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Abstract

A construction of confidence regions in nonlinear regression models
is difficult mainly in the case that the dimension of an estimated vector
parameter is large. A singularity is also a problem. Therefore some simple
approximation of an exact confidence region is welcome. The aim of the
paper is to give a small modification of a confidence ellipsoid constructed
in a linearized model which is sufficient under some conditions for an
approximation of the exact confidence region.
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1 Introduction

A construction of a confidence region for unbiasedly estimable functions of non-
linear singular regression model parameters can be a difficult numerical prob-
lem (for more detail on nonlinear models cf. [6]). Mainly the case of a large
dimension of a vector parameter is unwelcome. If a confidence region can be
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74 Lubomir KUBACEK, Eva TESARIKOVA

approximated by a confidence ellipsoid (in the case of normally distributed ob-
servation vector), then a numerical calculation and an interpretation of results
are much more easier and simpler.

Therefore an attempt to find a simple measure of nonlinearity which enable
us to decide whether an approximate confidence ellipsoid can be used instead
of exact confidence region, is the aim of the paper.

2 Notation and some useful statements
The following notation is used.

means that Y is an n-dimensional normally distributed random vector with the
mean value E(Y) equal to f(3) and with the covariance matrix Var(Y) = X.
Let the function f(-): R¥ — R™ (R™ is the n-dimensional real linear vector
space) can be expressed by the Taylor series of the second order, i.e.

£(8) = fo-+ FOf + 5w(60). 56=0— P,

fo = £(By), By is an approximate value of 3,

of /
F = 8(:11) — k(68) = [£1(68),..., k. (68)] ,
2 £,
Ki(08) = 5ﬂ/%£8<:) a8 =1

The matrix F need not be of the full rank in columns and 3 need not be positive
definite.
The linearized version of the model (1) is

Y — £y ~ N, (F68, %) (2)

and the quadratized version is

1
Y~ fo~ N, (Féﬂ + (08, z) | 3)
In the following text the notations
A~ ... g-inverse (generalized inverse) of the matrix A,
AT ... the Moore-Penrose g-inverse of the matrix A,
A;(W) ... minimum W-seminorm g-inverse of the matrix A, (W is positive

semidefinite matrix),
M(An) = {Au: u e R"} (column space of the matrix) A,

I ... identity matrix,
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Py = F/(FF’)"F the projection matrix on the space M(F’) in the Euclidean
norm,

r(A) ... the rank of the matrix A,
U = Var(Pr0B),
T =3 +FF,

will be used. More on a g-inverse of a matrix cf. [7].
In the model (2) a representative of all unbiasedly estimable linear functions
of the parameter 3 is the vector

Yy=PrB=PrBy+PrdéB=v,+dv.

Lemma 1 In the model (2) the (1—a)-confidence ellipsoid of the vector P §3
18

SPFHW = {PF/U.Z PFru — P/F—/(S\ﬁ eM [Var(m)] s (szu — m)/

x [Var(ProB)] " (Pru—PrioB) < X2 mypmn -3 (01— a)},

where
PriéB = Pr[(F), 5] (Y — o),
Var(P0B) = Pp [(F'TF)” —1|Pp, T=3X+FF.
Proof is given in [2]. O

In the following text it is necessary to take into account the fact that even 3,
can be considered to be known, only Pr (8 — B,) = Pr/d3 can be unbiasedly
estimated. Let

Bo =7 +wo, Yo=PrBy wo=MprPBy;

the parameter v = Pp/ (8 — B,) is unbiasedly estimable in the model (2),
however dw = Mp/(8 — B;) is not. Therefore the model

1

will be considered instead the model (3). Here

HWQ - (K/WQ,l? ct K/WQ,H)/?
0% f;
Ruwg,i = 57/ fa(z’(()?:;wO) vor= 17 sy
F — (o +w0).

o'
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Lemma 2 The bias b of the estimator

55 = BrdB = P[0 ) (Y - 1)

in the model (4) is
—~ 1 B
b = B(07) — 67 = 5Pr (), )] %0 (67)
1
= §PF/(F/T7F)7F/T7K/WO(5‘)’).
Proof is implied by the definition of the bias. O

Lemma 3 Let Y ~ Ni(u,X). Then
Y'EYY ~ x5 (6),
where § = W' p = Py X Pyp.

Proof Let J be a k x r(X) matrix such that JJ' = ¥ and K such a k x (%)
matrix that KK’ = 37 (ie. JK =1I). Then K'Y =K'+ 1, 7 ~ N, (5)(0,1).
Thus

Y'KK'Y = Y'S'Y =n'n+20'K'p+ p/S"p~ 32 ('S p).
However &1 = Py3 Py, since

P Pe¥ =% PysY Py¥Py¥ Py =Py¥ Py,
YPyY Py =PyY¥ Pe¥ =Py, P¥ PyX¥ =3Py¥ Py =Py

(in more detail cf. [7]). O

3 A linearization region for a confidence ellipsoid
Since T[Var(P/F/d\ﬁ)] =r[F/(X + FF')"X], it can happen that
r[Var(m)] = r[Var(g’\y)] < r(F).
Therefore the vector b need not be an element of M [Var(P/F-/(S\ﬂ)].
The relation
0y =Ppif=EPpdB) —b=E(Ey) b,

valid in the model (3) and (4), respectively, implies that in general case the
vector P /03 need not be an element of &p,, 5p from Lemma 1. Thus it seems to
be reasonable to enlarge the ellipsoid £p,,sg to £ in such a way that Pr/d8 € £
with sufficiently high probability.

In the following text the notation U = Var(m) will be used.
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Definition 1 Let a set € be defined as
E = {Pp/u: uc Rk, (Pp/u — P/F-/(S\ﬁ)/[U + CQ(PF/ — P’[})]jL

X (Ppu—PpiB) < X72"(F’T*E) (0;1— a)},

where T = ¥ + FF' and the choice ¢?> depends on the opinion of the user (cf.
the following remark).

Remark 1 The number c¢? should be comparable with the spectral numbers of
the matrix U. The semiaxes of £ in the space M (P — Py ) have the same size
equal to

a= C\/Xz(F/sz) (0;1 - a).

The smaller is ¢, the smaller is the probability P {P JeXS E}. Thus ¢ cannot
be smaller than some reasonable bound. If b € M(U), then it can be tolerated
in the case b U~ b < ¢. Let

f
U=) Mif], f=rFTX),
=1

be spectral decomposition of the matrix U and
Amax = max{\;: i =1,...,.r(FFT™X)}.

If h = sf,,.x (the vector fi . corresponds to Apax), then, regarding the Scheffé
theorem [8] (b’U~b < ¢ & V{h € M(U)} h'b| < evh'Uh),

[h'b| = s|f! .. b| < sev/Amax-

In the worst case (i.e. b = tfiax) ||b]| = t < v/ Amax- It implies that the bias
b with the norm smaller than v/ Anax can be tolerated and thus the choice
¢® = Amax 1S reasonable.

Definition 2 Let the measure of nonlinearity for the confidence ellipsoid be

2\/b/<6’y) [U + )\max<PF’ - PU)] +b<6’7)

C = sup -

toye RPED S

where .
b((;’)’) = §PF’ (F/T_F)_F/T_K/((S’)’)

Theorem 1 If 3 € E((;”), where

¢ - 2 5max
il = {57; 5y € M(F'),67' [U + Anax(Prr — Pyy)] 07y < 7V} ,

C'(ell)
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then
P{é‘yef} >1-a—ec

Here dax 18 a solution of the equation
P{X?(émax) < X?(O; 1-— a)} =l—-a-c¢
and f =r(F'T™X).

Proof Regarding Definition 6

2/B/(07) [U+ A (P — P)] TB(8) < 69 [U + A (Pr — Py)] 67D,
Let

2v/dmax
6’)// [U+)\max<PF’ - PU)]_(S’Y < Cllell) -~

Further
(07 = 67) [U + Anax (P = P0y)] " (57 — 67) =
= [67 — E(37) + E(67) — 67]'[U + Amax (P — Pyr)]
x [0y — B(37) + E(5v) — 0v]
= [07 = B(7)]'[U + Amax (P — Py)] " [67 — E(37)]
+2b'(59) [U + Amax (P — Pyy)] " [0 — E(57)]
+1'(07) [U + Amax(Prr — Pyr)] "b(07) = x2(9),
where
§ = b'(67)[U + Amax(Pr — Prr)] "b(d7),
what is implied by Lemma 3. The relation
(Y = ) + 0] (Y — )+ 4] =
= (Y-S (Y —p) +2/Z5(Y — p) + ('S p = x5y (W' =T ),

based on Lemma 3 is used as well.
Thus

(07 = 67)' [U + Amax(Pr — P1r)] " (37 — 09) = x3(0),

where 4
6= b/((s’)/) [U + Amax(PF/ - PU):I b(57)

If 6 < dmax, then
P{X?c(é) < xfc(O; 1-— a)} > P{xfc(émax) < xfc(O; 1- a)} =l-a-—c¢,

what means P{é’y € Z} >l—a—e. O
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Remark 2 Let us apply Theorem 1 on the regular linearized model. Then
Pr =Py =1, & = &, and O = K(P) where K97 is the Bates and
Watts parametric curvature

VE (6B PE K (58)
Kar) — sup y —
SBF'E FB

.08 € RF

(in more detail cf. [1]). In this case the statement

=P{oBe&pt>1—a—c¢

58 € {u: WF'S " Fu <

is true (cf. also [4]). Thus Theorem 7 is a reasonable generalization suitable for
the singular model.

Remark 3 In the case that only one function of the parameter 3, i.e. h(vy) =
h'~, + h'dy, év € M(F’), is important, a very simple procedure can be used.
Let in the first case Py [(F'T"F)~ —I|Pph > 0.

Since

by, = E(h'dv) — h'sy = %h’PF/ [(F"), 5] B (67) = 67/ Andy,
where

A, = znj {%h’PF/ [(F) ]’}iw

— m(%) dudu’

u="%0

we obtain

oy € ‘Ch/5V = {u: ue M(F/), |u’Ah/55u| < \/51,max}

= P{|h’57 — ] < \/x2(0;1 - @) h’PF/UPF/h} >1—a-—-«.
Here 01 max is a solution of the equation
P{x?(&,max) < X7(0;1 - a)} =l-a-c
If hYUh = 0, then
P{h’&? — E(W§y) = 0} =1

and thus -
P{h’&y — Wéy + h’b(&y)} ~ 1.

Thus
0y € Lpisy = {u: u€ M(F), [uApu| < A}
:P{h’&ye {u: u € R1,|u—h/’§\'y| < A} =1.

It is interesting to compare the linearization regions Ls, and Ly /5.



80 Lubomir KUBACEK, Eva TESARIKOVA

4 Numerical example

Let us consider the regression model

Y; B exp(—F3)

Y B1 eXPE—ﬁsg 3,

Y3 B1 exp(—03 _ 3
Y4 ~ N6 ﬁQ eXp(*ﬁg) 726,6 ) ﬂ - gQ €ER )
Ys B2 exp(—03) ’

Ys B2 exp(—f33)

26,6 = U2I6,6a 02 = (05)2

Then
1
8f(u+w0) 13, 0, —13
F= = 3 13 = 1 )
61]./ U=y 07 137 _13 1
0,0, -1 0, 0, 0
Fi=F,=F;=| 0,0, 0|, Fs=F5=Fg=|[0, 0, -1
~1,0, 1 0, -1, 1
Here
82fi(u+w0)
Fi = ) = 17 . 767
Juou’ uU="0 !
92, —1, 1
Pp =F(FF) F=_[-1, 2 -1,
1, -1 2

- 2 [ 10, -8, —2
Var(Ppop) = U = PF,{[F’(Z +FF)F] - I}PF, - g_4 -8, 10, —2

—2, -2, 4
1 2, -1, -1
Py =U(U?) U= 3 -1, 2,-11,
-1, -1 2
r[F'(Z+FF') " %] 2 1 1 1
U = Z:ZI )\Zfzle = z_Zl/\lfzle, /\1 = 502, /\2 = =0, /\max = §0'2,

Omax = 0.48 is a solution of the equation
P{Xft(o;l—a)} =l-a-—c¢,

and f =r[F'(Z +FF)~X] =2, a = 0.05, ¢ = 0.04.
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Further
2/1/(67) [U + Amax(Pr — P1)] " b(67)
ce = sup - c0yER?
69 [U + Amax(Pr — Py)| 0y
— 5 -0.191273,
where )
b = §PF/ (F/r:[‘7]:—“)7]:—“/':[‘7Iiw0 (5‘7)
The linearization region for v = P03 is
2 V 5max
Lsy = {u: ue€ M(F),u [U + Amax(Pr — PU)]+u < RlCD }

and the set % is
S = {u: ue M(F), (u—67) [U+ Anax(Pr — Py)] "
x (u— g’\Y) < X%(F/T*E)a); 1 - a)}

The linearization region Ls~ is the ellipse in the subspace M(F’) with the
semi-axes

ac1 = 1.5539 \/E, ac 2 = 0.8972 \/E
and &y, is the ellipse in M(F’) with the semi-axes

ag1=0.23590, ags=0.13620.

For ¢ = 0.5 it means
ac1 = 1.099, ac 2 = 0.634

and
agi1 = 0118, ag 2 = 0.068.

Thus the linearization is possible.
As far as the single function of 3 is concerned let us consider h = (1,0,0)".

6
Ap=)" {éh’PF/ [F'(X+FF)"F] F/(Z+ FF’)} F,

s=1 s

and
Eh’(H = {u; ue M(F/), u’Ahu < 61,max}
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where 1 max = 0.339 is a solution of the equation

P{Xf(élmax) < 2(0; 0.95)} —1-0.05— 0.04.

The linearization region L4+ is the hyperbola in M(F’) with the real semi-axis
a = 1.1768 and the imaginar bi, b = 1.714. Thus the linearization region for the
confidence interval for §v; is essentially larger (in the case o = 0.5) than the
linearization region for the whole vector §-y.
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