Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Adrijan Varbanov Borisov; Margarita Georgieva Spirova
On the measurability of sets of pairs of intersecting nonisotropic straight lines of type beta in the simply isotropic space

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Vol. 48 (2009), No. 1, 7--16

Persistent URL: http://dml.cz/dmlcz/137502

Terms of use:

© Palacký University Olomouc, Faculty of Science, 2009

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

On the Measurability of Sets of Pairs of Intersecting Nonisotropic Straight Lines of Type Beta in the Simply Isotropic Space

Adrijan Varbanov BORISOV ${ }^{1}$, Margarita Georgieva SPirova ${ }^{2}$
${ }^{1}$ Department of Mathematics, South-West University, "Neofit Rilski" 66, Ivan Mihailov Str., 2700 Blagoevgrad, Bulgaria
e-mail: adribor@aix.swu.bg
${ }^{2}$ Fakultät für Mathematik, TU Chemnitz
D-09107 Chemnitz, Germany
e-mail: margarita.spirova@mathematik.tu-chemnitz.de

(Received October 24, 2008)

Abstract

The measurable sets of pairs of intersecting non-isotropic straight lines of type β and the corresponding densities with respect to the group of general similitudes and some its subgroups are described. Also some Croftontype formulas are presented.

Key words: Simply isotropic space, density, measurability. 2000 Mathematics Subject Classification: 53C65

1 Introduction

The simply isotropic space $I_{3}{ }^{(1)}$ (see [8]) is defined as a projective space $\mathbb{P}_{3}(\mathbb{R})$ in which the absolute consists of a plane ω (the absolute plane) and two complex conjugate straight lines f_{1}, f_{2} (the absolute lines) within ω. In homogeneous coordinates $\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$ we can choose the plane $x_{0}=0$ as the plane ω, the line $x_{0}=0, x_{1}+i x_{2}=0$ as the line f_{1}, and the line $x_{0}=0, x_{1}-i x_{2}=0$ as the line f_{2}. Then the intersecting point F of f_{1} and f_{2}, which is called an absolute point, has coordinates ($0,0,0,1$). All regular projectivities transforming the absolute figure into itself form the 8-parametric group G_{8} of general simply
isotropic similitudes. In affine coordinates (x, y, z) with respect to the affine coordinate system $\left(O, \overrightarrow{e_{1}}, \overrightarrow{e_{2}}, \overrightarrow{e_{3}}\right)$, any similitude of G_{8} can be written in the form ([8, p. 3])

$$
\begin{align*}
& \bar{x}=c_{1}+c_{7}(x \cos \varphi-y \sin \varphi), \\
& \bar{y}=c_{2}+c_{7}(x \sin \varphi+y \cos \varphi), \tag{1}\\
& \bar{z}=c_{3}+c_{4} x+c_{5} y+c_{6} z
\end{align*}
$$

where $c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}, c_{7}$, and φ are real parameters and $c_{7}>0$.
A plane in $I_{3}{ }^{(1)}$ is said to be non-isotropic if its infinite line is not incident with the absolute point F; otherwise the plane is called isotropic.

A straight line in $I_{3}{ }^{(1)}$ is said to be (completely) isotropic if its infinite point coincides with the absolute point F; otherwise the straight line is said to be non-isotropic ($[8, \mathrm{p} .5]$).

Let G_{1} and G_{2} be two non-isotropic straight lines and let us denote by U_{1} and U_{2} their infinite points, respectively. The straight lines G_{1} and G_{2} are said to be of type β if the points U_{1}, U_{2}, and F are collinear; otherwise the straight lines are said to be of type α ([8, p. 45]).

We will consider also the following subgroups of G_{8} :
I. $B_{7} \subset G_{8} \Longleftrightarrow c_{7}=1$. This is the group of simply isotropic similitudes of the δ-distance ($[8, \mathrm{p} .5]$).
II. $S_{7} \subset G_{8} \Longleftrightarrow c_{6}=1$. This is the group of simply isotropic similitudes of the s-distance ($[8$, p. 6$]$).
III. $W_{7} \subset G_{8} \Longleftrightarrow c_{6}=c_{7}$. This is the group of simply isotropic angular similitudes ([8, p. 18]).
IV. $G_{7} \subset G_{8} \Longleftrightarrow \varphi=0$. This is the group of simply isotropic boundary similitudes ($[8$, p. 8]).
V. $V_{7} \subset G_{8} \Longleftrightarrow c_{6} c_{7}^{2}=1$. This is the group of simply isotropic volume preserving similitudes ($[8$, p. 8]).
VI. $G_{6}=G_{7} \cap V_{7}$. This is the group of simply isotropic volume preserving boundary similitudes ($[8$, p. 8$]$).
VII. $B_{6}=B_{7} \cap G_{7}$. This is the group of modular boundary motions ([8, p. 9]).
VIII. $B_{5}=B_{7} \cap S_{7} \cap G_{7}$. This is the group of unimodular boundary motions ([8, p. 9]).

Basic references on the geometry of the simply isotropic space $I_{3}{ }^{(1)}$ are Sachs' book [8] and Strubecker's papers [8], [11] and [12].

Using some basic concepts from integral geometry in the sense of R. Deltheil [3], M. I. Stoka [10], G. I. Drinfel'd, and A. V. Lucenko [4], [5], [6], we study the measurability of sets of pairs of intersecting nonisotropic straight lines of type β with respect to G_{8} and indicated above subgroups. Analogous problems about sets of pairs of intersecting non-isotropic straight lines of type α in $I_{3}{ }^{(1)}$ have been treated in [2].

On the measurability of sets of pairs...

2 Measurability with respect to G_{8}

Let $\left(G_{1}, G_{2}\right)$ be a pair of intersecting non-isotropic straight lines of type β. Let G_{i} have Plücker coordinates $\left(p_{j}^{i}\right), i=1,2, j=1, \ldots, 6$, which satisfy the relations ([8, p. 38])

$$
\begin{equation*}
p_{1}^{i} p_{4}^{i}+p_{2}^{i} p_{5}^{i}+p_{3}^{i} p_{6}^{i}=0, \quad i=1,2 \tag{2}
\end{equation*}
$$

Since G_{1} and G_{2} are intersecting non-isotropic lines of type β, we have

$$
\begin{gather*}
p_{1}^{1} p_{4}^{2}+p_{2}^{1} p_{5}^{2}+p_{3}^{1} p_{4}^{2}+p_{4}^{1} p_{1}^{2}+p_{5}^{1} p_{2}^{2}+p_{6}^{1} p_{3}^{2}=0, \quad p_{3}^{1}-p_{3}^{2} \neq 0 \tag{3}\\
\left|p_{1}^{i}\right|+\left|p_{2}^{i}\right| \neq 0, \quad i=1,2 \tag{4}\\
p_{1}^{1} p_{2}^{2}-p_{2}^{1} p_{1}^{2}=0 \tag{5}
\end{gather*}
$$

Having in mind (4), we can assume, without loss of generality, that $p_{1}^{i}=1$. From (2), p_{4}^{i} can be expressed by the remaining Plücker coordinates of G_{i}, and in view if (3) and (5), p_{2}^{2} and p_{6}^{2} also can be expressed by $p_{2}^{1}, p_{3}^{1}, p_{5}^{1}, p_{6}^{1}, p_{3}^{2}$ and p_{5}^{2}. Thus the pair $\left(G_{1}, G_{2}\right)$ can be determined by $p_{2}^{1}, p_{3}^{1}, p_{5}^{1}, p_{6}^{1}, p_{3}^{2}, p_{5}^{2}$.

Remark 2.1 We note that if $G_{i}, i=1,2$, are represented in the usual way by the equations

$$
G_{1}:\left\{\begin{array}{l}
x=a_{1}(z-r)+p \tag{6}\\
y=b_{1}(z-r)+q
\end{array}, \quad G_{2}:\left\{\begin{array}{l}
x=a_{2}(z-r)+p \\
y=\frac{a_{2}}{a_{1}} b_{1}(z-r)+q
\end{array}\right.\right.
$$

where $P(p, q, r)=G_{1} \cap G_{2}$ and $a_{1} \neq 0, a_{2} \neq 0$, then

$$
\begin{gather*}
p_{2}^{1}=\frac{b_{1}}{a_{1}}, \quad p_{3}^{1}=\frac{1}{a_{1}}, \quad p_{5}^{1}=r-\frac{p}{a_{1}}, \quad p_{6}^{1}=p \frac{b_{1}}{a_{1}}-q, \\
p_{3}^{2}=\frac{1}{a_{2}}, \quad p_{5}^{2}=r-\frac{p}{a_{2}} . \tag{7}
\end{gather*}
$$

Under the action of (1) the pair $\left(G_{1}, G_{2}\right)\left(p_{2}^{1}, p_{3}^{1}, p_{5}^{1}, p_{6}^{1}, p_{3}^{2}, p_{5}^{2}\right)$ is transformed into the pair $\left(\bar{G}_{1}, \bar{G}_{2}\right)\left(\bar{p}_{2}^{1}, \bar{p}_{3}^{1}, \bar{p}_{5}^{1}, \bar{p}_{6}^{1}, \bar{p}_{3}^{2}, \bar{p}_{5}^{2}\right)$. Thus we have

$$
\begin{align*}
\bar{p}_{2}^{1}= & K c_{7}\left(\sin \varphi+p_{2}^{1} \cos \varphi\right) \\
\bar{p}_{3}^{1}= & K\left(c_{4}+c_{5} p_{2}^{1}+c_{6} p_{3}^{1}\right) \\
\bar{p}_{5}^{1}= & K\left\{\left(c_{3}-c_{5} p_{6}^{1}+c_{6} p_{5}^{1}\right) c_{7} \cos \varphi\right. \\
& \left.-\left[c_{3}+c_{4} p_{6}^{1}+c_{6}\left(p_{2}^{1} p_{5}^{1}+p_{3}^{1} p_{6}^{1}\right)\right] c_{7} \sin \varphi-c_{1}\left(c_{4}+c_{5}+c_{6} p_{3}^{1}\right)\right\} \tag{8}\\
\bar{p}_{6}^{1}= & K c_{7}\left[\left(c_{1} p_{2}^{1}-c_{2}\right) \cos \varphi+\left(c_{1}+c_{2} p_{2}^{1}\right) \sin \varphi+c_{7} p_{6}^{1}\right] \\
\bar{p}_{3}^{2}= & K\left(c_{4}+c_{5} p_{2}^{1}+c_{6} p_{3}^{2}\right) \\
\bar{p}_{5}^{2}= & K\left\{\left(c_{3}-c_{5} p_{6}^{1}+c_{6} p_{5}^{2}\right) c_{7} \cos \varphi\right. \\
& \left.-\left[c_{3}+c_{4} p_{6}^{1}+c_{6}\left(p_{2}^{1} p_{5}^{2}+p_{3}^{2} p_{6}^{1}\right)\right] c_{7} \sin \varphi-c_{1}\left(c_{4}+c_{5}+c_{6} p_{3}^{2}\right)\right\}
\end{align*}
$$

where $K=\left[c_{7}\left(\cos \varphi-p_{2}^{1} \sin \varphi\right)\right]^{-1}, i=1,2$. The transformations (8) form the associated group $\overline{G_{8}}$ of G_{8} ([10, p. 34]). The group $\overline{G_{8}}$ is isomorphic to G_{8} and the density with respect to G_{8} of the pairs $\left(G_{1}, G_{2}\right)$ if it exists, coincides with the density with respect to $\overline{G_{8}}$ of the set of parameters $\left(p_{2}^{1}, p_{3}^{1}, p_{5}^{1}, p_{6}^{1}, p_{3}^{2}, p_{5}^{2}\right)$.

The associated group $\overline{G_{8}}$ has the infinitesimal operators

$$
\begin{align*}
& X_{1}=p_{3}^{1} \frac{\partial}{\partial p_{5}^{1}}-p_{2}^{1} \frac{\partial}{\partial p_{6}^{1}}-p_{3}^{2} \frac{\partial}{\partial p_{5}^{2}}, \quad X_{2}=\frac{\partial}{\partial p_{6}^{1}}, \quad X_{3}=\frac{\partial}{\partial p_{5}^{1}}+\frac{\partial}{\partial p_{5}^{2}}, \\
& X_{4}=\frac{\partial}{\partial p_{3}^{1}}+\frac{\partial}{\partial p_{3}^{2}}, \quad X_{5}=p_{2}^{1} \frac{\partial}{\partial p_{3}^{1}}-p_{6}^{1} \frac{\partial}{\partial p_{5}^{1}}+p_{2}^{1} \frac{\partial}{\partial p_{3}^{2}}-p_{6}^{1} \frac{\partial}{\partial p_{5}^{2}}, \\
& X_{6}=p_{3}^{1} \frac{\partial}{\partial p_{3}^{1}}+p_{5}^{1} \frac{\partial}{\partial p_{5}^{1}}+p_{3}^{2} \frac{\partial}{\partial p_{3}^{2}}+p_{5}^{2} \frac{\partial}{\partial p_{5}^{2}}, \quad X_{7}=p_{3}^{1} \frac{\partial}{\partial p_{3}^{1}}-p_{6}^{1} \frac{\partial}{\partial p_{6}^{1}}+p_{3}^{2} \frac{\partial}{\partial p_{3}^{2}}, \\
& X_{8}=\left[1+\left(p_{2}^{1}\right)^{2}\right] \frac{\partial}{\partial p_{2}^{1}}+p_{2}^{1} p_{3}^{1} \frac{\partial}{\partial p_{3}^{1}}-p_{3}^{1} p_{6}^{1} \frac{\partial}{\partial p_{5}^{1}}+p_{2}^{1} p_{6}^{1} \frac{\partial}{\partial p_{6}^{1}}+p_{2}^{1} p_{3}^{2} \frac{\partial}{\partial p_{3}^{2}}-g_{6}^{1} p_{3}^{2} \frac{\partial}{\partial p_{5}^{2}}, \tag{9}
\end{align*}
$$

and it acts transitively on the set of parameters $\left(p_{2}^{1}, p_{3}^{1}, p_{5}^{1}, p_{6}^{1}, p_{3}^{2}, p_{5}^{2}\right)$. The infinitesimal operators $X_{1}, X_{2}, X_{3}, X_{4}, X_{7}$, and X_{8} are arcwise unconnected and

$$
X_{6}=\frac{p_{5}^{2}-p_{5}^{1}}{p_{3}^{2}-p_{3}^{1}} X_{1}+p_{6}^{1} X_{2}+\frac{p_{3}^{1} p_{5}^{2}-p_{5}^{1} p_{3}^{2}}{p_{3}^{2}-p_{3}^{1}} X_{3}+X_{7}
$$

Since

$$
X_{1}\left(\frac{p_{5}^{2}-p_{5}^{1}}{p_{3}^{2}-p_{3}^{1}}\right)+X_{2}\left(p_{6}^{1}\right)+X_{3}\left(\frac{p_{3}^{1} p_{5}^{2}-p_{5}^{1} p_{3}^{2}}{p_{3}^{2}-p_{3}^{1}}\right)+X_{7}(1)=3 \neq 0
$$

we can establish the following
Theorem 2.1 The set of pairs of intersecting non-isotropic straight lines is not measurable with respect to the group G_{8}, and it has no measurable subsets.

3 Measurability with respect to S_{7}

The associated group $\overline{S_{7}}$ of the group S_{7} has the infinitesimal operators X_{1}, $X_{2}, X_{3}, X_{4}, X_{5}, X_{7}$, and X_{8} from (9), and it acts transitively on the set of parameters $\left(p_{2}^{1}, p_{3}^{1}, p_{5}^{1}, p_{6}^{1}, p_{3}^{2}, p_{5}^{2}\right)$. The integral invariant function

$$
f=f\left(p_{2}^{1}, p_{3}^{1}, p_{5}^{1}, p_{6}^{1}, p_{3}^{2}, p_{5}^{2}\right)
$$

satisfying the so-called system of R. Deltheil (see [3, p. 28]; [10, p. 11])

$$
\begin{gathered}
X_{1}(f)=0, \quad X_{2}(f)=0, \quad X_{3}(f)=0, \quad X_{4}(f)=0, \quad X_{5}(f)=0 \\
X_{7}(f)+f=0, \quad X_{8}(f)+5 p_{2}^{1} f=0
\end{gathered}
$$

has the form

$$
f=\frac{h}{\left(p_{3}^{1}-p_{3}^{2}\right)\left[1+\left(p_{2}^{1}\right)^{2}\right]^{2}},
$$

where $h=$ const .

On the measurability of sets of pairs...

Thus we state the following
Theorem 3.1 The set of pairs $\left(G_{1}, G_{2}\right)\left(p_{2}^{1}, p_{3}^{1}, p_{5}^{1}, p_{6}^{1}, p_{3}^{2}, p_{5}^{2}\right)$ is measurable with respect to the group S_{7} and has the density

$$
\begin{equation*}
d\left(G_{1}, G_{2}\right)=\frac{1}{\left|p_{3}^{2}-p_{3}^{1}\right|\left[1+\left(p_{2}^{1}\right)^{2}\right]^{2}} d p_{2}^{1} \wedge d p_{3}^{1} \wedge d p_{5}^{1} \wedge d p_{6}^{1} \wedge d p_{3}^{2} \wedge d p_{5}^{2} \tag{10}
\end{equation*}
$$

Differentiating (7) and substituting into (10) we obtain other expression for the density:

Corollary 3.1 The density (10) for the pairs $\left(G_{1}, G_{2}\right)$ represented by (6) can be written in the form

$$
\begin{equation*}
d\left(G_{1}, G_{2}\right)=\left|\frac{a_{1}}{a_{2}^{2}\left(a_{1}^{2}+b_{1}^{2}\right)^{2}}\right| d a_{1} \wedge d b_{1} \wedge d a_{2} \wedge d p \wedge d q \wedge d r \tag{11}
\end{equation*}
$$

4 Some Crofton-type formulas with respect to S_{7}

Let us consider the isotropic plane ι, which is determined by the lines G_{1} and G_{2}. The plane ι has the equation

$$
\iota: b_{1} x-a_{1} y+a_{1} q-b_{1} p=0
$$

If \widetilde{P} is the orthogonal projection of P into $O x y$, consider the affine coordinate system ($\widetilde{P}{\overrightarrow{e_{1}}}^{\prime}{\overrightarrow{e_{2}}}^{\prime}$) in the isotropic plane ι, where ${\overrightarrow{e_{1}}}^{\prime}=\left(a_{1}, b_{1}, 1\right),{\overrightarrow{e_{2}}}^{\prime}=\overrightarrow{e_{3}}$. It should be noticed, that if $\widetilde{G}=\iota \cap O x y$ then $\overrightarrow{e_{1}^{\prime}} \| \widetilde{G}$. Let $J^{1}=O x z \cap \iota$ and $J^{2}=O y z \cap \iota$. Obviously

$$
J^{1}: x=p-\frac{a_{1}}{b_{1}} q, y=0, \quad J^{2}: y=q-\frac{b_{1}}{a_{1}} p, x=0
$$

and J^{1}, J^{2} have the equations

$$
J^{1}: x=-\frac{q}{b_{1}}, \quad J^{2}: x=-\frac{p}{a_{1}}
$$

with respect to $\left.\left(\widetilde{P} \overrightarrow{e_{1}}{ }^{\prime} \overrightarrow{e_{2}}\right)^{\prime}\right)$.
Then the density $d\left(J^{1}, J^{2}\right)$ for the pairs $\left(J^{1}, J^{2}\right)$ with respect to the group H_{4}^{1}, which is the restriction of S_{7} into ι, is (see [1, p. 201])

$$
d\left(J^{1}, J^{2}\right)=\left(\frac{p}{a_{1}}-\frac{q}{b_{1}}\right)^{2} d \frac{p}{a_{1}} \wedge d \frac{q}{b_{1}}
$$

Recall that ([8, p. 45])

$$
\begin{equation*}
s=\frac{a_{1}-a_{2}}{a_{2} \sqrt{a_{1}^{2}+b_{1}^{2}}} \tag{12}
\end{equation*}
$$

is the angle from G_{1} to G_{2}, we find

$$
d\left(J^{1}, J^{2}\right) \wedge d P \wedge d s=\frac{\left(p b_{1}-q a_{1}\right) p q}{a_{1}^{3} b_{1}^{4} a_{2}^{2} \sqrt{a_{1}^{2}+b_{1}^{2}}} d a_{1} \wedge d b_{1} \wedge d p \wedge d q \wedge d r \wedge d a_{2}
$$

Comparing with (11), we get

$$
\begin{equation*}
d\left(G_{1}, G_{2}\right)=\left|\frac{a_{1}^{4} b_{1}^{4}}{p q\left(p b_{1}-q a_{1}\right)\left(a_{1}^{2}+b_{1}^{2}\right)^{\frac{3}{2}}}\right| d\left(J^{1}, J^{2}\right) \wedge d s \wedge d P . \tag{13}
\end{equation*}
$$

Let $\varphi_{i}, i=1,2$, b the angle between G_{i} and $O x y$. Then ([8, p. 48])

$$
\begin{equation*}
\varphi_{1}=\frac{1}{\sqrt{a_{1}^{2}+b_{1}^{2}}}, \quad \varphi_{2}=\frac{a_{1}}{a_{2} \sqrt{a_{1}^{2}+b_{1}^{2}}} \tag{14}
\end{equation*}
$$

and (13) becomes

$$
\begin{equation*}
d\left(G_{1}, G_{2}\right)=\left|\frac{a_{1}^{4} b_{1}^{4} \varphi_{1}^{3}}{p q\left(p b_{1}-q a_{1}\right)}\right| d\left(J^{1}, J^{2}\right) \wedge d s \wedge d P \tag{15}
\end{equation*}
$$

By differentiation of (14) and by exterior multiplication by (12), we obtain

$$
\begin{align*}
d\left(G_{1}, G_{2}\right) & =\left|\frac{a_{1}^{4} b_{1}^{4}}{p q\left(p b_{1}-q a_{1}\right)\left(a_{1}^{2}+b_{1}^{2}\right)^{\frac{3}{2}}}\right| d\left(J^{1}, J^{2}\right) \wedge d \varphi_{2} \wedge d P \\
& =\left|\frac{a_{1}^{4} b_{1}^{4} \varphi_{1}^{3}}{p q\left(p b_{1}-q a_{1}\right)}\right| d\left(J^{1}, J^{2}\right) \wedge d \varphi_{2} \wedge d P . \tag{16}
\end{align*}
$$

If $\widetilde{\varphi}$ is the isotropic distance from J^{1} to J^{2}, then ([7, p. 19])

$$
\begin{equation*}
\widetilde{\varphi}=-\frac{p}{a_{1}}+\frac{q}{b_{1}} . \tag{17}
\end{equation*}
$$

Putting (17) into (15) and (16), we find

$$
\begin{equation*}
d\left(G_{1}, G_{2}\right)=\left|\frac{a_{1}^{3} b_{1}^{3} \varphi_{1}^{3}}{p q \widetilde{\varphi}}\right| d\left(J^{1}, J^{2}\right) \wedge d s \wedge d P=\left|\frac{a_{1}^{3} b_{1}^{3} \varphi_{1}^{3}}{p q \widetilde{\varphi}}\right| d\left(J^{1}, J^{2}\right) \wedge d \varphi_{2} \wedge d P \tag{18}
\end{equation*}
$$

Let G_{i}^{1} and G_{i}^{2} be now the projections of G_{i} into $O x z$ and $O y z$ obtained in a parallel way to $O y$ and $O x$, respectively. Then

$$
\begin{aligned}
G_{i}^{1}: & z=\frac{1}{a_{i}} x+r-\frac{p}{a_{i}}, y=0, i=1,2, \\
G_{1}^{2}: & z=\frac{1}{b_{1}} y+r-\frac{q}{b_{1}}, x=0 \\
G_{2}^{2}: & z=\frac{a_{1}}{a_{2} b_{1}} y+r-\frac{a_{1}}{a_{2} b_{1}} q, x=0 .
\end{aligned}
$$

Furthermore,

$$
\begin{equation*}
d\left(G_{1}^{1}, G_{2}^{1}\right)=\left|\frac{1}{a_{1} a_{2}\left(a_{2}-a_{1}\right)}\right| d a_{1} \wedge d a_{2} \wedge d p \wedge d r \tag{19}
\end{equation*}
$$

is the density for the pairs $\left(G_{1}^{1}, G_{2}^{1}\right)$ in the isotropic plane $O x z$ with respect ${ }^{1} H_{4}^{1}$ which is the restriction of S_{7} into $O x z$ and

$$
d\left(G_{1}^{2}, G_{2}^{2}\right)=\left|\frac{1}{b_{1}^{2} a_{2}\left(a_{2}-a_{1}\right)}\right|\left(a_{1} d b_{1} \wedge d a_{2}-a_{2} d b_{1} \wedge d a_{1}\right) \wedge d q \wedge d r
$$

On the measurability of sets of pairs...
is the density for the pairs $\left(G_{1}^{2}, G_{2}^{2}\right)$ in the isotropic plane $O y z$ with respect ${ }^{2} H_{4}^{1}$ which is the restriction of S_{7} into $O y z$ (see [1, p. 177]).

By exterior multiplication of (G_{1}^{1}, G_{2}^{1}) and $d s \wedge d q$, we get

$$
\begin{equation*}
d\left(G_{1}, G_{2}\right)=\left|\frac{a_{1}^{2} \varphi_{1}}{b_{1}}\right| d\left(G_{1}^{1}, G_{2}^{1}\right) \wedge d s \wedge d q \tag{20}
\end{equation*}
$$

and by exterior multiplication of (19) and $d \varphi_{1} \wedge d q$:

$$
\begin{equation*}
d\left(G_{1}, G_{2}\right)=\left|\frac{a_{1}^{2} s}{b_{1}}\right| d\left(G_{1}^{1}, G_{2}^{1}\right) \wedge d \varphi_{1} \wedge d q \tag{21}
\end{equation*}
$$

If, instead of using $d \varphi_{1} \wedge d q$, we multiply by $d \varphi_{2} \wedge d q$, we obtain

$$
\begin{equation*}
d\left(G_{1}, G_{2}\right)=\left|\frac{a_{1} a_{2} s}{b_{1}}\right| d\left(G_{1}^{1}, G_{2}^{1}\right) \wedge d \varphi_{2} \wedge d q \tag{22}
\end{equation*}
$$

Analogously, we can derive the following formulas:

$$
\begin{align*}
d\left(G_{1}, G_{2}\right) & =\left|\frac{a_{1}^{2} b_{1}^{2} \varphi_{1}}{a_{2}^{3}}\right| d\left(G_{1}^{2}, G_{2}^{2}\right) \wedge d s \wedge d p \\
& =\left|\frac{b_{1}^{2} s}{a_{1}}\right| d\left(G_{1}^{2}, G_{2}^{2}\right) \wedge d \varphi_{1} \wedge d p \\
& =\left|\frac{a_{2} b_{1}^{2} s}{a_{1}^{2}}\right| d\left(G_{1}^{2}, G_{2}^{2}\right) \wedge d \varphi_{2} \wedge d p \tag{23}
\end{align*}
$$

In summary, the following theorem holds.
Theorem 4.1 The density for the set of pairs $\left(G_{1}, G_{2}\right)$ of intersecting nonisotropic straight lines of type β, determined by (6), with respect to the group S_{7} satisfies the relations (15), (16), (18), (20), (21), (22), and (23).

5 Measurability with respect to G_{6}

Now, the corresponding associated group $\overline{G_{6}}$ has the infinitesimal operators

$$
\begin{aligned}
Y_{1} & =p_{3}^{1} \frac{\partial}{\partial p_{5}^{1}}-p_{2}^{1} \frac{\partial}{\partial p_{6}^{1}}+p_{3}^{2} \frac{\partial}{\partial p_{5}^{2}}, \quad Y_{2}=\frac{\partial}{\partial p_{6}^{1}} \\
Y_{3} & =\frac{\partial}{\partial p_{5}^{1}}+\frac{\partial}{\partial p_{5}^{2}}, \quad Y_{4}=p_{2}^{1} \frac{\partial}{\partial p_{3}^{1}}-p_{6}^{1} \frac{\partial}{\partial p_{5}^{1}}+p_{2}^{1} \frac{\partial}{\partial p_{3}^{2}}-p_{6}^{1} \frac{\partial}{\partial p_{5}^{2}} \\
Y_{7} & =3 p_{3}^{1} \frac{\partial}{\partial p_{3}^{1}}+2 p_{5}^{1} \frac{\partial}{\partial p_{5}^{1}}-p_{6}^{1} \frac{\partial}{\partial p_{6}^{1}}+3 p_{3}^{2} \frac{\partial}{\partial p_{3}^{2}}+2 p_{5}^{2} \frac{\partial}{\partial p_{5}^{2}}, \quad Y_{8}=\frac{\partial}{\partial p_{1}^{1}}+\frac{\partial}{\partial p_{3}^{2}} .
\end{aligned}
$$

The group $\overline{G_{6}}$ acts intransitively on the set of points $\left(p_{2}^{1}, p_{3}^{1}, p_{5}^{1}, p_{6}^{1}, p_{3}^{2}, p_{5}^{2}\right)$ and therefore the set of pairs $\left(G_{1}, G_{2}\right)$ has not invariant density with respect to G_{6}. The system

$$
Y_{1}(f)=0, Y_{2}(f)=0, Y_{3}(f)=0, Y_{4}(f)=0, Y_{7}(f)=0, Y_{8}(f)=0
$$

has the solution

$$
f=p_{2}^{1}
$$

and it is an absolute invariant of G_{6}. Consider the subset of pairs $\left(G_{1}, G_{2}\right)$ satisfying the condition

$$
\begin{equation*}
p_{2}^{1}=h \tag{24}
\end{equation*}
$$

where $h=$ const. The group $\overline{G_{6}}$ induces on this subset the group G_{6}^{*} with the infinitesimal operators

$$
\begin{aligned}
Z_{1} & =p_{3}^{1} \frac{\partial}{\partial p_{5}^{1}}-h \frac{\partial}{\partial p_{6}^{1}}+p_{3}^{2} \frac{\partial}{\partial p_{5}^{2}}, \quad Z_{2}=\frac{\partial}{\partial p_{6}^{1}}, \\
Z_{3} & =\frac{\partial}{\partial p_{5}^{1}}+\frac{\partial}{\partial p_{5}^{2}}, \quad Z_{4}=p_{2}^{1} \frac{\partial}{\partial p_{3}^{1}}-p_{6}^{1} \frac{\partial}{\partial p_{5}^{1}}+p_{2}^{1} \frac{\partial}{\partial p_{3}^{2}}-p_{6}^{1} \frac{\partial}{\partial p_{5}^{2}}, \\
Z_{7} & =3 p_{3}^{1} \frac{\partial}{\partial p_{3}^{1}}+2 p_{5}^{1} \frac{\partial}{\partial p_{5}^{1}}-p_{6}^{1} \frac{\partial}{\partial p_{6}^{1}}+3 p_{3}^{2} \frac{\partial}{\partial p_{3}^{2}}+2 p_{5}^{2} \frac{\partial}{\partial p_{5}^{2}}, \quad Z_{8}=\frac{\partial}{\partial p_{1}^{1}}+\frac{\partial}{\partial p_{3}^{2}} .
\end{aligned}
$$

The integral invariant function $f=f\left(p_{3}^{1}, p_{5}^{1}, p_{6}^{1}, p_{3}^{2}, p_{5}^{2}\right)$, which satisfies the Deltheil system

$$
Z_{1}(f)=0, Z_{2}(f)=0, Z_{3}(f)=0, Z_{4}(f)=0, Z_{7}(f)-9 f=0, Z_{8}(f)=0
$$

has the form

$$
f=\frac{c}{\left(p_{3}^{1}-p_{3}^{2}\right)^{3}}
$$

where $c=$ const.
Thus we state the following
Theorem 5.1 The set of pairs $\left(G_{1}, G_{2}\right)\left(p_{2}^{1}, p_{3}^{1}, p_{5}^{1}, p_{6}^{1}, p_{3}^{2}, p_{5}^{2}\right)$ of intersecting nonisotropic lines of type β is not measurable with respect to G_{6}, but it has the measurable subset

$$
p_{2}^{1}=h, \quad h=\text { const },
$$

with the density

$$
\begin{equation*}
d\left(G_{1}, G_{2}\right)=\frac{1}{\left|p_{3}^{2}-p_{3}^{1}\right|^{3}} d p_{3}^{1} \wedge d p_{5}^{1} \wedge d p_{6}^{1} \wedge d p_{3}^{2} \wedge d p_{5}^{2} \tag{25}
\end{equation*}
$$

Differentiating (7), (24), and replacing into (25), we establish
Corollary 5.1 The set of pairs $\left(G_{1}, G_{2}\right)$ of intersecting non-isotropic lines of type β, determined by (6), is not measurable with respect to the group G_{6}, but it has the measurable subset

$$
\frac{b_{1}}{a_{1}}=h, \quad h=\text { const },
$$

with the density

$$
d\left(G_{1}, G_{2}\right)=\frac{1}{\left(a_{1}-a_{2}\right)^{2}} d a_{1} \wedge d a_{2} \wedge d p \wedge d q \wedge d r
$$

On the measurability of sets of pairs...

6 Measurability with respect to $B_{7}, W_{7}, G_{7}, V_{7}, B_{6}$, and B_{5}

By arguments similar to those used in the sections 2, 3, and 5, we investigated the measurability with respect to all the remaining groups. We have the following results:

Theorem 6.1 The set of pairs $\left(G_{1}, G_{2}\right)$ of intersecting non-isotropic straight lines of type β, determined by (6), is measurable with respect to the group
(i) B_{7} and it has the density

$$
d\left(G_{1}, G_{2}\right)=\left|\frac{a_{1} a_{2}}{\left(a_{1}-a_{2}\right)^{3} \sqrt{a_{1}^{2}+b_{1}^{2}}}\right| d a_{1} \wedge d b_{1} \wedge d a_{2} \wedge d p \wedge d q \wedge d r
$$

(ii) V_{7} and it has the density

$$
d\left(G_{1}, G_{2}\right)=\frac{\left|a_{1}\right|}{\left(a_{1}-a_{2}\right)^{2}\left(a_{1}^{2}+b_{1}^{2}\right)} d a_{1} \wedge d b_{1} \wedge d a_{2} \wedge d p \wedge d q \wedge d r
$$

Theorem 6.2 With respect to the groups W_{7} and S_{7} the set of pairs $\left(G_{1}, G_{2}\right)$ of intersecting non-isotropic lines of type β is not measurable and it has no measurable subsets.

Theorem 6.3 The set of pairs $\left(G_{1}, G_{2}\right)$ of intersecting non-isotropic straight lines of type β, determined by (6), is not measurable with respect to the group
(i) B_{6}, but it has the measurable subset

$$
\frac{b_{1}}{a_{1}}=h, \quad h=\text { const }
$$

with the density

$$
d\left(G_{1}, G_{2}\right)=\left|\frac{a_{1} a_{2}}{\left(a_{1}-a_{2}\right)^{3}}\right| d a_{1} \wedge d a_{2} \wedge d p \wedge d q \wedge d r
$$

(ii) B_{5}, but it has the measurable subset

$$
\frac{b_{1}}{a_{1}}=h_{1}, \quad \frac{1}{a_{1}}-\frac{1}{a_{2}}=h_{2}, \quad h_{1}, h_{2}=\text { const }
$$

with the density

$$
d\left(G_{1}, G_{2}\right)=\left|\frac{a_{2}}{a_{1}\left(a_{1}-a_{2}\right)}\right| d a_{1} \wedge d a_{2} \wedge d p \wedge d q \wedge d r
$$

References

[1] Borisov, A.: Integral geometry in the Galilean plane. Research work qualifying for a degree full-professor, Sofia, 1998.
[2] Borisov, A. V., Spirova, M. G.: Crofton-type formulas relating sets of pairs of intersecting nonisotropic straight lines in the simply isotropic space. Tensor 67 (2006), 243-253.
[3] Deltheil, R.: Sur la théorie des probabilité géométriques. Thése Ann. Fac. Sc. Univ. Toulouse 11 (1919), 1-65.
[4] Drinfel'd, G. I.: On the measure of the Lie groups. Zap. Mat. Otdel. Fiz. Mat. Fak. Kharkov. Mat. Obsc. 21 (1949), 47-57 (in Russian).
[5] Drinfel'd, G. I., Lucenko, A. V.: On the measure of sets of geometric elements. Vest. Kharkov. Univ. 31, 3 (1964), 34-41 (in Russian).
[6] Lucenko, A. V.: On the measure of sets of geometric elements and thear subsets. Ukrain. Geom. Sb. 1, 3 (1965), 39-57 (in Russian).
[7] Sachs, H.: Ebene isotrope Geometrie. Friedr. Vieweg Sohn, Braunschweig, 1987.
[8] Sachs, H.: Isotrope Geometrie des Raumes. Friedr. Vieweg and Sohn, BraunschweigWiesbaden, 1990.
[9] Santaló, L. A.: Integral Geometry and Geometric Probability. Addison-Wesley, London, 1976.
[10] Stoka, M. I.: Geometrie Integrala. Ed. Acad. RPR, Bucuresti, 1967.
[11] Strubecker, K.: Differentialgeometrie des isotropen Raumes I. Sitzungsber. Österr. Akad. Wiss. Wien 150 (1941), 1-53.
[12] Strubecker, K.: Differentialgeometrie des isotropen Raumes II, III, IV, V. Math. Z. 47 (1942), 743-777; 48 (1942), 369-427; 50 (1944), 1-92; 52 (1949), 525-573.

