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Abstract

The aim of the paper is to determine an influence of uncertainties in
design and covariance matrices on estimators in linear regression model.
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1 Introduction

Uncertainties in entries of design and covariance matrices influence the variance
of estimators and cause their bias. A problem occurs mainly in a linearization
of nonlinear regression models, where the design matrix is created by deriva-
tives of some functions. The question is how precise must these derivatives be.
Uncertainties of covariance matrices must be suppressed under some reasonable
bound as well.
The aim of the paper is to give the simple rules which enables us to decide

how many ciphers an entry of the mentioned matrices must be consisted of.

*Supported by the Council of Czech Government MSM 6 198 959 214.
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2 Symbols used

In the following text a linear regression model (in more detail cf. [2]) is denoted
as

Y ∼n (Fβ,Σ), β ∈ Rk, (1)

where Y is an n-dimensional random vector with the mean value E(Y) equal
to Fβ and with the covariance matrix Var(Y) = Σ. The symbol Rk means the
k-dimensional linear vector space. The n × k matrix F is given. It is assumed
that the rank r(F) of the matrix F is r(F) = k < n and the given matrix Σ
is positive definite. The k-dimensional unknown vector parameter β must be
estimated on the basis of the realization y of the random vector Y. Symbol
e(n)

i means n-dimensional vector with the entry 1 at the i-th position; other
entries are zero. The matrix of the normal equation F′Σ−1F is denoted as C;
its (i, j)-th entry is {C}i,j and the (i, j)-th entry of C−1 is {C}i,j. F′ means the
transpose of the matrix F. The (i, j)-th entry of the matrix Σ is σi,j = {Σ}i,j

and the i-th component of the vector v is {v}i.
The symbol ∂l′hY/∂F means

∂l′hY
∂F

=

⎛⎜⎝
∂l′hY
∂F1,1

, . . .
∂l′hY
∂F1,k

. . . . . . . . . . . . . . .
∂l′hY
∂Fn,1

, . . .
∂l′hY
∂Fn,k

⎞⎟⎠ , (2)

where Fi,j = {F}i,j, i = 1, . . . , n, j = 1, . . . , k, and l′h = h′C−1F′Σ−1 for an
arbitrary h ∈ Rk, h �= 0.
The Kronecker multiplication of matrices A and B is denoted as A⊗B (in

more detail cf. [3]). If A = (a1, . . . ,am), then vec(A) = (a′
1, . . . ,a

′
m)′. The

identity matrix is denoted as I.

3 Uncertainty in the design matrix

In the following text a sensitivity approach is used, i.e. the influence of uncer-
tainty in the design matrix is judged according to the linear term of the Taylor
series (cf. also in [1], chpt. VI). The Taylor series of the quantity l′hY = h′β̂
will be considered.

Lemma 3.1 Let h′ ∈ Rk be an arbitrary vector. It is valid that

∂h′β̂
∂F

= −l′hβ̂
′
+ Σ−1vh′C−1, lh = Σ−1FC−1h, (3)

β̂ = C−1F′Σ−1Y, (4)

v = Y − Fβ̂. (5)



Uncertainty of the design and covariance matrices. . . 63

Proof The BLUE (best linear unbiased eastimator) of the linear function
h(β) = h′β, β ∈ Rk, is h′β̂ = l′hY = h′C−1F′Σ−1Y. Thus

∂h′β̂
∂Fi,j

= h′ ∂C−1

∂Fi,j
F′Σ−1Y + h′C−1 ∂F′

∂Fi,j
Σ−1Y

and

∂C−1

∂Fi,j
=

∂(F′Σ−1F)−1

∂Fi,j
= −C−1

(
∂F′

∂Fi,j
Σ−1F + F′Σ−1 ∂F

∂Fi,j

)
C−1

= −C−1
{[

e(n)
i (e(k)

j )′
]′
Σ−1F + F′Σ−1e(n)

i (e(k)
j )′

}
C−1

= −C−1F′Σ−1e(n)
i (e(k)

j )′C−1 − C−1e(k)
j (e(n)

i )′Σ−1FC−1.

It implies

∂h′β̂
∂Fi,j

= −l′he
(n)
i (e(k)

j )′C−1F′Σ−1Y − h′C−1e(k)
j (e(n)

i )′Σ−1FC−1Σ−1Y

+ h′C−1e(k)
j (e(n)

i )′Σ−1Y

= −l′he
(n)
i (e(k)

j )′β̂ + h′C−1e(k)
j (e(n)

i )′Σ−1v

=
{
−lhβ̂

′
+ Σ−1vh′C−1

}
i,j

, i = 1, . . . , n, j = 1, . . . , k. �

Lemma 3.2 Let in the model from Lemma 3.1 the symbol δF denote the matrix
of uncertainties in the design matrix F. Then

(i) E

[
Tr

(
δF′ ∂h′β̂

∂F

)]
= −Tr(δF′lhβ′), (6)

(ii) Var

[
Tr

(
δF′ ∂h′β̂

∂F

)]
= l′hδFC−1δF′lh + h′C−1δF′(MF ΣMF )+

× δFC−1h, (7)

where
(MF ΣMF )+ = Σ−1 − Σ−1FC−1F′Σ−1

is the Moore–Penrose generalized inverse of the matrixMF ΣMF (in more detail
cf. [3]).

Proof The statement (i) is obvious. As far as (ii) is concerned, it is valid that

Var

[
Tr

(
δF′ ∂h′β̂

∂F

)]
= Var

{
[vec(δF)]′ vec

(
∂h′β̂
∂F

)}

= Var
(
[vec(δF)]′

{
−(I⊗ lh)β̂ +

[
(C−1h) ⊗ Σ−1

]
v
})

.



64 Lubomír KUBÁČEK, Jaroslav MAREK

Since β̂ and v are noncorrelated, Var(β̂) = C−1 and Var(v) = Σ − FC−1F′,
we have

Var

[
Tr

(
δF′ ∂h′β̂

∂F

)]
= [vec(δF)]′(I ⊗ lh)C−1(I ⊗ l′h) vec(δF)

+ [vec(δF)]′[(C−1h) ⊗ Σ−1](Σ− FC−1F′)[(h′C−1) ⊗ Σ−1] vec(δF)

= [vec(δF)]′[C−1 ⊗ (lhl′h)] vec(δF) + [vec(δF)]′[(C−1hh′C−1) ⊗ (MF ΣMF )+]

× vec(δF) = Tr[(δF)′lhl′hδFC−1] + Tr[(δF)′(MF ΣMF )+δFC−1hh′C−1]

= l′hδFC−1(δF)′lh + h′C−1(δF)′(MF ΣMF )+δFC−1h. �

Remark 3.1 Regarding Lemma 3.1 the influence of δF on the estimate of the
function h′β, β ∈ Rk, can be evaluated. If δF �= 0, then instead of h′β̂ =
h′C−1F′Σ−1y (y is a realization of Y) we obtain

h′β̃ ≈ h′C−1F′Σ−1y − Tr[(δF)′lhβ̂
′
] + Tr[(δF)′Σ−1vh′C−1] (8)

(for practical purposes the values β̃ and y −Fβ̃ can be used on the right hand
side of the last approximate equality instead of β̂ and v).
In an actual case we can judge whether uncertainty δF in the used matrix

F satisfy the inequality

| − Tr[(δF)′lhβ̂
′
] + Tr[(δF)′Σ−1vh′C−1]| < ε

√
h′C−1h,

where ε > 0 is sufficiently small (according to an opinion of a statistician)
number.
If δF = e(n)

i (e(k)
j )′Δ, then

−Tr[(δF)′lhβ̂
′
] + Tr[(δF)′Σ−1vh′C−1] =

= −Tr
[
e(k)

j (e(n)
i )′lhβ̂

′]
+ Tr

[
e(k)

j (e(n)
i )′Σ−1vh′C−1

]
= −{lh}i {β̂}j + {Σ−1v}i

{
C−1h

}
j
.

Remark 3.2 According to Lemma 3.2 the influnce of δF on the estimator of
the function h′β, β ∈ Rk, can be evaluated. As far as the bias of the estimator
h′β̂ is concerned, if

β̃ =
[
(F + δF)′Σ−1(F + δF)

]−1(F + δF)′Σ−1Y,

then
E(h′β̃) ≈ h′β − Tr

[
(δF)′lhβ′],

i.e. the bias of the estimator is −Tr
[
(δF)′lhβ′]. It must be suppressed under

some reasonable bound, i.e. it must be

|Tr
[
(δF)′lhβ′]| < ε

√
h′C−1h.

(Instead of β the estimator of it can be used what could be sufficient for practical
purposes.)
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For the sake of simplicity let δF = e(n)
i (e(k)

j )′Δ. Then

Tr
[
(δF)′lhβ′] = Δ Tr

[
e(k)

j (e(n)
i )′lhβ′] = Δ{lh}i{β}j ;

thus it should be valid

Δ � ε
√

h′C−1h
1

{lh}i{β}j
.

The value

�(F )
crit,i,j = ε

√
h′C−1h

1
{lh}i{β}j

(9)

is the maximum admissible contamination of the (i, j)-th entry of the design
matrix F. It causes a bias of the estimator h′β̃ not larger than ε

√
h′C−1h.

As far as the variance of the estimator h′β̂ is concerned, we have

h′β̃ = h′β̂ +
{

Tr
[− (δF)′lhβ̂

′]
+ Tr

[
(δF)′Σ−1vh′C−1

]}
= (h′ − l′hδF)β̂ + h′C−1δF′Σ−1v

and thus

Var(h′β̃) = (h′ − l′hδF)C−1
[
h− (δF)′lh

]
+ h′C−1(δF)′(MF ΣMF )+δFC−1h

= Var(h′β̂) − 2l′hδFC−1h + l′hδFC−1(δF)′lh + h′C−1(δF)′

×(MF ΣMF )+δFC−1h.

The variance of the estimator with an uncertain design matrix differs from the
variance of the estimator with the proper design matrix. The difference is

−2l′hδFC−1h + l′hδFC−1(δF)′lh + h′C−1(δF)′(MF ΣMF )+δFC−1h.

For the sake of simplicity let δF = e(n)
i (e(k)

j )′Δ. Then the difference is

γh,(i,j) =

= −2Δ{lh}i{C−1h}j + Δ2
[
{C}j,j({lh}i)2 + ({C−1h}j)2{(MF ΣMF )+}i,i

]
.

It can be assumed that γh,(i,j) � h′C−1h and thus√
Var(h′β̃) =

√
h′C−1h + γh,(i,j) =

√
h′C−1h

(
1 +

γh,(i,j)

h′C−1h

)1/2

≈
√

h′C−1h
(

1 +
1
2

γh,(i,j)

h′C−1h

)
.

The solution �(V )
crit,i,j of the quadratic equation

Δ2
[
{C}j,j({lh}i)2 + ({C−1h}j)2{(MF ΣMF )+}i,i

]
− 2Δ{lh}i{C−1h}j − 2ε

√
h′C−1h = 0 (10)
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is the maximum admissible contamination of the (i, j)-th entry of the design
matrix F. It causes an enlargement of the standard deviation

√
h′C−1h not

larger than ε
√

h′C−1h. The value of the quantity γh,(i,j) is the same for both
roots of the quadratic equation.
It is useful to arrange tables of the values �(F )

crit,i,j (cf. (9)) and �(V )
crit,i,j

(cf. (10)) for all i = 1, . . . , n and j = 1, . . . , k, cf. section 5 Numerical examples.

Remark 3.3 The most dangerous shift δF of the matrix F with respect to the
bias of the estimator is in the direction of the gradient, i.e.

δF∗ = kE

(
∂h′β̂
∂F

)
= −klhβ′.

(The number k will be determined later.) The bias of the estimator caused by
δF∗ is

−Tr
[
(δF∗)′lhβ′] = kβ′βl′hlh.

The number k now can be bounded according to the condition

kβ′βl′hlh < ε
√

h′C−1h.

The matrix

δF∗ =
ε
√

h′C−1h
β′βl′hlh

lhβ′ (11)

can serve as a good information on the necessary accuracy of the matrix F in
connection with the bias of the estimator h′β̂.

It is to be remarked that in the case Σ = σ2I, the number k must satisfy

the inequality k < σε/
(
β′β

√
h′(F′F)−1h

)
.

4 Uncertainty in the covariance matrix

Lemma 4.1 In the regular linear model Y ∼n (Fβ,Σ), β ∈ Rk, for a given
linear function h′β, β ∈ Rk, it is valid that

∂h′β̂
∂σi,j

= −{lh}i{Σ−1v}j − {lh}j{Σ−1v}i, i, j = 1, . . . , n.

Proof Since h′β̂ = h′(F′Σ−1F)−1F′Σ−1Y, it is valid that

∂h′β̂
∂σi,j

= h′ ∂(F′Σ−1F)−1

∂σi,j
F′Σ−1Y + h′(F′Σ−1F)−1F′ ∂Σ−1

∂σi,j
Y

= h′C−1F′Σ−1
[
e(n)

i (e(n)
j )′ + e(n)

j (e(n)
i )′

]
Σ−1FC−1F′Σ−1Y

− h′C−1F′Σ−1
[
e(n)

i (e(n)
j )′ + e(n)

j (e(n)
i )′

]
Σ−1Y

=
{
−
[
lh(Σ−1v)′ + Σ−1vl′h

]}
i,j

, i, j = 1, . . . , n.
�
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Remark 4.1 Since uncertainty in the covariance matrix does not cause the
bias of the estimator, only a change of the variance of the estimator must be
taken into account. Since it is valid that

h′[F′(Σ + δΣ)−1F
]−1

F′(Σ + δΣ)−1Y ≈ h′C−1F′Σ−1Y

−Tr
[
δΣ(lhv′Σ−1 + Σ−1vl′h)

]
= h′β̂ − 2l′δΣΣ−1v,

we have

VarΣ
{
h′[F′(Σ + δΣ)−1F

]−1
F′(Σ + δΣ)−1Y

}
≈ h′C−1h + 4l′hδΣ(MF ΣMF )+δΣlh.

If

δΣ =

{ [
e(n)

i (e(n)
j )′ + e(n)

j (e(n)
i )′

]
Δ, i �= j[

e(n)
i (e(n)

i )′
]
Δ, i = j

then if i �= j

dh,(i,j) = 4l′hδΣ(MF ΣMF )+δΣlh

= 4
({lh}j, {lh}i

)( {(MFΣMF )+}i,i, {(MF ΣMF )+}i,j

{(MFΣMF )+}j,i, {(MF ΣMF )+}j,j

)( {lh}j

{lh}i

)
Δ2,

if i = j
dh,(i,i) = 4({lh}i)2{(MF ΣMF )+}i,iΔ2.

Since we can assume that dh,(i,j) � h′C−1h, we can write√
h′C−1h + dh,(i,j) ≈

√
h′C−1h

(
1 +

1
2

dh,(i,j)

h′C−1h

)
.

The matrix Dh with the (i, j)-th entry

{Dh}i,j =
(

1 +
1
2

dh,(i,j)

h′C−1h

)
, i, j = 1, . . . , n,

can help to analyze the influence of δΣ on the standard deviation of the es-
timator h′β̂. The value {Dh}i,j means the ratio of the standard deviation of
the estimator calculated with the covariance matrix Σ + δΣ to the standard
deviation of the estimator calculated with proper covariance matrix Σ.
The solution �(Σ)

crit,i,j of the equation (for i �= j)

2Δ2
({lh}j , {lh}i

)( {(MFΣMF )+}i,i, {(MFΣMF )+}i,j

{(MFΣMF )+}j,i, {(MFΣMF )+}j,j

)( {lh}j

{lh}i

)
= εh′C−1h (12)

and the equation (for i = j)

2Δ2({lh}i)2{(MF ΣMF )+}i,i = εh′C−1h (13)

is the maximum admissible contamination of the (i, j)-th entry of the variance
matrix Σ. It causes an enlargement of the standard deviation

√
h′C−1h not

greater than ε
√

h′C−1h.
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5 Numerical examples

Example 5.1 Let the regression model be⎛⎜⎜⎝
Y1

Y2

Y3

Y4

⎞⎟⎟⎠ ∼n

⎡⎢⎢⎣
⎛⎜⎜⎝

1, 1
1, 2
1, 3
1, 4

⎞⎟⎟⎠(
β1

β2

)
, σ2I

⎤⎥⎥⎦ , σ = 0.1

and y = (1.6, 1.9, 2.6, 3.1)′.
Then

(F′F)−1 =
(

1.5, −0.5
−0.5, 0.2

)
, σ2(F′F)−1 =

(
0.0150, −0.0050

−0.0050, 0.0020

)
,

(F′F)−1F′ =
(

1.0, 0.5, 0.0, −0.5
−0.3, −0.1, 0.1, 0.3

)
,

β̂ = (F′F)−1F′y =
(

1.00
0.52

)
, v = y − Fβ̂ = (0.08,−0.14, 0.04, 0.02)′.

Let h1 = (1, 0)′ in situation A, h2 = (0, 1)′ in situation B and ε = 0.2.
Then in situation A according Remark 3.4 formulas (9) and (10) we will

determine:

�(F )
crit =

⎛⎜⎜⎝
0.0245 0.0471
0.0490 0.0942

∞ ∞
−0.0490 −0.0942

⎞⎟⎟⎠ , δF∗ =

⎛⎜⎜⎝
0.0129 0.0067
0.0064 0.0033

0 0
−0.0064 −0.0033

⎞⎟⎟⎠ ,

from (10) two solution 1�(V )
crit and 2�(V )

crit are obtained

1�(V )
crit =

⎛⎜⎜⎝
−0.9620 −6.4139
−1.2464 −5.9078
−1.7637 −5.2910
−2.9893 −4.5720

⎞⎟⎟⎠ , 2�(V )
crit =

⎛⎜⎜⎝
2.3413 2.7775
2.0156 3.6855
1.7637 5.2910
1.5608 8.5720

⎞⎟⎟⎠ .

These two matrices cause an enlargement of standard deviation not more ε-times.
As a criterion the value

min
{|1�(V )

crit,i,j|, |2�(V )
crit,i,j |

}
must be choosen in practice.

�(Σ)
crit =

⎛⎜⎜⎝
0.0071 0.0063 0.0046 0.0093
0.0063 0.0093 0.0093 0.0071
0.0046 0.0093 ∞ 0.0093
0.0093 0.0071 0.0093 0.0141

⎞⎟⎟⎠ ,

For example the value �(F )
crit,(3,1) and �(F )

crit,(3,2) for h = (1, 0)′ cannot
be determined, since {lh}3{β}1 and {lh}3{β}2, respectively are zero. Ever it
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seems that the contamination of the design matrix F in the third row can be
any larger number, it is not so. An aproach to determination of the value
�(F )

crit,i,j is infinitesimal and therefore some carefulness it necessary. If, e.g.

�(F )
crit,(3,1) = 0.1, then the bias of the estimator (̂1, 0)β is (0.0096, 0.0064)′,

what is admissible. However the value�(F )
crit,(3,1) = 1 leads to a non-admissible

bias.
In situation B according Remark 3.4 formulas (9), (10) and from the Remark

3.5 formula (11) we will determine:

�(F )
crit =

⎛⎜⎜⎝
−0.0298 −0.0573
−0.0894 −0.1720

0.0894 0.1720
0.0298 0.0573

⎞⎟⎟⎠ , δF∗ =

⎛⎜⎜⎝
−0.0106 −0.0055
−0.0035 −0.0018

0.0035 0.0018
0.0106 0.0055

⎞⎟⎟⎠ ,

1�(V )
crit =

⎛⎜⎜⎝
−2.2905 −9.9767
−2.8165 −8.4173
−3.3428 −7.0840
−3.7190 −5.9767

⎞⎟⎟⎠ , 2�(V )
crit =

⎛⎜⎜⎝
3.7190 5.9767
3.3428 7.0840
2.8165 8.4173
2.2905 9.9767

⎞⎟⎟⎠ ,

and from the Remark 4.2 formulas (12) and (13) we will determine

�(Σ)
crit =

⎛⎜⎜⎝
0.0086 0.0069 0.0053 0.0105
0.0069 0.0169 0.0105 0.0053
0.0053 0.0105 0.0169 0.0069
0.0105 0.0053 0.0069 0.0086

⎞⎟⎟⎠ .

Let for δF = δF∗ the value of the estimator (8) from Remark 3.3 be com-

pared with h′β̂ = h′
(

1.00
0.52

)
; h′β̃ = h′β̂ − Tr[(δF∗)′lhβ̂

′
] + Tr[(δF∗)′vh′C−1].

If h = (1, 0)′, then h′β̃ − h′β̂ = 0.9755− 1.0000 = −0.0245.
If h = (0, 1)′, then h′β̃ − h′β̂ = 0.5111− 0.5200 = −0.0089.

Example 5.2 Let the regression model be

yi =
β1xi

β2 + xi
, i = 1, 2, 3, 4, 5 (14)

and results of measurement of y at points x1, . . . , x5 be

x 1 2 3 4 5
y 3.2 4.9 6.2 6.5 7.3

Σ =

⎛⎜⎜⎜⎜⎝
0.12, 0, 0, 0, 0
0, 0.12, 0, 0, 0
0, 0, 0.22, 0, 0
0, 0, 0, 0.22, 0
0, 0, 0, 0, 0.22

⎞⎟⎟⎟⎟⎠ .
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Equations (14) enable us to obtain an approximate values β(0).

For 1st and 5nd measurement two equations for unknown parameters lead
to an approximate values β(0) = (10, 2)′.
The linear version of the functions (14) obtained by the using the Taylor

expansion at the approximate point β(0) is in the form Y − g(β(0)) = Fδβ,

where F = ∂g(β(0)
)

∂β′ and g(β(0)) = (g1(β(0)), . . . , g5(β(0)))′, gi(β(0)) = β
(0)
1 xi

β
(0)
2 +xi

,

i = 1, 2, 3, 4, 5.
In our case we will determine

F =

⎛⎜⎜⎜⎜⎝
0.3333 −1.1111
0.5000 −1.2500
0.6000 −1.2000
0.6667 −1.1111
0.7143 −1.0204

⎞⎟⎟⎟⎟⎠ , y0
i =

β0
1xi

β0
2 + xi

, i = 1, 2, 3, 4, 5

y0 = (3.3333, 5.0000, 6.0000, 6.6667, 7.1429)′,

β̂ = β(0) + δβ̂ = β(0) + (F′Σ−1F)−1F′Σ−1(y − y0) =
(

10.5230
2.2754

)
,

v = y − Fβ̂ = (−0.0127,−0.0226, 0.2158,−0.2075, 0.0681)′.

Let h = (1, 0)′, σ = 0.1, ε = 0.2. Then in our linearized model we will
determine numerically from the Remark 3.4 formula (9) and from the Remark
3.5 formula (11)

�(F )
crit =

⎛⎜⎜⎜⎜⎝
−0.0681 −0.1294
−0.4915 −0.9333

0.3349 0.6359
0.1672 0.3174
0.1184 0.2248

⎞⎟⎟⎟⎟⎠ , δF∗ =

⎛⎜⎜⎜⎜⎝
−0.0342 −0.0180
−0.0047 −0.0025

0.0070 0.0037
0.0140 0.0073
0.0197 0.0104

⎞⎟⎟⎟⎟⎠ ,

and from the Remark 3.4 formulas (9), (10) and from the Remark 3.5 formula
(11)

1�(V )
crit =

⎛⎜⎜⎜⎜⎝
−0.5132 −1.2038
−0.3135 −0.7568
−0.3516 −0.8476
−0.2763 −0.6640
−0.2308 −0.5531

⎞⎟⎟⎟⎟⎠ , 2�(V )
crit =

⎛⎜⎜⎜⎜⎝
0.1342 0.3216
0.2530 0.6107
0.5799 1.3966
0.7268 1.7326
0.8581 2.0160

⎞⎟⎟⎟⎟⎠ ,

and from the Remark 4.2 formulas (12) and (13)

�(Σ)
crit =

⎛⎜⎜⎜⎜⎝
0.0095 0.0083 0.0116 0.0126 0.0160
0.0083 0.0536 0.0310 0.0172 0.0125
0.0116 0.0310 0.0600 0.0303 0.0226
0.0126 0.0172 0.0303 0.0329 0.0296
0.0160 0.0125 0.0226 0.0296 0.0273

⎞⎟⎟⎟⎟⎠ .
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Let h = (0, 1)′, ε = 0.2. Then

�(F )
crit =

⎛⎜⎜⎜⎜⎝
0.0027 −0.1200
0.0043 −0.1912
0.0217 −0.9609

−0.0083 0.3674
−0.0038 0.1699

⎞⎟⎟⎟⎟⎠ , δF∗ =

⎛⎜⎜⎜⎜⎝
−0.0315 −0.0166
−0.0114 −0.0060

0.0031 0.0016
0.0082 0.0043
0.0125 0.0066

⎞⎟⎟⎟⎟⎠ ,

1�(V )
crit =

⎛⎜⎜⎜⎜⎝
−0.5941 −1.3733
−0.5255 −1.1809
−0.6593 −1.4756
−0.5643 −1.2680
−0.4958 −1.1190

⎞⎟⎟⎟⎟⎠ , 2�(V )
crit =

⎛⎜⎜⎜⎜⎝
0.2216 0.5018
0.3422 0.7678
0.8050 1.8022
0.9644 2.1739
1.1108 2.5353

⎞⎟⎟⎟⎟⎠ ,

�(Σ)
crit =

⎛⎜⎜⎜⎜⎝
0.0076 0.0080 0.0097 0.0108 0.0143
0.0080 0.0166 0.0229 0.0165 0.0129
0.0097 0.0229 0.1013 0.0389 0.0262
0.0108 0.0165 0.0389 0.0415 0.0347
0.0143 0.0129 0.0262 0.0347 0.0321

⎞⎟⎟⎟⎟⎠ .

6 Concluding remarks

The aim in linear statistical models is to determine an estimator of the parameter
β on the basis of the observation vector Y.
In this article we concentrated on a fundamental questions – how uncertainty

of the design and covariance matrices influence the bias and the variance of
estimators.
The quantities �(F )

crit, δF∗, �(V )
crit, �(Σ)

crit enables to judge how precise the
record of the design matrix and the covariance matrix must be.
In the last example it can be seen that in the situation B for ε = 0.2 the

record of the design matrix must take into account the values 0.001 and that
record of the covariance matrix must take into account the values 0.01.
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