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Matching local Witt invariants

Przemysław Koprowski

Abstract. The starting point of this note is the observation that the local
condition used in the notion of a Hilbert-symbol equivalence and a quaternion-
symbol equivalence — once it is expressed in terms of the Witt invariant —
admits a natural generalisation. In this paper we show that for global function
fields as well as the formally real function fields over a real closed field all the
resulting equivalences coincide.

1. Introduction and notation

The ultimate question in the algebraic theory of quadratic-forms is whether Witt
rings of two given fields are isomorphic. Such fields are then said to be Witt
equivalent. This subject has been investigated by many authors. In particular the
study of Witt equivalence of global fields resulted in the notion of a Hilbert-symbol
equivalence (c.f. [6, 7, 8, 9, 10, 1]). A slight variation of it, called a quaternion-
symbol equivalence, was used to investigate Witt equivalence of algebraic function
fields. These two terms refer to a pair of maps (one being an isomorphism of square
class groups, the other a bijection of sets of points) preserving splitting of local Witt
invariants of binary forms. It is thus natural to ask whether substituting binary
forms by n-ary forms in the definition leads to a different theory or not.
In this paper we show that for the class of global function fields of characteristic

6= 2 as well as for the class of formally real algebraic function fields over a fixed real
closed field of constants the local condition can be changed to the one concerning
n-dimensional forms for any n ≥ 2 without changing the resulting theory. This is
quite intuitive for global function fields, as it is well known that every anisotropic
quadratic form over such a field is of dimension ≤ 4 (c.f. [5, Corollary VI.3.5]).
The result may seem a bit more surprising for real function fields, though. Here it
follows from the fact that any such an equivalence is tame (i.e. preserves the parity
of a valuation).
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Throughout the paper letters K,L are used to denote algebraic function fields
of characteristics 6= 2 over either finite fields or a fixed real closed field. For a
function field K we denote by Ω(K) the set of all points of K trivial on its field of
constants. If K is a real function field we further denote γK the set of all points
having a formally real residue field. Next, for a given point p ∈ Ω(K) symbols
Kp, ordp, θp and Θp denote respectively: the completion of K at p, the valuation

associated with p, the canonical epimorphism K̇/K̇2 → L̇/L̇2 and the canonical
epimorphism WK → WKp. Moreover, in order to simplify the notation, we use
the same symbol f to denote both: the element of the field as well as its square

class. In a similar fashion
(

f,g
K

)
denotes — depending on the context — either a

quaternion algebra or its class in the Brauer group Br(K) of the field K. Finally
s(K) is the level of K (c.f. [5, ch. XI, sec. 2]) and c(ϕ) is the Witt invariant of the
form ϕ (c.f. [5, ch. VI, sec. 3]).

2. Preliminaries

Recall (see [3, 2, 4]) that a quaternion-symbol equivalence of K and L (with respect

to A ⊆ Ω(K) and B ⊆ Ω(L)) is a pair of maps (t, T ) in which t : K̇/K̇2 → L̇/L̇2

is an isomorphism of square class groups, while T : A → B is a bijection and such
that (

f, g

Kp

)
= 1 ∈ Br(Kp) ⇐⇒

(
tf, tg

LT p

)
= 1 ∈ Br(LTp) (2.1)

for all square classes f, g ∈ K̇/K̇2 and every point p ∈ A. In a special case,
when K,L are global fields and A = Ω(K), B = Ω(L) it is called a Hilbert-symbol

equivalence (see [6, 7, 9]). Observe that a quaternion algebra
(

f,g
Kp

)
is the value of

the Witt invariant (see [5, Ch. V, sec. 3]) of the element 〈f, g〉 ∈ WKp of the Witt
ring of Kp. Therefore the condition (2.1) can be rewritten as

cp〈f, g〉 = 1 ⇐⇒ cTp〈tf, tg〉 = 1.

To simplify the notation cp : WK → Br2Kp (resp. cTp : WL → Br2 LTp) de-
notes here the composition of the Witt invariant with the canonical epimorphism
Θp : WK → WKp (resp. ΘTp : WL → WLTp), so in fact cp should read c ◦ Θp.
The above formula suggests a natural generalisation of the above condition to

cp〈f1, . . . , fn〉 = 1 ⇐⇒ cTp〈tf1, . . . , tfn〉 = 1.

This leads us directly to the following definition:

Definition 2.2. Let N ∈ N, N ≥ 2 be a fixed integer and let A ⊆ Ω(K), B ⊆ Ω(L)

be two fixed sets of points of K,L. The pair of maps (t, T ) in which t : K̇/K̇2 →
L̇/L̇2 is an isomorphism such that t(−1) = −1 and T : A → B is a bijection is
called an N -equivalence of K and L with respect to the pair (A,B) if it preserves
local Witt invariants in the sense that

cp〈f1, . . . , fN 〉 = 1 ∈ Br2(Kp) ⇐⇒ cTp〈tf1, . . . , tfN〉 = 1 ∈ Br2(LTp)

for all square classes f1, . . . , fN ∈ K̇/K̇2 and every point p ∈ A.
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In this paper we are interested only in global and real function fields, hence we
implicitly assume that if K,L are global function fields then A = Ω(K), B = Ω(L),
on the other hand if K,L are formally real function fields over a real closed field
of constants, then A = γK , B = γL. Thus, in what follows we drop out the phrase
‘with respect to the pair (A,B)’. Obviously a 2-equivalence is just a quaternion-
symbol equivalence (Hilbert-symbol equivalence when K,L are global).
In general it is rather improbable thatN -equivalences for differentN ’s coincide.

However it is so for the class of fields we study here. First observe that a “higher”
equivalence implies a “lower” one. Namely, taking 〈f1, . . . , fN , 1,−1〉 we see:
Observation 2.3. If (t, T ) is an (N + 2)-equivalence than it is an N -equivalence.

To examine other dependencies we however need to specify the field to work
with. Thus, from here on we separately discuss global fields and function fields over
a real closed field.

3. Global function fields

In this whole section K,L are global function fields of characteristic 6= 2. Recall
(see [5, Theorem VI.2.2]) that the 2-torsion subgroup of the Brauer group of a

p-adic local field consists of just two elements: the unit being the class of
(

1,−1
Kp

)

and the non-unit element being the class of the unique non-split quaternion algebra(
u,p
Kp

)
with ordp u ≡ 0 (mod 2) and ordp p ≡ 1 (mod 2). In particular, this means

that for every p ∈ Ω(K) a 2-equivalence (t, T ) (i.e. a Hilbert-symbol equivalence)

induces an isomorphism Br2Kp → Br2 LTp sending
(

f,g
Kp

)
to
(

tf,tg
LTp

)
.

Lemma 3.1. If (t, T ) is a 2-equivalence, then it is an N -equivalence for every N ≥ 2.

Proof. We treat separately even and odd N ’s. Assume that N is even. By [5,
V.3.13] we can write

cp〈f1, . . . , fN−2, fN−1, fN〉 =

= cp〈f1, . . . , fN−2〉 · cp〈fN−1, fN 〉 · cp
〈
disc〈f1, . . . , fN−2〉, disc〈fN−1, fN〉

〉
.

By a simple induction we can decompose the above formula into a product of Witt
invariants of binary forms. The 2-equivalence induces an isomorphism Br2Kp →
Br2 LTp, hence the product is preserved when passing to LTp. Recomposing it back
into cTp〈tf1, . . . , tfN 〉 we get the assertion.
For N odd first decompose cp〈f1, . . . , fN 〉 by [5, V.3.13]:

cp〈f1, . . . , fN−1, fN 〉 =

= cp〈f1, . . . , fN−1〉 · cp〈fN 〉 · cp〈disc〈f1, . . . , fN−1〉,− disc〈fN〉〉 =

= cp〈f1, . . . , fN−1〉 · cp〈disc〈f1, . . . , fN−1〉,−fN 〉
and then proceed as in the even case. �

Alternatively, one can prove the above lemma using the fact that a Hilbert-
symbol equivalence induces local Witt equivalence (see [7, Proposition 1.4]).



32 Przemysław Koprowski

Combining the above lemma with the observation 2.3, we see that any even
equivalence of global function fields implies all other equivalences. Hence, the next
obvious step is to examine a 3-equivalence.

Lemma 3.2. If (t, T ) is a 3-equivalence, then it is a 2-equivalence (hence also an
N -equivalence for every N ≥ 2).

Proof. Fix a point p ∈ Ω(K) and consider two cases. First assume that −1 /∈ K2
p .

Take a form 〈p,−1,−1〉 with p a fixed uniformizer. By [5, Proposition V.3.22] we
know that a ternary form has a trivial Witt invariant iff it is isotropic. Hence
cp〈p,−1,−1〉 6= 1 and so cTp〈tp, t(−1), t(−1)〉 = cTp〈tp,−1,−1〉 6= 1. From this we
see two things: first the form 〈tp,−1,−1〉 is anisotropic, hence −1 /∈ L2

Tp
, which

means that a 3-equivalence preserves local levels. Second, we have ordTp tp ≡ 1
(mod 2), so it preserves parity of valuation. Using a terminology established for a
Hilbert-symbol equivalence we would say that it is ‘tame’.
In turn assume that −1 ∈ K2

p . From the previous part we see that also

−1 ∈ L2
Tp
. We claim that a form 〈f, g, fg〉 is anisotropic over Kp if and only if

〈f, g, fg〉 = 〈u, p, up〉, here as usually ordp u ≡ 0 (mod 2) and ordp p ≡ 1 (mod 2).
Indeed, by [5, Corollary VI.2.5(3)] we obtain that an anisotropic ternary form ϕ
over Kp represents all square classes of Kp except − detϕ = detϕ. Now there are
exactly four anisotropic ternary forms over Kp (since −1 ∈ K2

p). These are:

〈1, u, p〉, 〈1, u, up〉, 〈1, p, up〉, 〈u, p, up〉.
All but the last represent 1 = det〈f, g, fg〉. This proves our claim.
Take now two square classes f, g ∈ K̇/K̇2 and assume that

(
f,g
Kp

)
6= 1.

The only non-split quaternion algebra over Kp is
(

u,p
Kp

)
. Hence 〈1, f, g, fg〉 =

〈1, u, p, up〉. Cancelling 〈1〉 we have 〈f, g, fg〉 = 〈u, p, up〉 over Kp. Now [5,
Propositon V.3.22] implies cp〈f, g, fg〉 6= 1, hence cTp〈tf, tg, tftg〉 6= 1. Thus
〈tf, tg, tftg〉 is anisotropic over LTp and so by our claim 〈tf, tg, tftg〉 = 〈v, q, vq〉
where ordTp v ≡ 0 (mod 2) and q is a class of a T p-adic uniformizer. Hence

〈1, tf, tg, tftg〉 = 〈1, v, q, vq〉 and so
(

tf,tg
LTp

)
6= 1. �

All in all we have just proved:

Proposition 3.3. Let K,L be global function fields. For any N,M ≥ 2 the pair
(t, T ) is an N -equivalence if and only if it is an M -equivalence.

4. Real function fields

In this section K and L are two formally real algebraic function fields over a fixed
real closed field k. Recall that in this case we default an N -equivalence to be taken
with respect to (γK , γL).
Fix N ≥ 2 and let (t, T ) be an N -equivalence, for a given square class f ∈

K̇/K̇2 consider the quadratic form ϕf := 〈f,−1〉 if N is even and ϕf := 〈f,−1,−1〉
if N is odd. Padding ϕf with hyperbolic planes we arrive at a form of dimen-

sion N laying in the same Witt class. Now for any point p we have
(

f,−1
Kp

)
=

cp〈f,−1〉 = 1 iff f is a square in Kp. Similarly, using [5, Proposition V.3.22] we
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have cp〈f,−1,−1〉 = 1 iff 〈f,−1,−1〉 is isotropic over Kp iff f is a square in Kp.
Hence,

f ∈ K2
p ⇐⇒ cpϕf = 1 ⇐⇒ cTpϕtf = 1 ⇐⇒ tf ∈ L2

Tp,

where the middle equivalence follows from the very definition of an N -equivalence.
Thus we have just proved:

Observation 4.1. Any N -equivalence preserves local squares.

The above observation implies that the mapping
(

f,g
Kp

)
7→
(

tf,tg
LTp

)
is well de-

fined; denote it byΥ. Observe that by Springer theorem (see [5, Proposition VI.1.9])

a quaternion algebra
(

f,g
Kp

)
splits if and only if at least one of the following holds:

f ∈ K2
p or g ∈ K2

p or − fg ∈ K2
p .

The previous observation implies that this is possible if and only if at least one of
the following holds:

tf ∈ L2
Tp or tg ∈ L2

Tp or − tftg ∈ L2
Tp,

which means that
(

tf,tg
LTp

)
splits. Hence Υ maps the unit element of Br2Kp onto

the unit element of Br2 LTp. Now since Br2Kp
∼= Z2 × Z2

∼= Br2 LTp, the map Υ
is in fact an isomorphism.
Take now N,M ≥ 2. Let (t, T ) be an N -equivalence and ϕ = 〈f1, . . . , fM 〉 any

M -dimensional quadratic form. By the means of [5, V.3.13], we can decompose the
Witt invariant cpϕ of ϕ into a product of quaternion algebras

cpϕ =
∏

i,j

(±fi,±fj

Kp

)
.

The isomorphism Υ induced by (t, T ) carries this product to Br2 LTp:

Υ
(
cp〈f1, . . . , fM 〉

)
=

= Υ

(∏

i,j

(±fi,±fj

Kp

))
=
∏

i,j

Υ

(±fi,±fj

Kp

)
=
∏

i,j

(±tfi,±tfj

LTp

)
=

= cTp〈tf1, . . . , tfM 〉
Hence we have just proved the real analogue of 3.3

Proposition 4.2. Let K,L be two formally real algebraic function fields over a real
closed field k. For any N,M ≥ 2 the pair (t, T ) is an N -equivalence if and only if
it is an M -equivalence.
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