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FREE ALGEBRAS IN VARIETIES

Jan Pavlík

Abstract. We define varieties of algebras for an arbitrary endofunctor on a
cocomplete category using pairs of natural transformations. This approach
is proved to be equivalent to one of equational classes defined by equation
arrows. Free algebras in the varieties are investigated and their existence is
proved under the assumptions of accessibility.

In universal algebra we deal with varieties – classes of algebras satisfying a
certain collection of identities (pairs of terms of the corresponding language). This
concept was generalized by Adámek and Porst in [3]. They worked with algebras
for an endofunctor on a cocomplete category and used the free-algebra construction
developed by Adámek in [1] (a chain of term-functors) to define equation arrows as
certain regular epimorphisms. Using them they defined equational categories as
analogues to varieties. These categories are later studied in [5].

We focus on another approach to varieties of algebras for a functor. We also use
the free-algebra construction and define a natural term as a natural transformation
with codomain in a term-functor. A pair of natural terms with a common domain
will be called a natural identity and will be satisfied on an algebra if both of its
natural transformations have the same term-evaluation on this algebra. Natural
identities induce classes of algebras, which are proved to be precisely the classes
defined by means of equation arrows. We present several examples of such classes
and show that, in some cases, this approach essentially simplifies the presentation.

In the second chapter we investigate free algebras in a variety. Induction by natu-
ral identities allows us to make a restriction on identities with domains preserving
the colimits of some small chains. Such identities will be called accessible. These
cases still cover most of the usual examples and we prove that such varieties have
free algebras. The proof uses a conversion of variety to a category of algebras for a
diagram of monads used by Kelly in [7] to define algebraic colimit of monads. His
theorem proving the existence of free objects of this category yields the existence
of free algebras in the variety induced by accessible identities.
Notational convention. The constant functor mapping the objects to object X will
be denoted by CX . The initial object in a cocomplete category will be denoted by
0. For functors, we omit the brackets and the composition mark ◦ when possible.
The class of objects and morphisms of a category will be denoted by Ob and Mor,
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26 J. PAVLÍK

respectively. The concrete isomorphism between two concrete categories over C
(i.e., the isomorphism preserving the forgetful functor) will be denoted by ∼=C .

1. Classes of algebras

1.1. Algebras and equational classes.
Definition 1.1. Let F be an endofunctor on a category C. By Alg F we denote
the category of F -algebras – its objects are pairs (A,α), where α : FA → A is a
morphism in C. The morphism φF : (A,α)→ (B, β) of F -algebras is a morphism
φ : A→ B such that φ ◦ α = β ◦ Fφ. The subscript F in the notation of morphism
is usually omitted.
Remark 1.1. There is a forgetful functor ZF : AlgF → C assigning to an algebra
(A,α) its underlying object A.

From now on, C will denote a cocomplete category. Let us recall the free-algebra
construction (introduced in [1], generalized in [3]). We will show the definition in
the functorial form.
Definition 1.2. We will use transfinite induction to define term functors Fn : C →
C, for n ∈ Ord and natural transformations wm,n : Fm → Fn, for m ≤ n:

Initial step: F0 = IdC , w0,0 = id
Isolated step: Let Fn+1 = FFn + IdC , the transformations w0,n+1 = ιn+1 and
qn : FFn → Fn+1 are the canonical injections of IdC and FFn, respectively,
into the coproduct and wm+1,n+1 = [Fwm,n, idIdC ] for m ≤ n is defined by

FFm

qm

��

Fwm,n // FFn

qn

��
Fm+1

wm+1,n+1 // FFn + IdC = Fn+1

IdC

ιm+1

OO

ιn+1

55jjjjjjjjjjjjjjjjjj

If m is a limit ordinal, then we define wm,m+1 as the unique factorization of
{wk,m+1 | k < m} over the colimit cocone {wk,m | k < m}.
Limit step: Fn = colim

m<n
Fm and wm,n is the corresponding component of the

colimit cocone.
The construction gives rise to the transformation yn : F → Fn defined by

yn = w1,n ◦ q0

for every ordinal n > 0.
To distinguish the transformations for different functors we put the name of the

functor in the superscript: wFm,n, qFn , ιFn , yFn .
For every m ≤ n, the construction yields the property:

wm,n ◦ qm = qn ◦ Fwm,n .(1)
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Remark 1.2. If we substitute IdC for C0 in initial step of construction, we get an
equivalent concept.

As a consequence of the definition we obtain the following properties (see [3]).

Remark 1.3. Given an F -algebra (A,α), for every n ∈ Ord, there is a morphism
(a term-evaluation on (A,α))

εn,(A,α) : FnA→ A

defined recursively by: ε0,(A,α) = idA, εn+1,(A,α) = [α ◦ Fεn,(A,α), idA],

FFn(A)

qn,A

��

Fεn,(A,α) // F (A)

α

��
Fn+1(A)

εn+1,(A,α) // A

A

ιn+1,A

OO

idA

66mmmmmmmmmmmmmmmmm

and by εl,(A,α) = colim
m<l

εm,(A,α) for a limit ordinal l. Then, for every n, m ≤ n, we
have:

εn+1,(A,α) ◦ qn,A = α ◦ Fεn,(A,α)(2)
εn,(A,α) ◦ ιn,A = idA(3)

εm,(A,α) = εn,(A,α) ◦ wm,n,A(4)
εn,(A,α) ◦ yn,A = α(5)

where the last property requires n > 0. We write the name of the functor in the
superscript εk,(A,α) = εFk,(A,α), if necessary.

We recall here the notion of equational category of F -algebras introduced in [3].

Definition 1.3. Let X be an object of C, n ∈ Ord. An equation arrow of arity n
over X is defined as a regular epimorphism e : FnX → E. The object X is called a
variable-object of e.

We say that an F -algebra (A,α) satisfies an equation arrow e : FnX → E if for
every f : X → A there is a morphism h : E → A such that εn,(A,α) ◦ Fnf = h ◦ e.

For a class E of equation arrows, we define an equational class of F -algebras
induced by E as the class of all algebras satisfying all equations e ∈ E . Viewed as
a full subcategory of Alg F , it is called an equational category and denoted by
Alg (F, E). Equational category presentable in this way by a single equation arrow
is called single-based.

As shown in [3], this approach generalizes the classical universal algebra on sets,
since every identity uniquely determines the regular epimorphism on the set of all
terms which is given by unifying the terms included in the identity.
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1.2. Naturally induced classes.
Now we introduce a concept of algebras induced by natural transformations.

Definition 1.4. Let n be an ordinal and G be a C-endofunctor. A natural trans-
formation φ : G→ Fn is called a natural term, more precisely an n-ary G-term.

By G-identity we mean a pair of G-terms. Such pairs are called natural identities.
Let φ and ψ be m-ary and n-ary G-terms, respectively. The functor G is called
a domain and (m,n) is an arity-couple of identity (φ, ψ). If m = n, we say that
(φ, ψ) has an arity of n.

We say that an F -algebra (A,α) satisfies the G-identity (φ, ψ), if
εm,(A,α) ◦ φA = εn,(A,α) ◦ ψA .

Then we write
(A,α) |= (φ, ψ) .

For a class I of natural identities, we define a naturally induced class of F -algebras
as the class of all algebras satisfying all identities (φ, ψ) ∈ I. The corresponding
full subcategory of Alg F is denoted by Alg (F, I). If such a class is inducible by
a single natural identity, we say that this class is single-induced.

Two natural identities are said to be algebraically equivalent iff they induce
the same classes of F -algebras. Analogously, we define an algebraic equivalence
of classes of natural identities. The algebraic equivalence relation will be denoted
by ≈.

Remark 1.4.
(1) Arities of components of a natural identity can be arbitrarily raised. Clearly,

for an identity (φ, ψ) of arity-couple (m1,m2), we have (φ, ψ) ≈ (wm1,n ◦
φ,wm2,n ◦ ψ) for every n ≥ max{m1,m2}. Hence, every natural identity is
algebraically equivalent to the identity consisting of natural terms of the
same arity.

(2) Every set N = {(φi, ψi) | i ∈ I} of n-ary natural identities is algebraically
equivalent to a singleton. Clearly, N ≈ {(φ, ψ)}, where φ, ψ are the unique
factorizations of the cocones φi, ψi, respectively, over the coproduct of
domains of single identities.

(3) As a consequence, every class naturally induced by a set of identities is
single-induced.

1.3. Examples of naturally induced classes.
In Section 1.4 we show that every equational class is naturally induced and vice
versa. And since the concept of equational classes generalizes varieties in universal
algebra, every variety of algebras in the classical sense is a naturally induced class.
An explicit correspondence is shown in the following example.

Example 1.1. Let C = Set, Σ be a signature consisting of operation sym-
bols σ of (possibly infinite) arities ar(σ). Let F =

∐
σ∈Σ hom(ar(σ),−) and

uσ : hom(ar(σ),−) → F be the canonical inclusion for every σ ∈ Σ. Then the
category of Σ-algebras is isomorphic to Alg F . For each Σ-term τ , let Xτ be
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the set of variables occurring in τ and let d(τ) be the depth of τ (supremum
of ordinals corresponding to the chains of the proper subterms of τ ordered by
subterm-relation).

For a given term τ , we define a d(τ)-ary Gτ -term φτ , where Gτ = hom(Xτ ,−).
The transformation φτ is defined inductively: if τ is a variable x, then φτ :
hom({x},−) → F0 is an obvious isomorphism. If τ = σ

(
ρi; i ∈ ar(σ)

)
and

we have φρi : hom
(
ar(ρi),−

)
→ Fd(ρi) for each i ∈ ar(σ), we can extend all

transformations φρi to φ′i : hom(ar(ρi),−) → Fn where n = sup{d(ρi) | i ∈
ar(σ)}. We define φτ in the following way. Since Xρi ⊆ Xτ for every i, we have
pi : hom(Xτ ,−)→ hom(Xρi ,−), hence the factorization over the limit cone yields
a unique r : hom(Xτ ,−)→

∏
i∈ar(σ) hom(Xρi ,−). We define φτ as the following

composition:

hom(Xτ ,−)

φτ

��

r //
∏

i∈ar(σ)

hom(Xρi ,−)
∏

φ′i //
∏

i∈ar(σ)

Fn

iso

Fn+1 FFn
qnoo hom(ar(σ),−) ◦ Fn

uσFnoo

Observe that n+ 1 = d(τ).
To each Σ-term, we have assigned a natural term. Now, to identity (τ1, τ2)

consisting of two Σ-terms with variables in X, we assign a pair of correspon-
ding natural hom(X,−)-terms. It is easy to see, that we get an identity which
induces exactly the variety given by (τ1, τ2). Monoids, for example, are objects of
Alg

(
(hom(2,−) + hom(0,−), {i, j, k}

)
, where i is a binary identity with domain

hom(3,−) and stands for associativity while j, k are unary with domain Id and
correspond to left and right neutrality of 1.

The concept can be used to define naturally induced classes of algebras even on
some illegitimate categories.

Example 1.2. Let C = EndA be an illegitimate category of endofunctors on some
cocomplete category A. For every k ∈ ω, the composability of objects of C yields
the existence of a “composition power functor” Sk : C → C such that

Sk(P ) = P ◦ P ◦ · · · ◦ P︸ ︷︷ ︸
k times

.

We can define analogues to universal algebras – all we need to do is to replace
products of sets by composition of functors and each hom(k,−) by Sk in the
description above. By analogy to monoids, we get the category Monad A of
monads on A. Namely, Monad A = Alg

(
(S2 + S0), {i, j, k}

)
where the domains

of identities i, j, k are S3, S1, S1, respectively. Each operation π : (S2 +S0)(P )→ P
decomposes into µ : S2(P ) = PP → P and η : S0 = Id→ P and the identities are
satisfied exactly as required by the usual condition for µ and η.
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Theorem 3.6 in [3] describes an equational presentation of the category of
algebras for a monad. The following example shows its presentation by natural
identities.

Example 1.3. Given a monad M = (M,η, µ) on C, its Eilenberg-Moore category
M -alg is a class of M -algebras induced by two natural identities:

M2

Mq0 ##FF
FF

FF
FF

F
µ // M

q0 // M1

MM1
q1 // M2 ,

Id
η

��

id // M0

M
q0 // M1

Therefore
M -alg = Alg (M, {(q0 ◦ η, idId), (q1 ◦Mq0, q0 ◦ µ)} .

Example 1.4. Consider the power-set monad on Set defined by the power-set
functor P and transformations η : IdSet → P , µ : P2 → P given by the assignments
ηX(x) = {x}, µX({Xi | i ∈ I}) =

⋃
i∈I Xi. As a concrete instance of the previous

case for power-set monad (P, η, µ), we get the category of join-complete semilattices
JCSlat. Hence, this class is presentable by a pair of naturally induced identities–
–compare with the presentation by a proper class of equation arrows (see [3, Example
3.3] – we need equation arrows eX : F3X → EX for every set X).

1.4. Conversion theorem.
Our aim is to prove that naturally induced classes and equational classes coin-
cide. First we show that every single-based equational class is naturally induced.
Then, conversely, we prove that every class induced by a single natural identity is
equational. The crucial point of the proof is the local smallness of category C.

Remark 1.5. In the proof, we use the copower functor:
Given an object Q ∈ C, there is a functor − • Q : Set → C which is left adjoint
to hom(Q,−) : C → Set. It assigns to a set M the coproduct of M copies of Q
(the “M -th” copower of Q) and, for a mapping h : M → N , we define h •Q as the
unique factorization of cocone uh(m) : Q →

∐
j∈N

Q,m ∈ M, over a colimit cocone

um : Q→
∐
j∈M

Q.

Then we get the adjunction (η, ε) : (− • Q) a hom(Q,−) : C → Set where the
unit morphism ηX : X → hom(Q,X • Q) for a set X and x ∈ X is defined by
ηX(x) = ux : Q → X • Q, i.e., it is the x-labeled canonical injection into the
coproduct. Moreover, for an object A of C, the counit ε : hom(Q,A) •Q → A is
defined as the unique factorization of a cocone {φ | φ : Q→ A} over the colimit.

Lemma 1.6. Every single-based equational class is a naturally single-induced class.

Proof. Let S be a single-based equational class of F -algebras defined by an
equation arrow e where e is a regular epimorphism FnX → E such that (E, e) is
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a coequalizer of φ0, ψ0 : Q // // FnX . We define a mapping θφ,A : hom(X,A)→
hom(Q,FnA). For every f : X → A let θφ,A(f) = Fnf ◦ φ0 : Q→ FnA. Now let

G = (− •Q) ◦ hom(X,−) ,

φA = θ̃φ,A : hom(X,A) •Q→ FnA .

Clearly, φA is a component of a natural transformation φ : G→ Fn. Observe that,
for every f : X → A,

φA ◦ uf = θφ,A(f) = Fnf ◦ φ0 .

Analogously, we define natural transformations θψ,− : G → Fn and ψ : G → Fn
satisfying ψA ◦ uf = Fnf ◦ ψ0. Now we have the functor G and G-identity (φ, ψ).
It remains to show that it induces exactly the equational class S.

Let (A,α) satisfy the equation arrow e. Then, for every f : X → A, there is an
h : E → A such that εn,(A,α) ◦ Fnf = h ◦ e. Then we have

εn,(A,α) ◦ φA ◦ uf = εn,(A,α) ◦ Fnf ◦ φ0

= h ◦ e ◦ φ0 = h ◦ e ◦ ψ0

and, by symmetry, we get εn,(A,α) ◦φA ◦uf = εn,(A,α) ◦ψA ◦uf . Since f was chosen
arbitrarily and the injections uf form a colimit cocone, we have εn,(A,α) ◦ φA =
εn,(A,α) ◦ ψA, i.e., (A,α) satisfies the G-identity (φ, ψ).

Now let (B, β) be an F -algebra in the class induced by the G-identity (φ, ψ).
Let g : X → B be a morphism in C. Then we have

εn,(B,β) ◦ Fng ◦ φ0 = εn,(B,β) ◦ φB ◦ ug
= εn,(B,β) ◦ ψB ◦ ug

and, again by symmetry, we get εn,(B,β) ◦ Fng ◦ φ0 = εn,(B,β) ◦ Fng ◦ ψ0, hence
εn,(B,β) ◦ Fng coequalizes the pair (φ0, ψ0) and there is a unique h : E → B such
that εn,(B,β) ◦ Fng = h ◦ e. Thus (B, β) satisfies the equation arrow e. �

Lemma 1.7. Every naturally single-induced class is equational.

Proof. Let G be a C-endofunctor. Let N be a class induced by a G-identity
(φ, ψ). Due to Remark 1.4 we may assume that φ and ψ have the same arity,
say n. Therefore, both are the natural transformations G → Fn. Let (E, e) be
the coequalizer of φ and ψ. Then, for every object X of C, we have a morphism
eX : FnX → EX. Let E = {eX | X ∈ Ob C}. We will prove N = Alg (F, E).

Let (A,α) satisfy (φ, ψ). Then, for every X ∈ Ob C and f : X → A, we have
εn,(A,α) ◦ Fnf ◦ φX = εn,(A,α) ◦ φA ◦Gf

= εn,(A,α) ◦ ψA ◦Gf
= εn,(A,α) ◦ Fnf ◦ ψX .

Therefore, we have a coequalizing morphism εn,(A,α) ◦ Fnf for (φX , ψX). Since the
colimits of functors are calculated componentwise, eX is a coequalizer of (φX , ψX),
which means that there is a unique h : EX → A such that εn,(A,α) ◦ Fnf = h ◦ eX .

Given an F -algebra (B, β) satisfying all equation arrows from E , it satisfies the
arrow eB : FnB → EB and there is h : EB → B (chosen for idB : B → B) such
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that εn,(B,β) = h ◦ eB . Thus, the property is satisfied since eB coequalizes the pair
(φB , ψB). �

Theorem 1.8. Let F be an endofunctor on a cocomplete category C. Then the
equational classes of F -algebras coincide with the naturally induced classes of
F -algebras.

Proof. Every equational class S is a (possibly large) intersection of single-based
ones and these are, by the Lemma 1.6, naturally induced, more precisely single-in-
duced. Hence, S is naturally induced by the class of corresponding natural identities.
Conversely, the naturally induced class N is a (possibly large) intersection of the
ones induced by a single natural identity, which, due to Lemma 1.7, are equational
classes induced by a class of equation arrows. The union of these classes defines
the class of all equation arrows defining the class N as an equational class. �

Definition 1.5. A class of algebras induced by equations or natural identities is
called a variety.

2. Free algebras in a variety

Our aim is to answer the question of existence of free algebras in varieties. First
we recall well-known results involving free algebras, which will be used to solve this
problem.

2.1. Free algebras and monads.
We will work with C-endofunctors preserving the colimits of λ-chains where λ is an
infinite limit ordinal – let the class containing these functors be denoted by EndλC.
Since colimits commute with colimits, we get the following property (see also [7,
2.4]).

Proposition 2.1. The class EndλC is closed under colimits and compositions.

Definition 2.1. Let G be an endofunctor on C. The natural G-identity is called
accessible if G preserves the colimits of λ-chains for some infinite limit ordinal λ.

Definition 2.2. A functor F admitting free F -algebras is called a varietor.

Let F preserve the colimits of λ-chains. Then, as shown in [1], F is a varietor.
Since F preserves the colimits of λ-chains, FFλ is a colimit of chain {FFn | n < λ}.
Hence, one can see that wλ,λ+1 is an isomorphism. In such a case we say that the
free F -algebra construction stops after λ steps. If we set υ = colim

n<λ
qn, on every

object A, we get the free F -algebra

VF (A) = (FλA, υA) .

If necessary, we write the name of functor F in the superscript: υ = υF .
This construction gives rise to the functor VF : C → AlgF , VF = (Fλ, υ) together

with the transformation ελ : VFZF → IdAlg F , ελ,(A,α) : (FλA, υA)→ (A,α). Hence,
we have obtained the free functor VF and adjunction VF a ZF , where the unit and
counit are ιλ and ελ, respectively.
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It is a well known fact, that this adjunction yields the free monad over a functor
F – see [2, Theorem 20.56]. Hence the free monad over F is

M(F ) = (Fλ, ηF , µF )
where ηF = ιFλ and µF = ZF ελVF and the universal morphism for F is yFλ : F → Fλ.
A more detailed approach to the theory of monads can be found in [2], [6] and [7].

Now we will use another functor G in EndλC and work with its algebras. We
point out the important consequences of the discussion above:

Proposition 2.2. Let there be a transformation ρ : G → Fλ. Then there is a
transformation σ : Gλ → Fλ, subject to the conditions:

(1) σ = ρ is given by the freeness ofM(F ) as the unique monad transformation
M(G)→M(F ) corresponding to ρ : G→ Fλ; thus

σ ◦ yGλ = ρ .

(2) σA = η̃FA is given by the adjunction VG a ZG as the unique G-algebra
morphism VG(A) → P (A) corresponding to ηFA : A → FλA = ZGP (A)
where P : C → Alg G is the functor assigning to an object A an algebra
(FλA, βA) and βA = (µF ◦ ρFλ)A. Hence

σ ◦ ιGλ = ηF .

(3) For k ≤ λ, let εGk,P : GkFλ → Fλ be the obvious transformation with the
components εGλ,P (A). Then the following equation holds:

σ = εGλ,P ◦GληF .

We will show that σ defined above from the transformation ρ : G→ Fλ can be
gained via the colimit construction, which will be useful later on.

Definition 2.3. For all k ∈ N, we define the transformations ρk : Gk → Fλ
inductively: ρ1 = [ρ, ηF ], ρk+1 = [µF ◦ ρFλ ◦Gρk, ηF ]

Lemma 2.3. For every j < k ∈ N, ρk ◦ wGj,k = ρj.

Proof. For every natural j < k we have
ρk ◦ wGj,k = [µF ◦ ρFλ ◦Gρk, ηF ] ◦ wGj,k

= [µF ◦ ρFλ ◦Gρk−1 ◦GwGj−1,k−1, η
F ]

= [µF ◦ ρFλ ◦G(ρk−1 ◦ wGj−1,k−1), ηF ]
If j = 1, then

µF ◦ ρFλ ◦G(ρk−1 ◦ wGj−1,k−1) = µF ◦ ρFλ ◦G(ρk−1 ◦ wG0,k−1)
= µF ◦ ρFλ ◦G(ρk−1 ◦ ιGk−1)
= µF ◦ ρFλ ◦GηF

= µF ◦ FληF ◦ ρ = ρ

hence the property holds for j = 1 and every k > 1.
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Now let 1 < j < k and assume the validity of ρk−1 ◦ wGj−1,k−1 = ρj−1. Then we
have: µF ◦ ρFλ ◦G(ρk−1 ◦ wGj−1,k−1) = µF ◦ ρFλ ◦Gρj−1 hence ρk ◦ wGj,k = ρj and
the proof is complete. �

Since the transformations ρk form a compatible cocone for wGj,k, we can extend
it to the infinite limit case:

Definition 2.4. For a limit ordinal l let ρl will be defined as colim
k<l

ρk.

Since the w-compatibility clearly holds, our construction extends to the ordinal
chain. The isolated step is given by an analogy to the finite-instance definition.
The definition yields the property for every k ≤ λ:
(6) ρk ◦ ιGk = ιFλ .

To prove that this chain of transformations converges to σ, we will show that
its colimit is a G-algebra morphism.

Lemma 2.4. The transformation ρλ : Gλ → Fλ underlies the natural transfor-
mation VG(A)→ P (A) of the functor C → Alg G where P is the functor used in
Proposition 2.2.

Proof. What we need to prove is that, for an object A in C, the morphism
ρλ,A : GλA→ FλA is a G-algebra morphism (GλA, υGA)→ (FλA, βA). It suffices to
prove the equality of natural transformations: β ◦Gρλ = ρλ ◦ υG. Let k < λ, then
we have

ρλ ◦ υG ◦GwGk,λ = ρλ ◦ wGk+1,λ ◦ qGk
= ρk+1 ◦ qGk
= µF ◦ ρFλ ◦Gρk
= β ◦Gρk
= β ◦Gρλ ◦GwGk,λ

and, since G preserves the colimits of λ-chains, {GwGk,l | k ≤ l < λ} is the colimit
cocone. From the uniqueness of the factorization over the colimit, we get the
required equality. �

Lemma 2.5. The transformations ρλ, σ : Gλ → Fλ coincide.

Proof. Let a C-object A be given. Then, due to the previous lemma, ρλ,A is a
G-algebra morphism ρλ,A : (GλA, υGA)→ (FλA, βA) and, by (6), we have ρλ ◦ ιGλ =
ιFλ = ηF , hence, by the uniqueness of the factorization of ηFA : A→ ZG(FλA, βA)
over ηGA = ιGλ , we get ρλ,A = η̃FA which, due to Proposition 2.2, is equal to σA. �

Lemma 2.6. Let φ, ψ : G→ Fλ be natural transformations. Then, for every k ≤ λ,
we have the algebraic equivalence:

(φ, ψ) ≈ (φk, ψk)
where φk, ψk are derived from φ, ψ, respectively, as in Definition 2.3, 2.4.
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Proof. Let (A,α) be an F -algebra. Then, for every k ≤ λ,

(∗) ελ,(A,α) ◦ φk,A ◦ ιGk = ελ,(A,α) ◦ ψk,A ◦ ιGk ,

since ελ,(A,α) ◦ φk,A ◦ ιGk = ελ,(A,α) ◦ ηF = ελ,(A,α) ◦ w0,λ,A = ε0,(A,α) = id.
Let (A,α) |= (φ, ψ), i.e.,

(h) ελ,(A,α) ◦ φA = ελ,(A,α) ◦ ψA .
We will show by induction that then (A,α) |= (φk, ψk) for every k ≤ λ. In each
step, we shorten the computations using the (φ− ψ)-symmetry of expressions.

k = 1: Since ελ,(A,α) ◦ φ1,A ◦ qG0,A = ελ,(A,α) ◦ φA, from (h) and symmetry,
we get ελ,(A,α) ◦ φ1,A ◦ qG0,A = ελ,(A,α) ◦ ψ1,A ◦ qG0,A, which, together with (∗),
yields ελ,(A,α) ◦ φ1,A = ελ,(A,α) ◦ ψ1,A.
1 < k < λ, k isolated: Assume the hypothesis

(hk) ελ,(A,α) ◦ φk,A = ελ,(A,α) ◦ ψk,A
Recall, that ελ,(A,α) : FλA→ A is a morphism (FλA,µF )→ (A, ελ,(A,α)), i.e.,
ελ,(A,α) ◦ µF = ελ,(A,α) ◦ Fλελ,(A,α). Then we have:

ελ,(A,α) ◦ φk+1,A ◦ qGk,A = ελ,(A,α) ◦ µFA ◦ φFλA ◦Gφk,A
= ελ,(A,α) ◦ Fλελ,(A,α) ◦ Fλφk,A ◦ φGkA

(hk)= ελ,(A,α) ◦ Fλελ,(A,α) ◦ Fλψk,A ◦ φGkA
= ελ,(A,α) ◦ Fλελ,(A,α) ◦ φFλA ◦Gψk,A
= ελ,(A,α) ◦ φA ◦Gελ,(A,α) ◦Gψk,A
(h)= ελ,(A,α) ◦ ψA ◦Gελ,(A,α) ◦Gψk,A

symmetry= ελ,(A,α) ◦ ψk+1,A ◦ qGk,A
and, together with (∗), we get ελ,(A,α) ◦ φk+1,A = ελ,(A,α) ◦ ψk+1,A.
l ≤ λ, l limit: Assume (hk) for every k < l. Then, from the uniqueness of
factorization of the cocone ελ,(A,α) ◦ φk,A : Gk → A over the colimit cocone
wGk,l,A, we get ελ,(A,α) ◦ φl,A = ελ,(A,α) ◦ ψl,A.

We have proved for every k:
(A,α) |= (φ, ψ) ⇒ (A,α) |= (φk, ψk) .

However, (A,α) |= (φk, ψk) easily implies (A,α) |= (φ, ψ) since φ = φ1 ◦ qG0 =
φk ◦ wG1,k ◦ qG0 = φk ◦ yGk . �

2.2. Algebras for a diagram of monads.
This section refers to the paper [7, Chapter VIII] by G. M. Kelly, which deals
with colimits of monads. It is well known (see e.g. [2, Corollary 20.57]) that for
every varietor F the categories of its algebras and algebras for a monad M(F ) are
concretely isomorphic via the comparison functor.

Let D : D →Monad C be a diagram and D(x) = (Mx, η
x, µx) for every object

x ∈ D. Consider the category D-alg of algebras for a diagram D of monads whose
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objects are collections of C-morphisms {αx : MxA → A | x ∈ D}, where αx is in
D(x)-alg for every object x ∈ D and, for each f : x→ y in D, the D-compatibility
condition αy ◦D(f)A = αx is satisfied. The morphisms in D-alg are the morphisms
of algebras for each x, i.e., φ : (A,α)→ (B, β) is a morphism if φ ◦αx = βx ◦Mx(φ)
for every x. If there is a monad K such that K-alg ∼=C D-alg, then this monad is
called algebraic colimit of D.

Kelly asked about the existence of this algebraic colimit, which came out to be
equivalent to the existence of the free objects in D-alg. He proved this existence
in his Theorem 27.1 in [7] under the general assumptions of existence of suitable
factorization systems and some smallness requirements for the monads. Using the
trivial factorization system (Iso,Mor) and preservation of colimits of λ-chains, we
get this theorem in the following form:

Theorem 2.7. Let the underlying functor of each D(x) preserve the colimits of
λ-chains. Then D-alg has free objects.

This theorem will be used to prove the existence of free object in a variety
induced by accessible identities. Let F be a functor in EndκC for some infinite
limit ordinal κ and consider the variety of F -algebras induced by a set of accessible
natural identities. Since the free F -algebra construction stops after κ steps, we
may consider the arity of each natural term to be less or equal to κ. Then, due to
Remark 1.4, the set of natural identities can be replaced by a single identity (φ, ψ).
Its domain, denoted by G, is the coproduct of domains of single identities, hence,
due to 2.1, it preserves colimits of ν-chains for some large enough limit ordinal ν.
Let λ = max{κ, ν}, then F,G ∈ EndλC. Hence the arity of (φ, ψ) can be set to λ.

Let D be a category consisting of two objects 0, 1, their identities and two
more morphisms f, g : 0 → 1. Let D : D → Monad C be a diagram such that
D(0) = M(G), D(1) = M(F ), D(f) = φ, D(g) = ψ, where φ, ψ are the monad
transformations given by Proposition 2.2. We will prove the concrete equivalence
of Alg (F, (φ, ψ)) and D-alg.

Lemma 2.8. For the λ-ary G-identity (φ, ψ) and diagram D defined above, we
have:

Alg (F, (φ, ψ)) ∼=C D -alg .

Proof. Consider the comparison functor I : Alg F →M(F ) -alg assigning to an
F -algebra (A,α) the Fλ-algebra (A, ελ,(A,α)). Then due to Lemma 2.6

(A,α) |= (φ, ψ) ⇔ (A,α) |= (φλ, ψλ) ⇔ ελ,(A,α) ◦ φλ = ελ,(A,α) ◦ φλ .

For every Fλ-algebra (A, β), εFλ1,(A,β) ◦ q
Fλ
0 = β holds , hence

ελ,(A,α) ◦ φλ = ελ,(A,α) ◦ φλ ⇔ I(A,α) |= (φ∗, ψ∗)

where φ∗ = qFλ0 ◦ φλ. Since I is the isomorphism with an inverse given by (A, β) 7→
(A, β ◦ yλ,A), we get

Alg (F, (φ, ψ)) ∼=C M(F ) -alg ∩Alg
(
Fλ, (φ∗, ψ∗)

)
.
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Due to Proposition 2.2, we have φλ = φ, which is a monad transformation (and
analogously for ψ), hence we get M(F ) -alg ∩Alg (Fλ, (φ∗, ψ∗)) to be concretely
isomorphic to D-alg. �

Now we can use Kelly’s theorem to conclude our investigation:

Theorem 2.9. Let F preserve the colimits of λ-chains for some limit ordinal λ.
Then the free algebra exists in every variety induced by a set of accessible identities.

To express the consequence for the varieties presented by equation arrows, recall
the notion of presentability of an object (see [4]):

Definition 2.5. Let λ be a regular cardinal. An object A of a category is called
λ-presentable provided that its hom-functor hom(A,−) preserves λ-directed colimits.
An object is called presentable if it is λ-presentable for some λ.

Theorem 2.10. Let F preserve the colimits of λ-chains for some limit ordinal λ.
Then the free algebra exists in every variety induced by a set of equation arrows
with presentable variable-objects.

Proof. As shown in the proof of Lemma 1.6, an equation arrow e : FnX → E
converts to a natural identity with the domain G = (− •Q) ◦ hom(X,−) for some
Q ∈ Ob C. If the variable-object X is presentable, hom(X,−) preserves κ-directed
colimits for some κ and, since (−•Q) is left adjoint, G preserves κ-directed colimits,
too. Therefore the colimits of κ-chains are preserved and due to Theorem 2.9 the
corresponding variety has free objects. The rest is obvious. �
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