ∈ {1, 2, 3}, as a permutation of Y =
X ∪ {y1, y2, y3} such that τxi (yi+1) = yi−1, τ

x
i (yi−1) = yi+1, τ

x
i (xi−1) = yi and

τxi (yi) = xi+1, and such that τxi coincides with τi elsewhere.
It is easy to verify that the triple (τx1 , τ

x
2 , τ

x
3 ) satisfies conditions (P1) and (P2).

We can also refer to Section 10 of [13], where this construction is being considered
with more details.

The cycle (. . . xi−1 xi+1 . . . ) of τi that passes through xi−1 and xi+1 is changed
by τxi to (. . . xi−1 yi xi+1 . . . ), and there appears a new cycle (yi−1 yi+1). The
other cycles of τxi overlap with those of τi. Both the permutational order and the
size thus increase by 3, and hence the genus does not change.

We shall now give conditions for the reverse construction:

Proposition 4.1. Let (σ1, σ2, σ3) determine a trading surface on Y , |Y | > 4, and
let y3y2y1 be a triangle such that (yi−1 yi+1) is a cycle of σi for each i ∈ {1, 2, 3}.
Set xi+1 = σi(yi), x = x3x2x1, and define a permutation τi of X = Y \{y1, y2, y3}
so that τi(x) = σi(x) for every x ∈ X \{xi−1} and τi(xi−1) = xi+1. Then σi = τxi ,
for each i ∈ {1, 2, 3}.

Proof: We have σi(xi−1) = σ−1
i−1σ

−1
i+1(xi−1) = σ−1

i−1(yi+1) = yi, and σi(yi) =
xi+1, for every i ∈ {1, 2, 3}. Hence τi is a permutation of X that is obtained from
σi by removing the cycle (yi−1 yi+1), and by replacing the cycle (. . . xi−1 yi xi+1 . . . )
with (. . . xi−1 xi+1 . . . ).

The definition of τxi describes the reverse process, and so τxi = σi. However,
we need to show that (τ1, τ2, τ3) fulfils conditions (R1) and (R2). The cycles of τi
are subsets of the cycles of σi, and that makes (R1) immediately clear.

To prove (R2) consider u ∈ X , put u2 = u, u3 = σ−1
1 (u) and u1 = σ3(u). Then

σi(ui−1) = ui+1 for all i ∈ {1, 2, 3}, and τ1τ2τ3(u) = σ1σ2σ3(u) = u if ui−1 6= xi−1

for every i ∈ {1, 2, 3}. However, in such a case we get the identity as well since
each τi sends xi−1 to xi+1.

So it remains to show that τi is fixed point free. If this is not true, than there
must be xi−1 = xi+1. We have xi = τi−1(xi+1) = τ−1

i+1(xi−1), and so xi−1 = xi+1

implies xi = xi−1, by (R1). Thus x1 = x2 = x3 if some τi is not fixed point free.
But when x = x1 = x2 = x3, then τi acts on Y ∪ {x} for all i ∈ {1, 2, 3}, contrary
to the assumptions of the proposition. �

The construction τi → τxi will be called the triangular expansion. Its reverse
form, the triangular reduction, is possible, by Proposition 4.1, wheneverX is large
enough and there exists a triangle with all three sides of length 2.

We shall now introduce the trapezium expansion, the reverse of which assumes
a triangle with exactly two sides of length 2.

Assume again that τi, 1 ≤ i ≤ 3, are permutations of X that fulfil (P1)
and (P2). Fix j ∈ {1, 2, 3} and u ∈ X . Put uj = u, uj−1 = τj+1(u) and

uj+1 = τ−1
j−1(u). That makes u3u2u1 a triangle. We shall define permutations

τ ′i = τ j,u
i on Y = (X \ {u}) ∪ {y1, y2, y3} by
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τ ′j(uj−1) = yj , τ
′
j(yj) = uj+1, τ

′
j(τ

−1
j (u)) = yj−1, τ

′
j(yj−1) = yj+1

and τ ′j(yj+1) = τj(u), with τ ′j(x) = τj(x) in all other cases;

and by

(τ ′j±1)
±1(yj±1) = uj∓1, (τ ′j±1)

∓1(yj±1) = (τj±1)
∓1(u),

τ ′j±1(yj∓1) = yj and τ ′j±1(yj) = yj∓1, with τ ′j±1(x) = τj±1(x) in
the other cases.

The latter two equalities express the fact that τ ′j+1 contains the cycle (yj−1 yj),

and τ ′j−1 contains the cycle (yj+1 yj). To determine the other cycles of τ ′j±1 we
shall first express the former two equalities separately for τ ′j−1 and τ ′j+1. We
obtain

τ ′j+1(yj+1) = uj−1 and τ ′j+1(τ
−1
j+1(u)) = yj+1, together with

τ ′j−1(yj−1) = τj−1(u) and τ ′j−1(uj+1) = yj−1.

We see that the cyclic structure of τ ′j+1 differs from that of τj+1 by

replacing the cycle (. . . u . . . ) with (. . . yj+1 . . . ), and by
adding the cycle (yj yj−1).

Similarly, the cyclic structure of τ ′j−1 differs from that of τj−1 by

replacing the cycle (. . . u . . . ) with (. . . yj−1 . . . ), and by
adding the cycle (yj yj+1).

Finally note that τ ′j differs from τj so that

the cycle (. . . u . . . ) is replaced by (. . . yj−1 yj+1 . . . ), and the
cycle (. . . uj−1 uj+1 . . . ) is replaced by (. . . uj−1 yj uj+1 . . . ).

It is hence clear immediately that the triple (τ ′1, τ
′
2, τ

′
3) satisfies condition (P1)

and that each τ ′i is a fixed point free permutation. To prove τ ′1τ
′
2τ

′
3(x) = x for every

x ∈ Y first observe that in every triple (x, x′, i) such that τ ′i(x) = x′ there must be
{x, x′} ∩ {y1, y2, y3} 6= ∅ whenever either τi(x) is not defined, or it is defined, but
it differs from x′. Thus τ ′1τ

′
2τ

′
3(x) = x whenever {y1, y2, y3}∩{x, τ ′3(x), τ

′
1(x)} = ∅.

We hence need to show τ ′i+1τ
′
iτ

′
i(yi′) = yi′ for all i, i′ ∈ {1, 2, 3}. This is

clear if i′ ≡ i − 1 mod 3 since τ ′i(yi−1) = yi+1 for all i ∈ {1, 2, 3}. We also
have τ ′j+1(yj−1) = yj, τ

′
j(yj) = uj+1, τ

′
j−1(uj+1) = yj−1 and τ ′j+1(yj+1) = uj−1,

τ ′j(uj−1) = yj , τ
′
j−1(yj) = yj+1. That leaves open only the cases (i, i′) ∈ {(j, j +

1), (j − 1, j − 1)}.
However, τ ′j+1τ

′
j−1τ

′
j(yj+1) = τ ′j+1τ

′
j−1τj(u) = τ ′j+1τj−1τj(u) = τ ′j+1τ

−1
j+1(u) =

τ ′j+1(τ
′
j+1)

−1(yj+1) = yj+1. Similarly we get τ ′jτ
′
j+1τ

′
j−1(yj−1) = τ ′jτ

′
j+1τj(u) =

τ ′jτj+1τj(u) = τ ′j(τ
−1
j (u)) = yj−1.

The construction removes point u and adds points yi, 1 ≤ i ≤ 3. Sometimes it
is useful to remove no point and add only two points. There is a certain symmetry
between yj−1 and yj+1, and so we choose yj as the point that can appear in both
of the underlying sets. Thus we relax the assumption X ∩ {y1, y2, y3} = ∅ to

I = X ∩ {y1, y2, y3} 6= ∅ =⇒ I = {yj} = {u}.

This formal assumption for the construction will be used further on.
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The aggregate number of cycles increases by two, and the number of points
increases by two as well. Hence no change to the genus can occur, and we can
state:

Lemma 4.2. Let τi, 1 ≤ i ≤ 3, be permutations of a set X that satisfy (P1)

and (P2), and generate on X a transitive permutation group. Permutations τ j,u
i ,

1 ≤ i ≤ 3, have these properties as well, and yield the same genus, for every
j ∈ {1, 2, 3} and every u ∈ X .

Under the above assumptions we also get the following lemma. It expresses a
necessary condition for the reverse construction.

Lemma 4.3. Assume τ ′i = τ j,u
i , 1 ≤ i ≤ 3. Then the cycle of τ ′j+1 incident to

yj+1 does not intersect the cycle of τ ′j−1 incident to yj−1.

Proof: For i = j ± 1 denote by ρi the cycle of τi incident to u. If the cycles
of the lemma had intersected in a point v, then the cycles ρj−1 and ρj+1 would
intersect in both u and v. That would be a contradiction to (P1). �

The definition of permutations τ ′i = τ j,u
i is followed by a detailed description

of the change in the cyclic structure. Using this description we record, for a later
application, the following observation.

Lemma 4.4. Assume τ ′i = τ j,u
i , 1 ≤ i ≤ 3. For each cycle ρ of τi there exists

exactly one cycle ρ′ of τ ′i that has at least one common point with ρ. If cycles
ρ1 6= ρ2 meet in a point v 6= u, then ρ′1 and ρ′2 meet in the point v as well. If cycles
ρ1 6= ρ2 meet in u and one of them is not a side of the triangle uτj+1(u)τ

−1
j−1(u),

then ρ′1 and ρ′2 meet in yj−1 or in yj+1.

Proposition 4.5. Let (σ1, σ2, σ3) be a triple of permutations of a set Y that
satisfies conditions (P1) and (P2), and let y3y2y1 be a triangle. Furthermore, let
there exist j ∈ {1, 2, 3} such that (yj yj−1) is a cycle of σj+1, (yj yj+1) is a cycle
of σj−1, and the cycle of σj that passes through both yj−1 and yj+1 is of length
≥ 3. Suppose also that the cycle of σj+1 incident to yj+1 does not meet the cycle
of σj−1 incident to yj−1.

Define permutations τi, 1 ≤ i ≤ 3, of X = (Y \ {y1, y2, y3}) ∪ {u}, u /∈ X or
u = yj , so that

τj−1(σ
−1
j−1(yj−1)) = u, τj−1(u) = σj−1(yj−1),

τj+1(σ
−1
j+1(yj+1)) = u, τj+1(u) = σj+1(yj+1),

τj(σ
−1
j (yj−1)) = u, τj(u) = σj(yj+1), τj(σ

−1
j (yj)) = σj(yj),

and τi(x) = σi(x) in all other cases.

Then σi = τ j,u
i , for each i ∈ {1, 2, 3}.

Proof: We see that τj±1 is obtained from σj±1 by removing the cycle (yj yj∓1),
and by replacing (. . . yj±1 . . . ) with (. . . u . . . ). Furthermore, τj differs from σj so

that (. . . yj−1 yj+1 . . . ) is replaced by (. . . u . . . ), and (. . . σ−1
j (yj) yj σj(yj) . . . )

by (. . . σ−1
j (yj) σj(yj) . . . ). Consider the cycles of τi, 1 ≤ i ≤ 3. If two distinct
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cycles intersect in a point v 6= u, then the corresponding cycles of σi intersect in
v as well. From our assumptions we see that any two distinct cycles of τi that
intersect in u have no other common point. Hence permutations τi, 1 ≤ i ≤ 3,
fulfil (P1). They are fixed point free since the cycle (. . . yj−1 yj+1 . . . ) is assumed

to be of length at least three. The equality σi = τ j,u
i is clear from the cycle

decompositions, and so it remains to show τ1τ2τ3(x) = x, for all x ∈ X .
We have τj+1(u) = σj+1(yj+1) = σ−1

j σ−1
j−1(yj−1) = σ−1

j (yj), τj(σ
−1
j (yj)) =

σj(yj) and τj−1(σj(yj)) = τj−1σjσj+1(yj−1) = τj−1(σ
−1
j−1(yj−1)) = yj−1. Fur-

thermore, τj−1(u) = σj−1(yj−1), τj+1(σj−1(yj−1)) = σj+1σj−1(yj−1) = σ−1
j (yj−1)

and τj(σ
−1
j (yj−1)) = u. Finally, τj(u) = σj(yj+1), τj−1(σj(yj+1)) = σj−1σj(yj+1)

= σ−1
j+1(yj+1) and τj+1(σ

−1
j+1(yj+1)) = u. We have in this way verified the equal-

ity τi+1τi−1τi(x) = x for nine different pairs (i, x). The considered situations
include all five pairs (i, x), where τi(x) does not coincide with σi(x). In other
situations τi+1τi−1τi(x) = x = σi+1σi−1σi(x) is induced by the overlaps between
the corresponding mappings. �

5. Sliding expansion

Let τi, 1 ≤ i ≤ 3, be permutations of a set X that satisfy conditions (P1) and
(P2). Suppose that x and z are two distinct points of X that occur in the same
cycle of τj , for a certain j ∈ {1, 2, 3}. Suppose also that τj(x) 6= z and that the
cycle of τj+1 that moves x does not intersect the cycle of τj−1 that moves z.

Assume y /∈ X , put Y = {y}∪X , and define permutations τ ′i = τx,z
i , 1 ≤ i ≤ 3,

so that τ ′i coincides with τi, with the exception of the following cases:

τ ′j(x) = z, τ ′j(τ
−1
j (z)) = y, τ ′j(y) = τj(x),

τ ′j−1(z) = y, τ ′j−1(y) = τj−1(z), and

τ ′j+1(τ
−1
j+1(x)) = y, τ ′j+1(y) = x.

The cyclic decomposition of τ ′j is clearly obtained from that of τj by replacing
the cycle

(. . . x τj(x) . . . τ−1
j (z) z . . . ) with cycles

(. . . x z . . . ) and (τj(x) . . . τ−1
j (z) y).

In the cyclic decomposition of τ ′j−1 one replaces (. . . z . . . ) by (. . . z y . . . ),
and in τ ′j+1 the cycle (. . . x . . . ) is replaced by ( . . . y x . . . ).

We see that all τ ′i , 1 ≤ i ≤ 3, are fixed point free permutations. To verify
condition (P1) first note that any intersection of cycles from τ ′i , 1 ≤ i ≤ 3,
that does not involve the element y gives an intersection of corresponding cycles
from τi. Hence it suffices to verify that those cycles of τ ′i that intersect in y have
y as their only common point. This is clear if one of the cycles is from τ ′j (then

it is the cycle (τj(x) . . . τ−1
j (z) y)). If one of the cycles comes from τ ′j−1 and

the other from τ ′j+1, then the assertion follows from the initial assumptions on τi,
1 ≤ i ≤ 3.
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To verify that τ ′1τ
′
2τ

′
3 is the identity permutation of Y it suffices to show that

τ ′i+1τ
′
i−1τ

′
i(u) = u whenever u = y, or τ ′i(u) 6= τi(u), u ∈ X . We shall do so by

observing the existence of three triangles:
Firstly, τ ′j(x) = z, τ ′j−1(z) = y and τ ′j+1(y) = x.

Secondly, τ ′j(τ
−1
j (z)) = y, τ ′j−1(y) = τj−1(z) and τ ′j+1τj−1(z) = τj+1τj−1(z) =

τ−1
j (z), where τ ′j+1τj−1(z) = τj+1τj−1(z) is a consequence of the fact that τj−1(z)

is not in the cycle of τj+1 that moves x, and hence it cannot be equal to τ−1
j+1(x).

Finally, τ ′j+1(τ
−1
j+1(x)) = y, τ ′j(y) = τj(x) and τ ′j−1(τj(x)) = τj−1τj(x) =

τ−1
j+1(x). Note that τ ′j−1 agrees with τj−1 on τj(x) since we assume τj(x) 6= z.

We can hence state:

Lemma 5.1. Let τi, 1 ≤ i ≤ 3, be permutations of a set X that satisfy (P1) and
(P2), and generate on X a transitive permutation group. Permutations τx,z

i have
these properties as well, and yield the same genus, whenever x, z ∈ X are distinct
points that fulfil:

(1) z 6= τj(x),
(2) there exists j ∈ {1, 2, 3} such that x and z are incident to the same cycle

of τj , and
(3) the cycle of τj+1 incident to x does not intersect the cycle of τj−1 incident

to z.

Denote by ρ the cycle of τj incident to x and z, by σ the cycle of τj+1 incident
to x, and by σ̄ the cycle of τj−1 incident to z. The definition of τ ′i = τx,z

i can
be interpreted so that the cycle ρ gets ruptured between x and z, with a part
sliding along σ (or σ̄, according to the preferred orientation), creating thus a new
triangle zyx.

This is the reason why we call this construction the sliding expansion. Later
we shall deal mainly with a special case in which τj(z) = x. In such a case τ ′j
contains cycle (z x), and this is why this special case will be called the 2-sliding

expansion.
To every cycle α 6= ρ of τi, 1 ≤ i ≤ 3, there clearly corresponds a unique cycle

α′ of τ ′i that has at least one common point with α, and α = α′ when α /∈ {σ, σ̄}.
The cycle ρ gets divided into two cycles ρ′ and ρ′′, with ρ′ incident to x and z,

and ρ′′ incident to y.
Say that a cycle α connects cycles β′ and β′′, if α has a common point with β′

and β′′, and differs from both β′ and β′′.
Using the notation above, we state a lemma, purpose of which is to point out

that the lack of multiple connectedness is a necessary precondition for sliding
reduction.

Lemma 5.2. The cycles σ′ and σ̄′ are the only cycles of τx,z
i , i ∈ {1, 2, 3}, that

connect ρ′ and ρ′′.

Proof: Let α /∈ {σ′, σ̄′} connect ρ′ and ρ′′. Then α is a cycle of τj±1 that moves
a point x′ of ρ′ and a point x′′ of ρ′′. That contradicts (P1) since in such a
situation both x′ and x′′ have to be incident to ρ. �
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Proposition 5.3. Let σi, 1 ≤ i ≤ 3, be permutations of a set Y = X ∪ {y} that
fulfil conditions (P1) and (P2). Let zyx be a triangle, and let ρ′ be the cycle of
σj , where j ∈ {1, 2, 3}, that moves x onto z. Furthermore, let ρ′′ be the cycle of
σj that moves the element y. For i = j ± 1 suppose that there is only one cycle
of σi that connects ρ′ and ρ′′, and let this cycle (which necessarily moves y) be
of length at least three. Then there exist (unique) permutations τi of the set X ,
1 ≤ i ≤ 3, that fulfil (P1) and (P2), and for which σi = τx,z

i .

Proof: Derive τj from σj by replacing the cycles ρ′ and ρ′′ with the cycle ρ :

(. . . x σj(y) . . . σ−1
j (y) z . . . ). Furthermore, derive τj+1 from σj+1 by changing

(. . . σ−1
j+1(y) y x . . . ) to (. . . σ−1

j+1(y) x . . . ), and τj−1 from σj−1 by changing

(. . . z y σj+1(y) . . . ) to (. . . z σj+1(y) . . . ). Permutation τj is clearly fixed point
free, and for τj±1 this holds because of the assumption on the length of cycles
passing through the element y.

A violation of (P1) by (τ1, τ2, τ3) would have to involve the cycle ρ and a cycle
connecting ρ′ and ρ′′. However, such a situation cannot occur by our assumptions,
as (σ1, σ2, σ3) satisfies (P1) and (P2) as well.

The pairs (i, u) ∈ {1, 2, 3}×X with τi(u) 6= σi(u) are exactly (j, x), (j, σ−1
j (y)),

(j + 1, σ−1
j+1(y)) and (j − 1, σ−1

j−1(y)). To prove (P2) we need to show that u

equals τi+1τi−1τi(u) for every such (i, u). We have τj(x) = σj(y) 6= σ−1
j−1(y),

τj−1τj(x) = σj−1σj(y) = σ−1
j+1(y) and τj+1τj−1τj(x) = τj+1σ

−1
j+1(y) = x. Fur-

thermore, τj(σ
−1
j (y)) = z, τj−1(z) = σj−1(y) 6= σ−1

j+1(y) and τj+1(σj−1(y)) =

σj+1σj−1(y) = σ−1
j (y). We have verified that (τ1, τ2, τ3) satisfies (P1) and (P2).

The equality σi = τx,z
i is clear. �

Let x = x3x2x1 be a triangle in (τ1, τ2, τ3) and choose j ∈ {1, 2, 3}. The trapez-

ium expansion (τ ′1, τ
′
2, τ

′
3) with τ ′i = τ

j,xj

i , 1 ≤ i ≤ 3, contains cycles (yj yj+1)
and (. . . xj+1 yj−1 . . . ) of τ ′j−1, (yj yj−1) and (. . . yj+1 xj−1 . . . ) of τ ′j+1, and

(. . . yj−1 yj+1 . . . ) and (. . . xj−1 yj xj+1 . . . ) of τ ′j . Permutations τ ′i act on

X ′ = (X \{xj})∪{y1, y2, y3}, and so xj /∈ X ′. We have τ ′j(yj+1) = τj(xj) 6= yj−1,
and hence the 2-sliding expansion (τ ′i )

yj+1,yj−1 is well defined. We shall denote
it by τ ′′i , after renaming y to xj . Then τ ′′j−1 contains the cycles (yj yj+1) and
(. . . xj+1 yj−1 xj . . . ), where the latter cycle replaces the cycle (. . . xj+1 xj . . . )
of τj . Similarly τ ′′j+1 yields cycles (yj yj+1) and (. . . xj yj+1 xj−1 . . . ), a replace-
ment of (. . . xj xj−1 . . . ). Finally, the cycle (. . . xj−1 yj xj+1 . . . ) is copied
to τ ′′j from τ ′j , and in τ ′′j there appears (yj yj+1). In τ ′j we also have the cycle

(. . . xj . . . ) that is equal to the original cycle of τj . We have proved:

Lemma 5.4. Let x = x3x2x1 be a triangle in a trading surface (τ1, τ2, τ3). Then

for all i, j ∈ {1, 2, 3} the permutations τx
i and (τ

j,xj

i )yj+1,yj−1 coincide (assuming
that the points y and xj are identified).

Corollary 5.5. A triangle expansion can be replaced by a trapezium expansion
followed by a 2-sliding expansion.
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6. The trigonal construction

The triangular construction of Section 4 is a special case of a more general
construction we shall now describe.

Suppose that x = x3x2x1 is a triangle in (τ1, τ2, τ3), where τi are permutations
of X that fulfil (P1) and (P2). Let Σ = (σ1, σ2, σ3) be another triple of permu-
tations fulfilling (P1) and (P2). Suppose that the latter permutations act on a

set Y , where Y ∩ X = ∅. For a fixed y ∈ Y define permutations τ ′i = τx,Σ,y
i ,

1 ≤ i ≤ 3, on (X ∪ Y ) \ {y} in such a way that

τ ′i(x) = τi(x) for all x ∈ X \ {xi−1},
τ ′i(u) = σi(u) for all u ∈ Y \ {y, σ−1

i (y)},
τ ′i(xi−1) = σi(y) and τ ′i(σ

−1
i (y)) = xi+1.

We see that the cycles of τi and σi become cycles of τ ′i , with the exception of
(. . . xi−1 xi+1 . . . ) and (y . . . σ−1

i (y)), which are merged into a common cycle

(. . . xi−1 . . . σ−1
i (y) xi+1 . . . ). Denote this cycle by µi.

Permutations τ ′i are fixed point free. Because µi−1 and µi+1 meet exactly in
xi, we see that permutations τ ′i fulfil condition (P1). To prove (P2) first note that
τ ′i(u) = τi(u) when both u and τ ′i(u) belong to X , and that τ ′i(u) = σi(u) when
both u and τ ′i(u) belong to Y . Hence it suffices to prove τ ′i+1τ

′
i−1τ

′
i(u) = u for

u ∈ {xi−1, σ
−1
i (y)}, for all i ∈ {1, 2, 3}.

We have τ ′i(xi−1) = σi(y) 6= σ−1
i−1(y), τ

′
i−1τ

′
i(x) = σi−1σi(y) = σ−1

i+1(y), which
is sent by τ ′i+1 to xi−1. When i is replaced by i− 1, then the triangle involves the

action of τ ′i on σ−1
i (y), and so nothing else is needed.

The permutational order of (τ ′1, τ
′
2, τ

′
3) is the sum of the incoming orders di-

minished by three, and the size is the sum of the input sizes diminished by one.
We can hence state:

Lemma 6.1. The permutations τ ′i = τx,Σ,y
i , 1 ≤ i ≤ 3, fulfil conditions (P1)

and (P2). If permutations τi act on X transitively and yield genus gX , and if
permutations σi act transitively on Y and yield genus gY , then permutations τ ′i
act transitively on (X ∪ Y ) \ {y} and yield genus gX + gY .

To give conditions for a construction reverse to τx,Σ,y
i requires a bit of general

theory.
Let (τ1, τ2, τ3) be a triple that satisfies (P1) and (P2), with the underlying

set X . A (cyclic) sequence v3v2v1, where v1, v2, v3 ∈ X , is called a trigon if there
exists j ∈ {1, 2, 3} such that

v3 and v1 are in the same cycle of τj+1 and v3 /∈ {v1, τj+1(v1)},
v2 and v3 are in the same cycle of τj and v2 /∈ {v3, τj(v3)}, and
v1 and v2 are in the same cycle of τj−1 and v1 /∈ {v2, τj−1(v2)}.

By default we shall assume j = 1. Then for every i ∈ {1, 2, 3} there exists a
cycle ρi incident to vi−1 and vi+1. Denote by ℓi the length of ρi. The definition

of trigon can be succinctly expressed by saying that τki

i (vi−1) = vi+1 for some ki,
where 1 < ki < ℓi.
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Cycles ρ1, ρ2 and ρ3 will be called the sides of the trigon v3v2v1. Point v1, v2
and v3 are vertices of the trigon.

It is useful to realize that if the condition 1 < ki < ℓi holds for at least one
i ∈ {1, 2, 3}, then it holds for all such i:

Lemma 6.2. Let vi ∈ X be such that τki

i (vi−1) = vi+1 for some ki ≥ 1, and
assume that ki is the least possible, 1 ≤ i ≤ 3. If kj = 1 for at least one
j ∈ {1, 2, 3}, then ki = 1 for all i ∈ {1, 2, 3}.

Proof: Denote by ρi the cycle of τi that moves both vi−1 and vi+1. Let us have
τj(vj−1) = vj+1 for some j ∈ {1, 2, 3}. The intersection of ρj−1 and ρj+1 contains

the point vj and the point τj−1(vj+1) = τ−1
j+1(vj−1). These two points coincide,

by condition (P1). Thus vj = τj−1(vj+1) and τj+1(vj) = vj−1. �

Corollary 6.3. There exists no trigon with a side of length two.

Corollary 6.4. Suppose that a point v is incident to two cycles of length two.
Then v is a vertex of no trigon.

Let v3v2v1 be a trigon in the trading surface (τ1, τ2, τ3). Associate with it a
polygon

v3 τ1(v3) . . . τ
k1−1
1 (v3) v2 τ3(v2) . . . τ

k3−1
3 (v2) v1 τ2(v1) . . . τ

k2−1
2 (v1),

where ki ≥ 1 is the least possible such that τki

i (vi−1) = vi+1 (we know that ki ≥ 2
for all i ∈ {1, 2, 3}).

This polygon can be a separating one, i.e. after its removal the surface is divided
into two components. In such a case call the trigon v3v2v1 separating. Note that
all trigons of a trading sphere are separating.

Furthermore, denote by ρi the side of v3v2v1 that is incident to vi−1 and vi+1.
Define In(v3v2v1) as the least set of cycles that fulfils:

(I1) if ρ 6= ρi moves τh
i (vi), 1 ≤ h < ki, then ρ ∈ In(v3v2v1);

(I2) if ρ meets ρ′ ∈ In(v3v2v1) and ρ /∈ {ρ1, ρ2, ρ3}, then ρ ∈ In(v3v2v1).

Let the trigon be separated. The set In(v3v2v1) is obviously nonempty and
yields all cyclic faces in one of the components determined by the polygon asso-
ciated with v3v2v1. The points of this component are called the points of trigon
v3v2v1, and they divide into the vertices vi and into the inner points . The set of
inner points will be denoted by Pnt(v3v2v1).

Lemma 6.5. Let v3v2v1 be a separating trigon. Then Pnt(v3v2v1) coincides with
the set of all points that are moved by some ρ ∈ In(v3v2v1).

The proof does not seem to be needed, since the lemma clearly follows from
the geometric interpretation. If a more formal approach is desired, one can apply
results of [13], particularly Proposition 3.6. (One of central notions in [13] is the
notion of multigon. Trigon v3v2v1 is a multigon of profile (ρ3, ρ2, ρ1). Multigons
are separating and non-separating, and for each separating multigon P one defines
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In(P ) and Pnt(P ) in a way special kind of which are the above definitions of In
and Pnt for trigons.)

Let us now turn to the reversal of the trigonal construction described above.
Suppose that x = x3x2x1, (τ1, τ2, τ3), Σ = (σ1, σ2, σ3) and y ∈ Y satisfy the
initial conditions of this section.

Lemma 6.6. Put τ ′i = τx,Σ,y
i . Then x3x2x1 is a separating trigon in (τ ′1, τ

′
2, τ

′
3).

Proof: For all i ∈ {1, 2, 3} denote by ρ′i the cycle of τ ′i

(. . . xi−1 . . . σ−1
i (y) xi+1 . . . ),

and by ρi the cycle (y . . . σ−1
i (y)) of σi. We see that ρ′i moves both xi−1 and xi+1,

and that xi+1 6= ρ′i(xi−1). Thus x3x2x1 is a trigon in (τ ′1, τ
′
2, τ

′
3), In(x3x2x1) =

A \ {ρ1, ρ2, ρ3}, where A is the set of all cycles occurring in σi, 1 ≤ i ≤ 3, and
Pnt(x3x2x1) = Y \ {y}. We see that x3x2x1 is indeed separating. �

Proposition 6.7. Let µi, 1 ≤ i ≤ 3, be permutations of a set X ∪ Y , X ∩ Y =
∅, that fulfil conditions (P1) and (P2), and let x3x2x1 be a separating trigon
in (µ1, µ2, µ3) such that Pnt(x3x2x1) = Y . Assume y /∈ X ∪ Y , and define a
permutation σi of Y ∪{y} so that it consists of all cycles of In(x3x2x1) which are

induced by µi, and of the cycle (y µi(xi−1) . . . µ
ki−1
i (xi−1)), where ki ≥ 1 is the

least integer such that xi+1 = µki

i (xi−1). Define also τi as the permutation of X
which is obtained by removing from the cycle set of µi all cycles of In(x3x2x1),

and by replacing the cycle (. . . xi−1 µi(xi−1) . . . µki−1
i (xi−1) xi+1 . . . ) with

(. . . xi−1 xi+1 . . . ).
Then both Σ = (σ1, σ2, σ3) and (τ1, τ2, τ3) fulfil conditions (P1) and (P2),

x = x3x2x1 is the triangle in the latter triple, and µi = τx,Σ,y
i , for all i ∈ {1, 2, 3}.

Proof: First note that ki ≥ 2 for all i ∈ {1, 2, 3}, by the definition of the
trigon. This means that permutations σi are fixed point free. For τi this is clear
immediately. Permutations τi satisfy (P1) since they are obtained by retaining
or restricting the original cycles. The same reasoning applies to cycles of σi, with
the exception of the cases when y is a common point of two cycles. However, in
such cases there is no other common point since the cycles involved come from
the cycles induced by the trigon.

We have σi(y) = µi(xi−1), σi−1σi(y) = µi−1µi(xi−1) = µ−1
i+1(xi−1), which is

mapped by σi+1 to y. We get thus triangle y µi(xi−1)µ
−1
i+1(xi−1) in (σ1, σ2, σ3),

and for i = 1, 2, 3 these triangles cover all (j, u) such that j ∈ {1, 2, 3} and either
u = y or σj(u) 6= µj(u), u ∈ Y . It follows that Σ = (σ1, σ2, σ3) satisfies both
(P1) and (P2). In (τ1, τ2, τ3) there arises the triangle x = x3x2x1, and so both

(P1) and (P2) are satisfied as well. The equalities µi = τx,Σ,y
i , i ∈ {1, 2, 3}, can

be easily derived by comparing the cyclic decompositions. �

Let us remark that both τi and σi clearly generate a transitive permutation
group if mappings µi do so. The triple (τ1, τ2, τ3) will be called the outer trading
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surface of the trigon x = x3x2x1, while (σ1, σ2, σ3) will be the inner trading

surface.

7. Trigon-free triangles

Assume that τi, 1 ≤ i ≤ 3, are permutations of a set X that fulfil (P1) and
(P2). For simplicity, assume also that the group generated by these permutations
is transitive on X .

Lemma 7.1. Every separating trigon x3x2x1 is fully determined by the set of
inner cycles In(x3x2x1).

Proof: For each i ∈ {1, 2, 3} there exists exactly one cycle of τi that does not
belong to In(x3x2x1), but intersects an element of In(x3x2x1). The intersections
of these three cycles yield the vertices of the trigon. �

Call a triangle y3y2y1 trigon-free if there exists no trigon x3x2x1 such that the
set {x1, x2, x3} ∩ {y1, y2, y3} has two elements.

If a triangle y3y2y1 is not trigon-free, then there clearly exist a trigon x3x2x1

and i ∈ {1, 2, 3} such that xi−1 = yi+1 and xi+1 = yi−1.

Lemma 7.2. Let y3y2y1 be a trigon-free triangle. Denote by k the number of
i ∈ {1, 2, 3} such that (yi−1 yi+1) is a cycle of τi.

(i) Assume k = 1 and choose j ∈ {1, 2, 3} so that (yj−1 yj+1) is a cycle of
τj . Set y = yj. There exist permutations σi of the set X \ {y} that
fulfil (P1) and (P2) and satisfy τi = σ

yj−1,yj+1

i , 1 ≤ i ≤ 3. In addition,
σj(yj+1) = yj−1.

(ii) Assume k = 2 and choose j ∈ {1, 2, 3} so that (yj±1 yj) is a cycle of τj∓1.
Then there exist permutations σi of the set X \ {yj−1, yj+1} that fulfil

(P1) and (P2) and satisfy τi = σ
j,yj

i , 1 ≤ i ≤ 3.
(iii) Assume k = 3 and suppose that X has more than four elements. Put

xi = τi−1(yi−1), for i ∈ {1, 2, 3}. Set x = x3x2x1. Then there exist
permutations σi of the set X \ {y1, y2, y3} that fulfil (P1) and (P2) and
satisfy τi = σx

i , 1 ≤ i ≤ 3.

Proof: The case k = 3 is a direct application of Proposition 4.1. If k = 2, then
(yj−1 yj+1) is not a cycle of τj , and hence the length condition of Proposition 4.1
is satisfied. The condition of empty intersection follows from the fact that y3y2y1
is trigon-free, and so Proposition 4.1 can be used. It remains to consider the case
k = 1.

Assume k = 1 and put z = yj+1 and x = yj−1. Let ρ′ be the cycle (x z), and
denote by ρ′′ the cycle of τj that moves y. Furthermore, let γ′ be the cycle of τj−1

that maps z onto y, and let γ′′ be the cycle of τj+1 that maps y onto x. If γ is a
cycle of τj−1 that connects ρ′ and ρ′′ and γ 6= γ′, then γ has to move x. Denote by
y′ the intersection of γ and ρ′′. We have τj+1(x) 6= y, as k = 1. This means that
xyy′ is a trigon, by Lemma 6.2. The triangle zyx, which coincides with x3x2x1, is
hence not trigon-free, and that contradicts our assumptions. The situation when
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there exists a cycle γ 6= γ′′ of τj+1 that connects ρ′ and ρ′′ is similar: one gets a
trigon yzy′, where y′ is determined by the intersection of γ and ρ′′. We conclude
that there exists no cycle different from γ′ and γ′′ that connects ρ′ and ρ′′. The
assumptions of Proposition 5.3 hence hold, which means that (τ1, τ2, τ3) can be
really obtained by the sliding construction. �

Corollary 7.3. Suppose that τi, 1 ≤ i ≤ 3, generate on a set X a transitive
permutation group, and that they fulfil (P1) and (P2). If any of permutations
τi contains a cycle of length two and if X has more than four elements, then
(τ1, τ2, τ3) contains a non-separating trigon, or it can be obtained by a trapezium
or 2-sliding or trigonal expansion from a triple (σ1, σ2, σ3) that fulfils (P1) and
(P2), and acts on a proper subset of X .

Proof: Consider a triangle zyx such that (x y) is a cycle of some τi. If the
triangle is trigon-free, use Lemma 7.2. If it is not, consider the trigon induced by
the triangle and use Proposition 6.7. �

Theorem 7.4. Every trading sphere can be obtained from the trading sphere
on four elements by a series of constructions, where each step is a trapezium
expansion or a 2-sliding expansion or a trigonal expansion.

Proof: This is a direct consequence of Corollary 7.3, Proposition 3.1 and Corol-
lary 5.5. �

8. Inverse mappings

In some proofs the number of needed verifications can be reduced nearly by a
half when one considers, in addition to (τ1, τ2, τ3), one of the triples (τ−1

2 , τ−1
1 , τ−1

3 ),

(τ−1
1 , τ−1

3 , τ−1
2 ) and (τ−1

3 , τ−1
2 , τ−1

1 ). In tabular interpretation this corresponds to
the exchange of rows and columns, or columns and entry values, or rows and entry
values.

Proposition 8.1. Let (τ1, τ2, τ3) be a triple of permutations that fulfil (P1) and
(P2). Then (τ−1

2 , τ−1
1 , τ−1

3 ) fulfils (P1) and (P2) as well. Furthermore, x3x2x1

is a triangle (or a trigon) in (τ1, τ2, τ3) if and only if x1x2x3 is a triangle (or a
trigon) in (τ−1

2 , τ−1
1 , τ−1

3 ).

Proof: The cyclic decomposition of τi and τ−1
i yield the same sets, and so

(τ−1
2 , τ−1

1 , τ−1
3 ) consists of fixed-point free permutations that fulfil (P1). Since

τ−1
2 τ−1

1 τ−1
3 = τ3(τ1τ2τ3)

−1τ−1
3 is the identity mapping, we see that (P2) is satis-

fied as well. Now, τ1(x3) = x2 ⇔ τ−1
1 (x2) = x3, τ3(x2) = x1 ⇔ τ−1

3 (x1) = x2 and

τ2(x1) = x3 ⇔ τ−1
2 (x3) = x1. This verifies the claim about triangles. The part

about trigons is similar. �

Corollary 8.2. Let π be a permutation of {1, 2, 3}, and suppose that (τ1, τ2, τ3)
fulfils (P1) and (P2). If sgn(π) = 1, then (τπ(1), τπ(2), τπ(3)) satisfies these condi-

tions as well. If sgn(π) = −1, then they are fulfilled by (τ−1
π(1), τ

−1
π(2), τ

−1
π(3)).
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We shall be now describing how the constructions of the earlier sections are
influenced by transition to inverse permutations. In principle an expansion of the
triple formed by inverse permutations yields the inverses of the expansion from
the original permutation triple. However, one has to be careful with details since
the added points y1, y2 and y3 depend not only on the permutation structure,
but also upon the order of permutations in the structural triple.

Proposition 8.3. Let (τ1, τ2, τ3) be a triple of permutations that fulfil (P1) and
(P2), and act on X , where X ∩ {y1, y2, y3} = ∅. Fix j ∈ {1, 2, 3} and denote by
π ∈ S3 the transposition (j−1 j+1). Put τ̃i = τ−1

π(i), 1 ≤ i ≤ 3. Transposition

(yj−1 yj+1) will be denoted (generically) as g.

(i) If x = x3x2x1 is a triangle in (τ1, τ2, τ3), then x̃ = x1x2x3 is a triangle in
(τ̃1, τ̃2, τ̃3), and

τ̃ x̃π(i) = g(τxi )−1g, 1 ≤ i ≤ 3.

(ii) For every u ∈ X

τ̃ j,u

π(i) = g(τ j,u
i )−1g, 1 ≤ i ≤ 3.

(iii) Suppose that x, z ∈ X are distinct points that are incident to the same
cycle of τj , z 6= τj(x). Then

τ̃z,x

π(i) = (τx,z
i )−1, 1 ≤ i ≤ 3.

(iv) Let σi, 1 ≤ i ≤ 3, be permutations of a set Y , X ∩ Y = ∅. Put σ̃i =
σ−1

π(i), 1 ≤ i ≤ 3, and assume that (σ1, σ2, σ3) fulfils (P1) and (P2). Let

x = x3x2x1 be a triangle in (τ1, τ2, τ3) and let y be a point of Y . Set

Σ̃ = (σ̃1, σ̃2, σ̃3) and x̃ = x1x2x3. Then x̃ is a triangle in (τ̃1, τ̃2, τ̃3) and

τ̃ x̃,Σ̃,y

π(i) = (τx,Σ,y
i )−1.

Proof: If x = x3x2x1 is a triangle in (τ1, τ2, τ3), then x̃ = x1x2x3 is a triangle
in (τ̃1, τ̃2, τ̃3) by Corollary 8.2. From τi(xi−1) = xi+1 we get xi−1 = τ−1

i (xi+1),
and so

τ̃j(xj+1) = xj−1, τ̃j−1(xj−1) = xj and τ̃j+1(xj) = xj+1.

In other words, τ̃i(xπ(i−1)) = xπ(i+1), 1 ≤ i ≤ 3, and thus for x̃i = xπ(i) we obtain
x̃ = x̃3x̃2x̃1 and τ̃i(x̃i−1) = x̃i+1.

The cycle (. . . x̃i−1 x̃i+1 . . . ) of τ̃i is replaced in τ̃ x̃i by (. . . x̃i−1 yi x̃i+1 . . . ).
By passing to inverse mappings we see that (. . . xπ(i+1) xπ(i−1) . . . ) of τπ(i) is
replaced by (. . . x̃π(i+1) yi x̃π(i−1) . . . ). Quadruples (π(i), π(i + 1), π(i − 1), i)
are equal, for i = j, j − 1, j + 1, to (j, j − 1, j + 1, j), (j + 1, j, j − 1, j − 1) and
(j − 1, j + 1, j, j + 1), respectively, and so the exchange of yj−1 and yj+1 makes

from τ̃−1
i permutation τπ(i), as required by point (i).
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Point (iv) can be proved similarly: The mapping τ̃ x̃,Σ̃,y
i is obtained from τ̃i and

σ̃i by merging the cycles

(. . . x̃i−1 x̃i+1 . . . ) and (y σ̃i(y) . . . σ̃
−1
i (y))

into (. . . x̃i−1 σ̃i(y) . . . σ̃−1
i (y) x̃i+1 . . . ) and uniting the other cycles. This

means, after turning to the inverses, that the merged cycle equals

(. . . xπ(i+1) σπ(i)(y) . . . σ
−1
π(i)(y) xπ(i−1) . . . ),

and that the other cycles are obtained by uniting the remaining cycles of σπ(i)

and τπ(i).
If i runs through {1, 2, 3}, then (π(i+1), π(i), π(i−1)) runs through (i−1, i, i+

1), and so the constructed permutations are indeed equal to τx,Σ,y
i .

To prove the point (ii) set uj = u, uj−1 = τj+1(u) and uj+1 = τ−1
j−1(j), as

in Section 4. Define similarly ũj = u, ũj−1 = τ̃j+1(u) and ũj+1 = τ̃−1
j−1(u).

This clearly means ũj = uj, ũj−1 = uj+1 and ũj+1 = uj−1. In τ̃ j,u
j+1 we replace

u with yj+1 and add the cycle (yj yj+1). Thus τ̃ j,u
j+1 equals (τ j,u

j−1)
−1 after the

exchange of yj+1 and yj−1. The case of τ̃ j,u
j−1 is very similar. The permutation

(τ̃ j,u
j )−1 is obtained from τj by replacing (. . . u . . . ) with (. . . yj+1 yj−1 . . . ),

and (. . . uj−1 uj+1 . . . ) with (. . . uj−1 yj uj+1 . . . ). This equals τ j,u
j when yj−1

is exchanged with yj+1.
Let us finally turn to the sliding construction. One obtains τ̃z,x

j in such a way

that the cycle (. . . z τ−1
j (z) . . . τj(x) x . . . ) is replaced by cycles (. . . z x . . . )

and (τ−1
j (z) . . . τj(x) y). The resulting permutation is clearly equal to (τx,z

j )−1.

Furthermore, to get τ̃z,x
j−1 one uses τ−1

j+1 in such a way that the cycle (. . . x . . . )

is replaced by (. . . x y . . . ), which is a cycle of (τx,z
j+1)

−1. For τ̃z,x
j+1 one proceeds

similarly. �

9. Overlapping trapezia

A trigon-free triangle u3u2u1 such that for some i ∈ {1, 2, 3} the permutation
τi contains cycle (uu−1 ui+1) will be called a seed . The existence of a seed is a
necessary precondition for an application of a local reduction, by Lemma 7.2.

To establish the existence of a seed we define, as an auxiliary notion, an unori-
ented graph that will be called the 2-side graph. The vertices are triangles with
a side of length two, and edges connect those triangles that share a side of length
two.

Seeds form a subset of vertices of the 2-side graph. To recognize a seed the
following criterion is sometimes useful.

Lemma 9.1. Let u3u2u1 be a triangle and i ∈ {1, 2, 3}. There exists no trigon
ui+1ui−1v if and only if

(1) either (ui−1 ui+1) is a cycle of τi,
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(2) or there is no common point between the cycle of τi−1 that moves ui−1

and the cycle of τi+1 that moves ui+1.

Proof: There is at most one point v in the intersection of cycles that are men-
tioned in point (2). It exists if and only if ui+1ui−1v is a trigon or a triangle. The
latter case corresponds to point (1), by Lemma 6.2. �

Fix now a triple (τ1, τ2, τ3) that determines a trading surface on X . For u ∈ X

and j ∈ {1, 2, 3} consider a trapezium expansion τ ′i = τ j,u
i . Set uj = u, uj+1 =

τ−1
j−1(u) and uj+1 = τj+1(u). We shall call such an expansion a 2-trapezium

expansion if (uj uj+1) = (u τj−1(u)) is a cycle of τj−1 or if (uj uj−1) = (u τj+1(u))
is a cycle of τj+1.

We shall now assume that we are considering a 2-trapezium expansion
(τ ′1, τ

′
2, τ

′
3). We shall choose the variant with (uj uj+1) a cycle of τj−1. This

will have no impact on the generality of results obtained since the transition to
inverses exchanges j + 1 with j − 1, by Proposition 8.3.

Our notation will follow Lemma 4.4. A cycle of τ ′i , 1 ≤ i ≤ 3, that is induced
by a cycle ρ of τi will be denoted by ρ′. Recall that ρ′ = ρ if ρ moves no ui. Recall
also that a cycle of τ ′i is either equal to some ρ′, or to one of the cycles (yj+1 yj)
and (yj−1 yj) (then i = j − 1 and i = j + 1, respectively).

The cycle (uj uj+1) of τj−1 gets transformed into the cycle (yj−1 uj+1) of τ ′j−1.
Using Corollary 6.4 we can hence state

Lemma 9.2. Neither yj, nor yj−1 can be a vertex of a trigon.

For every x ∈ X put x′ = x if x 6= u, and x′ = yj+1 if x = u. Under this
convention we claim

Lemma 9.3. If v3v2v1 is a trigon in (τ1, τ2, τ3), then v′3v
′
2v

′
1 is a trigon in

(τ ′1, τ
′
2, τ

′
3) as well. Furthermore, every trigon of (τ ′1, τ

′
2, τ

′
3) has such a form.

Proof: Let v3v2v1 be a trigon, and let ρi be the side of the trigon that is incident
both to vi+1 and vi−1, 1 ≤ i ≤ 3. Then ρi belongs to τi, and ρj−1 6= (uj uj+1),
by Corollary 6.3. Hence ρ′j−1 6= (yj−1 uj+1), and, of course, ρ′j+1 6= (yj−1 yj).
Thus at most one of ρ′i, 1 ≤ i ≤ 3, can be incident to yj−1, and therefore ρ′i−1

and ρ′i+1 cannot meet in yj−1. By Lemma 4.4, ρ′i−1 and ρ′i+1 meet in some point,
for every i ∈ {1, 2, 3}, since ρj−1 6= (uj uj+1). But that means that they meet in
v′i, by Lemma 4.4 again.

By Lemma 8.2, every trigon of (τ ′1, τ
′
2, τ

′
3) has to be of the form v′3v

′
2v

′
1, with

ρ′i incident to v′i+1 and v′i−1, ρ
′
i a cycle of τi, 1 ≤ i ≤ 3. If ρ′i+1 meets ρ′i−1 in v′i,

then ρi+1 meets ρi−1 in vi. Hence v3v2v1 is a triangle or a trigon. If i 6= j, then
ρi is obtained from ρ′i by replacing every x incident to ρ′i by x′. That means that
v3v2v1 cannot be a triangle, by Lemma 6.2. �

Lemma 9.4. Let x = x3x2x1 be a triangle in (τ1, τ2, τ3). If x equals neither
ujuj−1uj+1, nor ujuj+1τ

−1
j (u), then x′ = x′3x

′
2x

′
1 is a triangle of (τ ′1, τ

′
2, τ

′
3).
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Each triangle in (τ ′1, τ
′
2, τ

′
3) is either of this form, or belongs to

{yj+1uj−1yj, yj+1yjyj−1, yj−1yjuj+1, yj−1uj+1τ
−1
j (u)}.

Proof: If ρ is a cycle of τi, and x ∈ X is incident to ρ, then ρ′ moves x′ to
(ρ(x))′ with the exceptions when (x, ρ(x)) is one of

(τ−1
j (u), uj), (uj , uj+1), (uj+1, uj) and (uj−1, uj+1).

A triangle x3x2x1 of (τ1, τ2, τ3) has one of edges (xj−1, xj+1) equal to one of above

four pairs if and only if it equals to ujuj−1uj+1 or to ujuj+1τ
−1
j (u). Thus if it

is not equal to one of these two triangles, then x′3x
′
2x

′
1 is a triangle of (τ ′1, τ

′
2, τ

′
3).

The number of triangles is the same as the number of points, and hence there
are two more triangles in (τ ′1, τ

′
2, τ

′
3) than in (τ1, τ2, τ3). For the rest it therefore

suffices to list the four triangles which are not of the form x′3x
′
2x

′
1. �

We shall now describe how the 2-side graph of (τ ′1, τ
′
2, τ

′
3) is obtained from the

2-side graph of (τ1, τ2, τ3) by means of adding edges and deleting edges. Note that
every vertex of a 2-side graph has valence at least one. All isolated vertices that
will arise from a deletion of an edge will be thus considered as removed from the
graph.

Lemma 9.4 defines x′ as x′3x
′
2x

′
1 for every triangle x = x3x2x1 /∈ {ujuj−1uj+1,

ujuj+1τ
−1
j (u)}. We extend the notation by setting (ujuj−1uj+1)

′ = yj+1uj−1yj

and (ujuj+1τ
−1
j (u))′ = yj−1uj+1τ

−1
j (u).

Lemma 9.5. The 2-side graph of (τ ′1, τ
′
2, τ

′
3) is obtained from the 2-side graph of

(τ1, τ2, τ3) by

(1) deleting the edge {uj+1uj−1τj−1(uj−1), uj−1uj+1uj} if (uj−1 uj+1) is a
cycle of τj ;

(2) deleting the edge {τ−1
j (u)ujτj−1(u), ujuj+1τ

−1
j (u)} if (uj τ

−1
j (u)) is a

cycle of τj ; and
(3) replacing each of the remaining edges {x,v} by {x′,v′}, with the excep-

tion of

{ujuj−1uj+1, ujuj+1τ
−1
j (u)},

which is replaced by a chain

uj−1yjyj+1, yj+1yjyj−1, yj−1yjuj+1, yj−1uj+1τ
−1
j (u).

Proof: The cycles (. . . τ−1
j (uj) yj−1 yj+1 . . . ) and (. . . uj−1 uj uj+1 . . . ) of τ ′j

are the only cycles ρ′ that are longer than the corresponding cycle ρ. This is the
reason for the deletion described in points (1) and (2).

If {x,v} is an edge that is induced by a cycle (xi−1 xi+1) which is different from
(uj−1 uj+1), (uj τ

−1
j (u)) and (uj uj+1), then x′ and v′ share the side (x′i−1 x

′
i+1).

The rest is clear. �
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Lemma 9.6. Triangles yj+1yjyj−1 and yj−1yjuj+1 are seeds of (τ ′1, τ
′
2, τ

′
3). If

a triangle x′3x
′
2x

′
1 of (τ ′1, τ

′
2, τ

′
3) has a side of length two, then it is a seed if and

only if x3x2x1 is a seed in (τ1, τ2, τ3). The triangle uj−1yjyj+1 (or the triangle

yj−1yj+1τ
−1
j (u)) is a seed in (τ ′1, τ

′
2, τ

′
3) if and only if in (τ1, τ2, τ3) there exists no

trigon with vertices uj−1 and uj (or uj+1 and τ−1
j (u), respectively).

Proof: Points yj−1 and yj are vertices of no trigon, by Lemma 6.5. Hence
yj+1yjyj−1 and yj−1yjuj+1 are seeds. Since yj−1 and yj are vertices of no trigon

only the side induced by yj+1 = u′ and uj−1 (or by uj+1 and τ−1
j (u)) needs to

be considered with respect to the triangle uj−1yjyj+1 (or yj−1yj+1τ
−1
j (u)). The

result then follows from Lemma 9.3, since by this lemma a trigon with vertices v′1
and v′2 exists in (τ ′1, τ

′
2, τ

′
3) if and only if a trigon with vertices v1 and v2 exists in

(τ1, τ2, τ3), for all v1, v2 ∈ X . �

Lemmas 9.5 and 9.6 make clear how the 2-trapezium expansion influences the
2-side graphs and the seed set. Recall that for a general result on the 2-trapezium
construction one has to consider also (τ̃1, τ̃2, τ̃3), where τ̃i = τ−1

π(i) and π is the

transposition (j−1 j+1). The case when (u τ−1
j+1(u)) is a cycle of τj+1 then gets

transformed to the situation when (u τ̃j−1(u)) is a cycle of τ̃j−1, which corresponds
to the situation studied in the lemmas above.

Proposition 9.7. A trading surface (σ1, σ2, σ3) can be obtained by a 2-trapezium
expansion if and only if there exist j ∈ {1, 2, 3} and cycles (. . . x0 x1 x2 . . . ) and
(. . . x′2 x

′
1 x

′
0 . . . ) of σj such that

(1) either (x2 x
′
1) and (x1 x

′
0) are cycles of σj−1, and (x1 x

′
1) is a cycle of

σj+1,
(2) or (x′2 x1) and (x′1 x0) are cycles of σj+1, and (x′1 x1) is a cycle of σj−1.

Proof: Note that cases (1) and (2) induce each other when inverse permutations
are considered. Hence we can consider only case (1). Under the conventions of
lemmas above the permutation τ ′j contains cycles

(. . . τ−1
j (u) yj−1 yj+1 . . . ) and (. . . uj−1 yj uj+1 . . . ),

while (yj+1 yj) and (yj−1 uj+1) are cycles of τj−1 and (yj yj−1) is a cycle of τj+1.
For the other direction assume case (1) and set yj−1 = x1, yj+1 = x2, yj = u =

x′1, uj−1 = x′2 and uj+1 = x′0. The cycle (yj−1 uj+1) of σj−1 does not meet the cy-
cle of τj+1 that is incident to yj+1 since the latter cycle meets (. . . uj−1 yj uj+1 . . . )

in uj−1 = σ−1
j (yj) = σ−1

j−1σ
−1
j+1(yj+1) = σj(yj+1), and we assume uj−1 6= uj+1.

The preconditions of Proposition 4.5 hence hold, and we see that there exists τi,
1 ≤ i ≤ 3, such that τi = σj,u

i , 1 ≤ i ≤ 3. Furthermore, the cycle (yj−1 uj+1)

of σj−1 has to be derived from the cycle (u uj+1) = (u τ−1
j−1(u)) of τj−1, which

means that we are really dealing with a 2-trapezium expansion. �
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10. Components of the 2-side graph

A separated latin bi-trade with structural triple (τ1, τ2, τ3) will be called bicyclic

if there exists j ∈ {1, 2, 3} such that τj consists of only two cycles. Such latin
bi-trades can be obtained by swapping two consecutive rows in the addition table
modulo n (the other rows of the table are ignored). All bicyclic latin bi-trades of
size 2n are isotopic to such a bi-trade if j = 1. This well known fact is reiterated
in the following lemma. A trading surface determined by a bicyclic latin bi-trade
will be called bicyclic as well.

Lemma 10.1. Let τi, 1 ≤ i ≤ 3, be permutations of a set X that satisfy (P1) and
(P2). Suppose that τj consists for some j ∈ {1, 2, 3} exactly of two cycles. Let
one of the cycles be (x0 . . . xn−1). Then the other cycle of τj can be expressed as
(x′n−1 . . . x′0) in such a way that τj+1 consists of cycles (xi x

′
i) and τj−1 consists

of cycle (xi+1 x
′
i), 0 ≤ i < n.

Proof: A cycle of τj+1 that moves xi, 0 ≤ i < n, intersects k different cycles of
τj , where k is the length of the cycle. Since τj has only two cycles we must have

k = 2. Denote the other point of the cycle by x′i. From τj−1τj(xi) = τ−1
j+1(xi) we

see that τj−1 consists of cycles (xi+1 x
′
i), 0 ≤ i < n, where xn = x0. Furthermore,

τj(x
′
i) = τjτj+1(xi) = τj−1(xi) = x′i−1. �

Bicyclic bi-trades are without trigons, and each triangle has at least two of the
sides induced by a cycle of length two (all three sides are of length two if and
only if n = 2). For n ≥ 3 the 2-side graph is a cycle of length 2n. For n = 2 one
clearly obtains the complete graph K4.

Let Σ = (τ1, τ2, τ3) be a trading surface on X with a point x ∈ X . Define
new permutations τ ′i on (X \ {x}) ∪ {y1, y2, y3, y4} in such a way that the ith
permutation is obtained from τi by modifying (. . . x . . . ) to (. . . yi+1 yi−1 . . . )
and by adding cycle (yi y4). (Indices are computed modulo three.) The cycle
(. . . yi+1 yi−1 . . . ) can be written as (yi−1 . . . τ−1

i (x) yi+1), and can be regarded

as a merging of (yi−1 yi+1) and (x . . . τ−1
i (x)). We see that our construction is

in fact a special case of the trigonal construction (cf. the beginning of Section 6)

such that τ ′i = σy,Σ,x
i , where (σ1, σ2, σ3) is the trading sphere upon {y1, y2, y3, y4}

and y = y3y2y1.
Replace now y4 by x and denote τ ′i simply as τx

i , 1 ≤ i ≤ 3. We have thus
defined τx

i by replacing the occurrence of x in the cycle decomposition of τi by
the pair yi+1 yi−1, and by adding cycle (yi x). We shall call (τx

1 , τ
x
2 , τ

x
3 ) the point

expansion of (τ1, τ2, τ3) at x by y3y2y1. Note that y3y2y1 is a separating trigon
in (τx

1 , τ
x
2 , τ

x
3 ) and that Pnt(y3y2y1) = X \ {x} (this is clear; one can also use

Lemma 6.6).

Lemma 10.2. A trading surface (τ1, τ2, τ3) with more than four points can be
obtained by a point expansion if and only if it contains a point x that is moved
only by cycles of length two. If (x yi) are cycles of τi, 1 ≤ i ≤ 3, then τi = σx

i ,
where (σ1, σ2, σ3) is a trading surface of the same genus.
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Proof: We have τi(yi+1) = τiτi+1(x) = τ−1
i−1(x) = yi−1, 1 ≤ i ≤ 3. That makes

y3y2y1 a trigon, by Lemma 6.2, and we see that In(y3y2y1) consists of all cycles
that move no yi, 1 ≤ i ≤ 3. To finish one can use Proposition 6.7 or a direct
argument. �

Let G be the 2-side graph of a trading surface (τ1, τ2, τ3). By a j-chain, j ∈
{1, 2, 3}, we shall understand any chain x1, . . . ,xk in G, k ≥ 2, such that an edge
between xi and xi+1 is never induced by a cycle of τj , 1 ≤ i < k, and such that
beyond the edges of the chain there exist no other edges of G that would start
at xi, 1 ≤ i ≤ k. Note that in such a chain the connecting edges are alternately
induced by cycles of τj−1 and τj+1. The integer k (which is ≥ 2) is said to be the
length of the chain.

By a 3-fan we shall understand a subgraph of G formed by elements x1, x2,
x3 and y such that xj are of degree 1 and {xj,y} is an edge, for each j ∈ {1, 2, 3}.
We shall always assume that the edge {xj,y} is induced by τj . The element y

will be called the centre of the 3-fan.
In Proposition 10.5 we shall prove that every component of G is a j-chain or a

3-fan or a cycle. However, cycles of length > 3 occur only in the bicyclic bi-trades
and they are of even length. Of course, this is true only when the number of
points is > 4.

Lemma 10.3. Suppose that (τ1, τ2, τ3) is a trading surface with more than four
points. Let y = y3y2y1 be a vertex of the 2-side graph that is of degree ≥ 3. Then
y is the centre of a 3-fan, and there exist points xj , 1 ≤ j ≤ 3, such that

(1) yj−1xjyj+1 are the other elements of the 3-fan,
(2) x = x3x2x1 is a separating trigon,
(3) there exists a trading surface (σ1, σ2, σ3) such that (τ1, τ2, τ3) =

(σx
1 , σ

x
2 , σ

x
3 ), and

(4) all elements of the 3-fan are seeds.

Proof: We assume, in fact, that (yj−1 yj+1) is a cycle of τj for every j ∈ {1, 2, 3}.
Hence we can use Proposition 4.1. The triangles yj−1xjyj+1 have only one side of
length two, and thus they are of degree one in the 2-side graph. By Corollary 6.3
they must be seeds. �

Lemma 10.4. If (τ1, τ2, τ3) = (σx
1 , σ

x
2 , σ

x
3 ) is a point expansion, then there exist

points yi, 1 ≤ i ≤ 3, such that yi = yi+1yi−1x are triangles that form a cycle of
length 3 in the 2-side graph of (τ1, τ2, τ3). Each cycle of length 3 in this graph
can be obtained by such a way and none of the triangle yi is a seed.

Proof: The existence of triangles yi is clear from the definition of the point
expansion. They form a cycle of length three since they share the sides (x yj).
None of the cycle elements can have degree ≥ 3 by Lemma 10.3. None of them
can be a seed since y3y2y1 is a trigon. It remains to show that each cycle of length
three can be obtained in this way.

An element of such a cycle is a triangle with two sides of length two. Hence
there exist cycles (yj±1 x) of τj±1 that form these sides. There exists a further
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triangle of the cycle that shares the side (yj+1 x), and a different triangle that
shares the side (yj−1 x). These two triangles also share a side of length two, and
that must belong to τj . Therefore it equals (yj x) for some yj , and the rest follows
from Lemma 10.2. �

Proposition 10.5. Let (τ1, τ2, τ3) be a trading surface that is not bicyclic, and
let G be its 2-side graph. Each component of G is either a j-chain for some
j ∈ {1, 2, 3}, or a 3-fan, or a cycle of length 3.

Proof: Lemma 10.3 deals with elements of G that are of degree three. It thus
suffices to consider the components of G that are chains or cycles of length k ≥ 3.

Choose three consecutively adjacent triangles (the triangles are vertices of G)
and let j ∈ {1, 2, 3} be such that the sides connecting the middle triangle with
the other two belong to τj−1 and τj+1. These two sides have exactly one common
point, say x1, and we define x′0 and x′1 in such a way that (x′0 x1) is a cycle of
τj−1 and (x′1 x1) is a cycle of τj+1. The middle triangle hence equals x1x

′
1x

′
0, and

by setting x0 = τ−1
j (x1) and x2 = τj(x1) we see that the triangles adjacent to

the middle one are x0x1x
′
0 and x1x2x

′
1. If x0 = x2, then (x0 x1) is a cycle of τj ,

which makes the latter two triangles adjacent elements of G. We get a cycle of
length three, and Lemma 10.4 can be used. Hence we can assume that x2 6= x0

and that k ≥ 4.
In the case of a chain we can also assume that one of x0x1x

′
0 and x1x2x

′
1 is

a terminal vertex of the chain. Since j − 1 gets exchanged with j + 1 by the
transition to inverse permutations, we see that we can choose the former case.

Let the cycle of τj that contains x0, x1 and x2 be equal to (x0 x1 . . . xn),
n ≥ 2. Let m ≤ n be the greatest integer such that there exist pairwise distinct
elements x′1, . . . , x

′
m, for which

(A) (xi x
′
i) is a cycle of τj+1, 1 ≤ i ≤ m, and

(B) (xi x
′
i−1) is a cycle of τj−1, 1 ≤ i ≤ m.

We know that m ≥ 1. From (A) and (B) one gets τj(x
′
i) = τ−1

j−1τ
−1
j+1(x

′
i) =

τ−1
j−1(xi) = x′i−1, 1 ≤ i ≤ m, and we obtain a chain of adjacent triangles

x0x1x
′
0, x1x

′
1x

′
0, . . . , xm−1xm, x

′
m−1, xmx

′
mx

′
m−1.

Since (xm x′m) is a cycle of τj+1, we see that xmx
′
mx

′
m−1 is adjacent to xmxm+1x

′
m

if m < n, and to xnx0x
′
n if m = n.

Assume first m < n. Then xmxm+1x
′
m has a side of length two which is equal

to (xm x′m). If it has no other side of length two, then this triangle is the other
terminal vertex of a j-chain. Assume the existence of another side of length two.
Then this side has to be equal to (xm+1 x′m) and belong to τj−1. Points x′i,
0 ≤ i ≤ m, are images of xi by τj+1, and hence none of them can be equal to
x′m+1 = τj+1(xm+1). The permutation τj+1 cannot contain a cycle (xm+1 x

′
m+1)

because m is assumed to be maximal, and thus xm+1x
′
m+1x

′
m constitutes the

other terminal vertex of the j-chain.
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Suppose now that m = n. Since n ≥ 2 we see that xnx0x
′
n is a vertex of G

that is either the other terminal point of the j-chain, or it has a side (x0 x′n)
that belongs to τj−1. Assume the latter. Then τ2

j+1(x
′
0) = τ2

j+1τj−1τj(x0) =

τj+1(x0) = τj+1τj−1(x
′
n) = τ−1

j (x′n). Hence τj(x
′
0) = x′n, as the cycle of τj that

contains both x′0 and x′n intersects in exactly one point the cycle of τj+1 that
contains x′0. Thus (x0 x

′
0) is a cycle of τj+1 We see that conditions (A) and (B)

hold modulo n + 1 for all i, 0 ≤ i ≤ n, and that (x′n x′n−1 . . . x′1 x
′
0) is a cycle

of τ ′j . All permutations τj thus act upon the set {xi, x
′
i; 0 ≤ i ≤ n}, and so

(τ1, τ2, τ3) has to be bicyclic. �

The explicit description of j-chains that was obtained in the preceding proof
is worth recording, and that is what we shall do in the next lemma.

Lemma 10.6. Let (τ1, τ2, τ3) determine a trading surface. Choose j ∈ {1, 2, 3}
and let m ≥ 1 be an integer. For every j-chain of length 2m or 2m+1 there exist
cycles

(. . . x0 x1 . . . xm . . . ) and (. . . x′m . . . x′1 x
′
0 . . . )

of τj of lengths ℓ and ℓ′, respectively, such that for the j-chain of length 2m

(1) either (xi x
′
i−1) is a cycle of τj−1, 1 ≤ i ≤ m, and (xi x

′
i) is a cycle of

τj+1, 1 ≤ i ≤ m− 1, with τ2
j+1(x

′
0) 6= x′0 and τ2

j−1(xm) 6= xm;
(2) or (x′i xi−1) is a cycle of τj+1, 1 ≤ i ≤ m, and (xi x

′
i) is a cycle of τj−1,

1 ≤ i ≤ m− 1, with τ2
j−1(x0) 6= x0 and τ2

j+1(x
′
m) 6= x′m.

For the j-chain of length 2m+ 1 the cycles can be chosen in such a way that

(3) (xi x
′
i−1) is a cycle of τj−1 and (xi x

′
i) is a cycle of τj+1, 1 ≤ i ≤ m,

with τ2
j+1(x

′
0) 6= x′0 and τ2

j−1(x
′
m) 6= x′m. If ℓ = m + 1, then ℓ′ > m + 1

and x′mx0x
′
0 is a trigon. If ℓ′ = m+ 1, then ℓ > m+ 1 and x0xm+1y is a

trigon, where xm+1 = τj(xm) and y = τ−1
j+1(x

′
0) = τj−1(x

′
m).

Proof: The case (1) of length 2m corresponds to the situation described in the
proof of Proposition 10.5 when m is replaced by m− 1 in conditions (A) and (B),
and when there is assumed that τj−1 contains the cycle (xm x′m−1). The case (2)
is obtained by the transfer to inverse permutations.

For the case of length 2m+1 first note that the side of a terminal vertex that is
longer than two and does not belong to τj belongs to τj−1 for one vertex, and to
τj+1 for the other terminal vertex of the j-chain. By choosing the latter alternative
we can represent the vertex as x0x1x

′
1, where x0 and x′1 are incident to the side

which belongs to τj+1 and is of length > 2. We can thus assume the situation
that is described in the proof of Proposition 10.5 such that τ2

j−1(x
′
m) 6= x′m and

τ2
j+1(x0) 6= x0. If ℓ = m+ 1, then τj−1(x0) = τ−1

j+1τ
−1
j (x0) = τ−1

j (xm) = x′m. We

also have τj+1(x
′
0) = x0. We see that x0x

′
0x

′
m constitutes a trigon (the bi-trade

is thus a trigonal expansion of a bicyclic bi-trade).
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It remains to consider the case ℓ > m+1 and ℓ′ = m+1. We have xm+1 6= x0,
by ℓ > m + 1. The mapping τ−1

j−1 sends y to x′m and x′m to xm+1, while the

mapping τ−1
j+1 sends x0 to x′0 and x′0 to y. The element y belongs to the cycle

(. . . x0 . . . xm+1 . . . ) only if y = xm+1 = x0. However, that would imply
ℓ = m+ 1. Hence x0xm+1y has to be a trigon. �

By comparing Lemma 10.6 with Proposition 9.7 we see that a j-chain of length
k ≥ 4 describes a situation which can be obtained by a 2-trapezium expansion.
In the next lemma we observe that in the case of no trigons this gives us means
to describe how the 2-side graph is affected by the expansion if k ≥ 5.

Lemma 10.7. Let G be the 2-side graph of a trading surface (τ1, τ2, τ3). Suppose
that G contains a j-chain of length k ≥ 5, j ∈ {1, 2, 3}, and that (τ1, τ2, τ3)
contains no trigon. Then (τ1, τ2, τ3) can be obtained as a 2-trapezium expansion
of a trading surface with no trigon that possesses a 2-side graph isomorphic to
the graph obtained from G by replacing a chain of length k by a chain of length
k − 2.

Proof: By the remark before the lemma, (τ1, τ2, τ3) is isotopic to a 2-trapezium
expansion of a trading surface. This surface is without trigons by Lemma 9.3.
We have to show that none of points (1) and (2) of Lemma 9.5 can affect the
expansion. Use Lemma 10.6 to describe the considered j-chain. The cycles of
lengths ℓ and ℓ′ are obtained by expansion of cycles with lengths ℓ− 1 and ℓ′ − 1.
Points (1) or (2) of Lemma 9.5 can apply only when one of the latter values is
equal to 2. If this is true, then 3 ∈ {ℓ, ℓ′}, m ≤ 2 and k ≤ 5. Thus k = 5, m = 2
and m + 1 ∈ {ℓ, ℓ′}. This makes relevant situation (3) of Lemma 10.6, by which
(τ1, τ2, τ3) contains a trigon, contrary to our assumptions. �

Theorem 10.8. Let (τ1, τ2, τ3) determine a trading sphere which is not bicyclic
and which contains no trigon. Then it contains at least eight seeds, and its 2-
side graph has at least two components. For each of the components there exists
j ∈ {1, 2, 3} such that the component is a j-chain.

Proof: The 2-side graph G contains no cycle and consists of chains only, by
Proposition 10.5. There are at least six edges in G, by Proposition 3.1. This
must remain true if a chain of length k ≥ 5 is replaced by a chain of length k− 2,
by Lemma 10.7. Hence each chain of length k ≥ 5 can be regarded as if it were
contributing at most three edges (which is the contribution of chains of length
four). Let r4 be the number of chains of length r ≥ 4, and let r2 and r3 give
the number of chains for lengths 2 and 3. Then 6 ≤

∑
ri(i− 1) ≤ 3

∑
ri implies

r =
∑
ri ≥ 2, and the number of seeds is at least

∑
iri = r +

∑
ri(i − 1) ≥

2 + 6 = 8. �

The structure of trading spheres with exactly two components of the 2-side
graph does not seem to be difficult to describe. By doing so one can get the
description of all trading spheres with no trigon that have at most eight seeds.
However, this would mean introducing additional technical details to this paper.
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11. Seeds and trigons

The trigonal construction can combine trading surfaces in a way that destroys
some of the seeds in both input trading surfaces. We shall observe that there
are cases when the destruction of seeds in a trading sphere takes an extent that
permits no application of a 2-sliding reduction or a trapezium reduction. However,
we shall prove that if no 2-sliding reduction applies, then there exists a trigon with
a bicyclic outer trading sphere.

Let Σ = (σ1, σ2, σ3) and (τ1, τ2, τ3) determine trading surfaces on Y and X ,
respectively, and let x = x3x2x1 be a triangle in (τ1, τ2, τ3) and y a point of Y .

Denote by (τ ′1, τ
′
2, τ

′
3) the trigonal expansion, τ ′i = τx,Σ,y

i .

Lemma 11.1. The set of triangles of (τ ′1, τ
′
2, τ

′
3) is obtained from triangles of Σ

and (τ1, τ2, τ3) by removing the triangle x and replacing the triangles
σ−1

j−1(y) y σj+1(y) by σ−1
j−1(y)xj σj+1(y), for all j ∈ {1, 2, 3}. The 2-side graph

of (τ ′1, τ
′
2, τ

′
3) is derived from the disjoint union of the two 2-side graphs by re-

moving x (if it is a vertex) and by removing each edge induced by a cycle passing
through the point y.

Proof: The description of triangles follows directly from the definition of
(τ ′1, τ

′
2, τ

′
3). Since there appears no new cycle of length two, the edges in the

2-side graph of (τ ′1, τ
′
2, τ

′
3) must be inherited from the input trading surface. An

edge has to be deleted if the corresponding triangle side becomes a side of a trigon.
If such a side is in (τ1, τ2, τ3), then x is one of its vertices, and hence its deletion
is induced by the removal of x. If such a side is in Σ, then it has to move y. �

Lemma 11.2. A seed u of (τ1, τ2, τ3) becomes a seed of (τ ′1, τ
′
2, τ

′
3) if and only

if no side of u is equal to (xi−1 xi+1) for some i, 1 ≤ i ≤ 3.

Proof: If ρ is a cycle of τi such that ρ does not move xi+1, then set ρ′ = ρ. If
ρ moves xi+1, then ρ equals (. . . xi−1 xi+1 . . . ) and we denote by ρ′ the cycle
(. . . xi−1 σi(y) . . . σi−1(y) xi+1 . . . ). Thus each cycle ρ of τi is replaced by one
cycle ρ′ of τ ′i . Let ρi be a cycle of τi and ρj a cycle of τj , where i, j ∈ {1, 2, 3}
and i 6= j. We see immediately that ρi meets ρj if and only if ρ′i meets ρ′j . Hence

if ρk, 1 ≤ k ≤ 3, are cycle of τk such that ρ′k forms sides of a trigon, then ρ′k form
sides of a trigon or a triangle. By Lemma 11.1 we get a triangle if only if cycles
ρk are sides of a triangle in (τ1, τ2, τ3) that is different from x, and so if cycles ρ′k
yield a trigon different from x, then cycles ρk yield a trigon as well.

If u = x, then u does not become a seed in (τ ′1, τ
′
2, τ

′
3), but one of its sides in

(τ1, τ2, τ3) has to equal (xi−1 xi+1), i ∈ {1, 2, 3}. Assume u 6= x and suppose that
u does not give a seed in (τ ′1, τ

′
2, τ

′
3). Then one if its sides is a side of a trigon that

does not arise from a trigon of (τ1, τ2, τ3). There is only one possibility, and that
is x. Hence x has to be adjacent to u in (τ1, τ2, τ3). �

Lemma 11.3. Suppose that (τ1, τ2, τ3) is a trading sphere that contains no trigon.
If (τ1, τ2, τ3) is not bicyclic, then (τ ′1, τ

′
2, τ

′
3) can be obtained by a 2-sliding expan-

sion.
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Proof: By Theorem 10.8 the 2-side graph of (τ ′1, τ
′
2, τ

′
3) consists of at least two

components and none of the components contains a vertex of degree three or a
cycle. Hence there is only one component that involves x as a vertex. If a seed of
(τ1, τ2, τ3) is not a seed of (τ ′1, τ

′
2, τ

′
3), then it has to be a vertex of that component,

by Lemma 11.2. Each terminal point of every other component remains to be a
seed that is of degree one in the 2-side graph of (τ ′1, τ

′
2, τ

′
3), and we can use point

(i) of Lemma 7.2. �

Lemma 11.4. Let (τ1, τ2, τ3) be a bicyclic trading sphere of size 2n, n ≥ 3. Then
(τ ′1, τ

′
2, τ

′
3) can be obtained by a 2-trapezium expansion.

Proof: There exists exactly one j ∈ {1, 2, 3} such that (xj xj±1) is a cycle of
τj±1. Put zi = τ i

j(xj−1), 0 ≤ i ≤ n − 1, and note that z1 = xj+1. Define points

z′i−1 so that (zi z
′
i−1) is a cycle of τj−1 (the indices are computed modulo n). If

i = 1, . . . , n − 1 ≥ 2, then (zi z
′
i−1) is also a cycle of τ ′j−1. In τ ′j there are cycles

(. . . z1 z2 . . . zn−1 z0 . . . ) and (τ ′n−1 . . . z′2 z
′
1 z

′
0), while both τj+1 and τ ′j+1

contain (z1 z
′
1). Condition (1) of Proposition 9.7 is thus satisfied. �

Lemma 11.5. For a triangle u = u3u2u1 of Σ put u′ = u if y /∈ {u1, u2, u3}.
If u = σ−1

j+1(y)yσj−1(y) for some u ∈ {1, 2, 3}, set u′ = σ−1
j−1(y)xjσj+1(y). If u

is a seed in Σ, then u′ is a seed in (τ1, τ2, τ3) if and only if u possesses a side of
length two that does not move y.

Proof: Every cycle ρi of σi, i ∈ {1, 2, 3}, yields a unique cycle ρ′i of τ ′i . If ρi

does not move y, then the lengths of ρi and ρ′i are the same. If ρi±1 are cycles
of σi±1, then ρi+1 meets ρi−1 if and only if ρ′i+1 meets ρ′i−1. Suppose that every
side of length two of the seed u moves y. Then u′ has no side of length two, and
hence it cannot be a seed. Let now u contain a side (uj−1 uj+1) where y 6= uj±1.
Let ρi be the cycle of σi that moves ui. If u′ is not a seed, then ρ′i±1 and the ith
side of u′ form a trigon, for some i ∈ {1, 2, 3}. However that cannot be since the
preimages of the trigon sides in (τ1, τ2, τ3) meet each other, thus form a triangle,
and triangles are transformed only in triangles, by Lemma 11.1. �

Lemma 11.6. If Σ is trading sphere that contains no trigon, then (τ ′1, τ
′
2, τ

′
3) can

be produced by a 2-sliding expansion.

Proof: Suppose first that Σ is a bicyclic trading sphere of size 2n. Then every
triangle of Σ is a seed. From Lemma 11.5 we derive that σ−1

j−1(y)xjσj+1(y) is a

seed when (σ−1
j−1(y) σj+1(y)) is a cycle of Σ. If n = 2 this is true for all three j

and if n ≥ 3, then for exactly two of them.
If Σ is not bicyclic, then every component of Σ is a j-chain by Theorem 10.8.

There are at least two such components, and only one of them can be affected
by the process described in Lemma 11.1. A terminal point of a j-chain that has
not been affected is a seed, by Lemma 11.5, and hence we can use point (i) of
Lemma 7.2 again. �

Lemma 11.7. Let y = y3y2y1 be a trigon of Σ. Put y′i = yi if yi 6= y, and
y′i = xi if yi = y. Then y′ = y′3y

′
2y

′
1 is a trigon in (τ ′1, τ

′
2, τ

′
3), and this describes
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all trigons in (τ ′1, τ
′
2, τ

′
3) different from x = x3x2x1 which have the property that

each vertex of the trigon is an inner point or a vertex of x.

Proof: Let u, v ∈ Y , u 6= v, be incident to a cycle ρ of σi, and let ℓ be the length
of ρ. Assume σk

i (u) = v, where 1 < k < ℓ. Set u′ = u if u 6= y, and u′ = xi−1 if
u = y. Similarly set v′ = v if v 6= y, and v′ = xi+1 if v = y. Then (τ ′i)

k(u′) = v′,
and k is the least positive integer with this property, by the definition of τ ′i . It
follows that y′ is a trigon.

For the converse consider a trigon in (τ ′1, τ
′
2, τ

′
3) with vertices that are inner

points or vertices of x. Such a trigon either equals x, or has at least two vertices
outside the set {x1, x2, x3}. In the latter case we can express the trigon as y′,
and it is clear that y has to be a trigon in Σ. �

Let (µ1, µ2, µ3) be a trading sphere that contains trigons. For a trigon u denote
by s(u) the minimum of the sizes yielded by the outer and inner trading spheres.
Say that a trigon u is extremal if s(u) achieves the minimum possible value.

Lemma 11.8. Suppose that x is the extremal trigon of the trading sphere
(τ ′1, τ

′
2, τ

′
3). Then (σ1, σ2, σ3) or (τ1, τ2, τ3) is a trading sphere without a trigon.

Proof: Let Σ contain a trigon y = y2y2y1. Define y′ as in Lemma 11.8. If
Pnty′ ⊆ Pntx, then the size of the inner trading sphere of y′ is less than the
size of Σ = (σ1, σ2, σ3). If Pnty′ is not contained in Pntx, then there must be
{x1, x2, x3} ⊆ Pnty′. In such a case the outer trading sphere of y′ is smaller than
the size of Σ. We conclude that s(x) is not equal to the size of Σ if Σ contains
a trigon.

Suppose that y is a trigon in the outer trading sphere of x, i.e. in (τ1, τ2, τ3).
If x is an inner triangle of y, then the outer trade of y is less than the size of
(τ1, τ2, τ3). If x is an outer triangle of y, then the inner trade of y is less than
the size of (τ1, τ2, τ3). We conclude that s(x) is equal to the size (τ1, τ2, τ3) if
(τ1, τ2, τ3) contains a trigon.

Nothing more is needed since both conclusions cannot hold at the same time.
�

Lemma 11.9. Suppose that a trading sphere cannot be obtained by a 2-sliding
move. Then it is bicyclic or it contains a trigon with a bicyclic outer trading
sphere.

Proof: If the trading sphere contains no trigon, use Theorem 10.8. Let it con-
tain a trigon and consider an extremal one. By Lemma 11.6 we can deal with
the situation when the inside trading sphere of a trigon is without trigons. By
Lemma 11.8 we can thus assume that there exists a trigon such that the outside
trading sphere is without trigons. If the outside trading sphere is not bicyclic,
then the 2-sliding move can be used to produce it, by Lemma 11.3. �

Note that a 2-trapezium expansion yields all bicyclic trades when we start
from the trading sphere of the size four. Note also the outer trading sphere is of
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size four exactly when there can be used point expansion (cf. Lemma 10.2). By
combining Lemmas 11.4 and 11.9 we thus obtain

Theorem 11.10. Every trading sphere can be obtained from the trading sphere
of size four by applying 2-sliding expansions, 2-trapezium expansions and point
expansions.

None of the constructions can be omitted. To see that the 2-sliding expan-
sion cannot be omitted is easy. For the other two cases take any trading sphere
(σ1, σ2, σ3) and concurrently replace each point by a trigon in such a way that all
outer trading spheres are bicyclic. A special case is the one in which each point of
(σ1, σ2, σ3) is subjected to a point expansion. That makes clear its inevitability.
In point expansion the outer trading sphere is bicyclic of size 4. If all of the con-
current trigonal expansions use a bicyclic trade of size at least 6, then we obtain
a bi-trade that documents the inevitability of the 2-trapezium expansion.

12. Duality

Let (τ1, τ2, τ3) be a trading surface onX . Denote by Y the set of all its triangles
x = x3x2x1. Consider a bipartite graph G upon X ∪ Y in which the set of edges
consists of all pairs {xi,x}, 1 ≤ i ≤ 3. The graph G is cubic and is clearly 3-
connected. If the genus is equal to zero, then we get a planar cubic 3-connected

bipartite graph. We have already mentioned in the introduction that all such
graphs are face 3-colourable — the faces correspond to the cycles of τi, 1 ≤ i ≤ 3,
and hence i can be used as the colour.

The rôles of X (the white points) and Y (the black points) are clearly inter-
changeable. This is not surprising since the points of X represent the triples
a = (a1, a2, a3) ∈ T ◦ of a bi-trade T = (T ◦, T ∗), while the points of Y represent
the triples b = (b1, b2, b3) ∈ T ∗. An edge occurs if and only if a and b agree in
(exactly) two coordinates.

Since the cycles of τi represent the faces of G, it is easy to understand how to
interpret a trigon y = y3y2y1 in terms of G. The connection is seen better if we
identify each yi with an element of T ∗. Let ci be the element that represents the
ith side of y. Then ci occurs as the ith coordinate of yi±1 ∈ T ∗. To get τi−1(yi)
we first change the ith coordinate of yi and then the (i+ 1)th coordinate. To get
τ−1
i+1(yi) we first change the ith coordinate of yi and then the (i−1)th coordinate.

Denote by zi the triple in T ◦ that is obtained from yi by the change of the ith
coordinate. We see that the (i±1)th coordinate of both yi and zi is equal to ci±1.
The trigon y can be thus identified with a subgraph of G formed by faces of ci,
1 ≤ i ≤ 3, in which the faces of ci−1 and ci+1 always share the edge {yi, zi}. By
removing these three edges from the subgraph we get two cycles of the graph G.
The cycle that involves vertices zi will be called the inner circumference of G,
while the cycle with vertices yi will be called the outer circumference. If y is
separating (which is always the case when G is planar), then the points upon the
inner circumference and the points inside the inner circumference determine the
inner trading surface (the points of X upon and inside the inner circumference
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coincide with the set PntX). Similarly, the outside trading surface is determined
by the outer circumference. The fact that the inner (or outer) trading surface is
a bicyclic trading sphere means that there exists i ∈ {1, 2, 3} such that within the
inner (outer) circumference one can find only one face of this colour.

By switching between X and Y (between black and white points), we clearly
also switch the meaning of the outside and inside of trigons. Lemma 11.9 thus
implies that if (T ◦, T ∗) is not bicyclic and cannot be obtained by a 2-sliding move,
then (T ∗, T ◦) can be obtained by such a move. This gives us the final theorem of
this paper. By applying an expansion to a bi-trade we mean that we consider the
induced triple (τ1, τ2, τ3) of structural permutations, expand it to (τ ′1, τ

′
2, τ

′
3), and

convert that back to a bi-trade. To retain the one-to-one correspondence one has
to assume that the bi-trades are separated. Call a latin bi-trade spherical if it is
separated and if its structural permutations form a trading sphere.

Theorem 12.1. For every spherical latin bi-trade T = (T ◦, T ∗) there exists a
sequence Ti = (T ◦

i , T
∗
i ) of spherical latin bi-trades, 0 ≤ i ≤ k, such that T0 is

bicyclic, Tk is equal to T and for every i, 0 ≤ i < k, one can obtain (T ◦
i+1, T

∗
i+1)

or (T ∗
i+1, T

◦
i+1) as a 2-sliding expansion of Ti.
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[9] Drápal A., On a planar construction of quasigroups, Czechoslovak Math. J. 41 (1991),

538–548.
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[12] Drápal A., Geometry of Latin Trades, manuscript circulated at the conference Loops’03,

Prague, 2003.
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