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KYBERNET IK A — VOLUME 4 5 ( 2 0 0 9 ) , NU MB ER 3 , P AG E S 4 4 5 – 4 5 7

UNIFYING APPROACH TO OBSERVER–FILTER DESIGN

Václav Černý

The paper examines similarities between observer design as introduced in Automatic
Control Theory and filter design as established in Signal Processing. It is shown in the
paper that there are obvious connections between them in spite of different aims for their
design. Therefore, it is prospective to make them be compatible from the structural point
of view. Introduced error invariance and error convergence properties of both of them are
unifying tools for their design. Lyapunov’s stability theory, signal power, system energy
and a power balance relation are other basic terms used in the paper.
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1. INTRODUCTION

Observer design is one of large fields investigated in Automatic Control Theory and
a lot of articles have already been dedicated to it in technical literature. One of
possible approaches to non-linear observer design is to transform a given system
representation into a proper canonical form [3, 12, 20, 22, 23, 29]. Then it is feasible
in new coordinates to design an observer with homogeneous error dynamics which
can be made asymptotically stable (e. g. by pole assignment). The error dynamics
of such observers is mostly linear. The approach presented in the paper is a straight-
forward extension of those methods mentioned above in such a way that the error
dynamics of an observer is a priori selected as non-linear.

In the area of Signal Processing [16, 26, 32], main functions of a filter are to
remove unwanted parts of a signal such as a random noise and other measurement
disturbances or to extract useful parts of the signal such as its certain components
lying within a specific frequency range. From this point of view, it seems to be
familiar to start with general theory of stochastic processes and stochastic estimation
theory [4, 17, 19] in case a quantitative description of the uncertainty is provided.

On the other hand, frequency domain characteristics of both the useful and un-
wanted parts of the signal seem to be more acceptable in many practical situations
and therefore frequency domain methods based on a concept of an ideal frequency
filter are preferred. The ideal frequency filter would have a rectangular magnitude
frequency response. Unfortunately, it is non-causal on principle. However, there are
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several filter design techniques that approximate the ideal frequency filter charac-
teristics (Butterworth, Chebyshev, Bessel, etc.). Each of the major types optimizes
a different aspect of the approximation.

The main contribution of the paper consists in demonstrating that it is possible to
make both observer and filter design approaches be unified from the structural point
of view and in spite of different aims for their design. Introduced error invariance
and error convergence properties are the tools for the unification. The concrete new
result presented shows that optimal as well as frequency domain filters are derived
as special cases of a developed asymptotic observer-filter design approach.

2. DISSIPATION NORMAL FORM

Definition 1. Consider the representation RD(S) of a system S in the form:

RD(S) :
dx(t)

dt
= f [x(t)] (1)

y(t) = h[x(t)] (2)

where x(t) ∈ X ⊂ Rn is a state, X is a smooth manifold defined on Rn, n ∈ N \ {0},
y(t) ∈ R1 is an output, f : X → Rn is a smooth vector field and h : X → R1 is a
smooth scalar function. Let xe be an equilibrium state of the representation RD(S).
Assume that there exists a function W : Y → R1 defined on a neighborhood Y ⊂ Rn

of the equilibrium state xe. The representation RD(S) will be called the dissipation
normal form if the function W fulfills the following conditions:

W [x(t)] = ‖x(t)‖2 (3)

Lf{W [x(t)]} = β[y(t)] ≤ 0. (4)

Remark 1. There is an obvious connection between the function W [x(t)] and the
Lyapunov function. The function W [x(t)] is also related to the available storage [33]
and a non-linear function β[y(t)] corresponds to the Rayleigh function [30].

Theorem 1. Let k2, . . . , kn ∈ R; k2, . . . , kn 6= 0 and α,ϕ1 : R1 → R1 are con-

tinuous functions satisfying the following conditions: ∀x(t) ∈ X : dα[x1(t)]
dx1(t)

6= 0;

∀x(t) ∈ Z, Z ⊂ Y : ϕ1[x1(t)] < 0 ⇔ x1(t) 6= 0. If the representation RD(S) has
the following structure [14]:

RD(S) :
dx(t)

dt
=




ϕ1[x1(t)] k2 0 · · · 0
−k2 0 k3 · · · 0

...
. . .

. . .
. . .

...
0 · · · −kn−1 0 kn

0 · · · 0 −kn 0




x(t) (5)

y(t) = α[x1(t)] (6)

then it is observable as defined in [13] and the equilibrium state xe = 0, xe ∈ Z is
asymptotically stable in Z. Furthermore, the function W [x(t)] fulfills the conditions
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(3), (4) for any α[x1(t)], ϕ1[x1(t)] and k2, . . . , kn on Z satisfying the premises given
at the beginning of the theorem.

P r o o f. At first, observability of the representation RD(S) will be proved and
subsequently a proof of asymptotical stability of its equilibrium state will follow
using the second (direct) Lyapunov stability method.

1. It holds that:

det H0[x(t)] = det
∂

∂x(t)




α[x1(t)]
Lf{α[x1(t)]}

...
Ln−1

f {α[x1(t)]}


=kn−1

2 kn−2
3 · · · kn

{
dα[x1(t)]

dx1(t)

}n

,

det H0[x(t)] 6= 0 ∀x(t). (7)

It follows from the relation (7) that the representation RD(S) is observable
under the assumptions stated at the beginning of the theorem.

2. Assume that the representation RD(S) has the form (5), (6) and consider the
function W [x(t)] = ‖x(t)‖2 defined on Rn.

• The relation (5) implies that:

dx(t)

dt
= 0 ⇐⇒ x(t) = xe = 0. (8)

Hence, xe = 0, xe ∈ Z is the equilibrium state of the representation RD(S).

• It holds that:

W [x(t)] > 0 for x(t) 6= 0 (9)

W [x(t)] = 0 for x(t) = 0 (10)

Lf{W [x(t)]} = 2x2
1(t)ϕ1[x1(t)] = 2{α−1[y(t)]}2ϕ1{α−1[y(t)]}

= β[y(t)] < 0 for x(t) /∈ M ⊂ Z (11)

Lf{W [x(t)]} = 2x2
1(t)ϕ1[x1(t)] = 2{α−1[y(t)]}2ϕ1{α−1[y(t)]}

= β[y(t)] = 0 for x(t) ∈ M (12)

where M = {x(t) ∈ Z,Lf{W [x(t)]} = 0} = {x(t) ∈ Z, x1(t) = 0}. How-

ever, if x(t) ∈ M then dx(t)
dt 6= 0 except for x(t) = xe = 0. This means

that the set M does not contain any equilibrium trajectory (for example
any limit cycle) except for the equilibrium state x(t) = xe = 0. Con-
sequently, the relations (9), (10), (11), (12) and the Krasovskij–LaSalle
principle [11] imply that the function W [x(t)] is a Lyapunov function on
Z. Thus, the equilibrium state xe = 0 is asymptotically stable in Z. It
is also obvious that the function W [x(t)] fulfills the conditions (3), (4)
for any α[x1(t)], ϕ1[x1(t)] and k2, . . . , kn on Z under the presumptions
presented at the beginning of the theorem. ¤
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Remark 2. The dissipation normal form is the generalization of the Schwarz ma-
trix [31] reached by including the two non-linear functions.

Remark 3. In linear case, if the coefficients of the form are as follows:

RD(S) :
dx(t)

dt
= ω0




−1 1 0 · · · 0
−1 0 1 · · · 0
...

. . .
. . .

. . .
...

0 · · · −1 0 1
0 · · · 0 −1 0




x(t) (13)

y(t) = x1(t) (14)

where ω0 ∈ R, ω0 > 0 then it is optimal with respect to the following optimality
criterion established as output signal energy [14, 27]:

J =

∫ ∞

t0

‖y(t)‖2 dt. (15)

3. NON–LINEAR OBSERVER DESIGN

3.1. Problem formulation

Consider the representation R(S) of a system S in the form:

R(S) :
dx(t)

dt
= f [x(t), u(t)] (16)

y(t) = h[x(t)] (17)

where x(t) ∈ X ⊂ Rn is a state, u(t) ∈ U ⊂ Rp is an input, n, p ∈ N \ {0}, y(t) ∈ R1

is an output, f ∈ Cn : X × U → Rn is a vector function and h ∈ Cn : X → R1 is
a scalar function. The input and output signals u(t) and y(t) are supposed to be
measured. The state x(t) and its initial value x0 are assumed to be unknown. The
representation R(S) is supposed to be observable for any u(t) [9].

The aim is to design an observer Ŝ:

R(Ŝ) :
dx̂(t)

dt
= f̂ [x̂(t), u(t), y(t)] (18)

that will generate an estimate x̂(t) of the state x(t) in such a way that the following
two properties will be held:

• An observer structure should have a state error invariance property:

R(S̃) :
dx̃(t)

dt
= f̃ [x̃(t), x(t), x̂(t), u(t), y(t)] = f̃ [x̃(t)] (19)

where S̃ is a state error system and x̃(t) is a state error defined as:

x̃(t) = x(t) − x̂(t). (20)
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• Observer parametrization should have a state error convergence property. This
means that the state error will be uniformly convergent to zero and it will be
possible to choose proper rate and/or mode of the convergence.

3.2. Problem solution

The method consists in a priori choice of a state error system representation specified
in order to fulfill the two properties mentioned above in advance. The representation
of the state error system is chosen in the dissipation normal form:

R∗
D(S̃) :

dx̃∗(t)
dt

= ω0




ε∗
1[x̃

∗
1(t)] ε∗

2 0 · · · 0
−ε∗

2 0 ε∗
3 · · · 0

...
. . .

. . .
. . .

...
0 · · · −ε∗

n−1 0 ε∗
n

0 · · · 0 −ε∗
n 0




x̃∗(t)

where ε∗
1[x̃

∗
1(t)], ε∗

2, . . . , ε
∗
n and ω0 > 0 are design (selectable) parameters.

It holds that:
Lf̃∗{W̃ ∗[x̃∗(t)]} = 2ω0x̃

∗2

1 (t)ε∗
1[x̃

∗
1(t)]. (21)

The relation (21) implies that the state error invariance property is held. Subse-
quently, it results from the relation (21) that the state error convergence property
is also retained when the design parameters are properly chosen (see Theorem 1.).
The constant ω0 represents a time scale transformation and therefore it affects con-
vergence rate. A non-linear function ε∗

1[x̃
∗
1(t)] designates in proportion as system

energy dissipates and accordingly it specifies convergence mode. It is obvious from
the relation (21) that the constants ε∗

2, . . . , ε
∗
n 6= 0 do not have any effect on the rate

and/or mode of the convergence. From this point of view, they can in principle be
chosen in an arbitrary way. It is even possible them to be non-linear functions in
general. This means that the state error invariance property does not have to be
satisfied. However, the general case is redundant to be considered with respect to
the objective of the paper.

Remark 4. If ω0 → ∞ then an appropriate observer corresponds to the high-gain
observer [1, 2, 8] in the sense of possible setting error convergence to zero properly
fast enough so that a closed loop system is asymptotically stable.

Further, assume that the original representation R(S) of a system S (16), (17)
can be transformed into the following canonical form induced by the structure of
the state error system representation [5]:

R∗(S) :
dx∗(t)

dt
= A∗x∗(t) + ψ∗[x∗

1(t), u(t), ud(t)] (22)

y(t) = h∗[x∗
1(t)] (23)

where A∗ =




0 a∗
2 0 · · · 0

−a∗
2 0 a∗

3 · · · 0
..
.

. . .
. . .

. . .
..
.

0 · · · −a∗
n−1 0 a∗

n

0 · · · 0 −a∗
n 0


; a∗

2, . . . , a
∗
n ∈ R; a∗

2, . . . , a
∗
n 6= 0; ud(t) =
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du(t)
dt , . . . , dn−1u(t)

dtn−1 and ψ∗[x∗
1(t), u(t), ud(t)] =




ψ∗
1 [x∗

1(t), u(t)]

ψ∗
2 [x∗

1(t), u(t),
du(t)

dt
]

..

.
ψ∗

n[x∗
1(t), u(t), ud(t)]


.

Then substituting to the derivated (with respect to t) relation (20) from (21), (22)
and after its slight modifications we get the structure of the observer:

R∗(Ŝ) :
dx̂∗(t)

dt
= A∗x̂∗(t) + ψ∗{c[y(t)], u(t), ud(t)}

− ω0




ε∗
1{c[y(t)] − x̂∗

1(t)}
0
...
0


 {c[y(t)] − x̂∗

1(t)} (24)

where the inverse:

x∗
1(t) = h∗−1

[y(t)] = c[y(t)] (25)

is supposed to exist.
Parametrization of the observer (i. e., determination of the unknown terms in (24)

and in (22), (23) indeed) is performed through the generalized observability canonical
form [34] and consists in solving a system of differential equations [5]. Finally, the
proposed observer is transformed into original coordinates.

4. LINEAR TIME–VARYING OBSERVER DESIGN

4.1. Problem formulation

Consider the representation R(S) of a system S in the form:

R(S) :
dx(t)

dt
= A(t)x(t) + B(t)u(t) (26)

y(t) = C(t)x(t) (27)

where x(t) ∈ Rn is a state, u(t) ∈ Rp is an input, y(t) ∈ Rq is an output, n, p, q ∈ N\
{0}, and A(t), B(t), C(t) are matrices with appropriate dimensions. The input and
output signals u(t) and y(t) are supposed to be measured. The state x(t) and its
initial value x0 are assumed to be unknown. The representation R(S) is supposed
to be observable.

The aim is again to design an observer Ŝ:

R(Ŝ) :
dx̂(t)

dt
= F̂ (t)x̂(t) + Ĝ(t)u(t) + K̂(t)y(t) (28)

ŷ(t) = Ĥ(t)x̂(t) (29)

that will generate an estimate x̂(t) of the state x(t) in such a way that the following
– already familiar two properties will be held:
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• The state-output error invariance property expressed by the formulas:

R(S̃) :
dx̃(t)

dt
= M̃(t)x̃(t) (30)

ỹ(t) = Ñ(t)x̃(t) (31)

where S̃ is a state-output error system and ỹ(t) = y(t)− ŷ(t) is an output error
signal.

• The state-output error convergence property that will be specified in detail
thereinafter.

4.2. Problem solution

When the state-output error invariance property is employed within the derivated
(with respect to t) relation (20) by substituting to it from (26), (28), (30) and
followed by its obvious modifications, we get the structure of the observer again:

R(Ŝ) :
dx̂(t)

dt
= A(t)x̂(t) + B(t)u(t) + K̂(t)[y(t) − C(t)x̂(t)] (32)

ŷ(t) = C(t)x̂(t). (33)

Consequently, M̃(t) = F̂ (t) = A(t) − K̂(t)C(t), Ñ(t) = Ĥ(t) = C(t), Ĝ(t) = B(t).

Remark 5. This is consistent with the structure of the Kalman–Bucy filter [4], [19].
In case of the time-invariant restriction: A(t) = A, B(t) = B, C(t) = C, K̂(t) = K̂,
then it is also identical with the structure of the n-order Luenberger observer [24].

Let output error signal power P̃ (t) [16, 26, 32] and an energy function Ẽ(t) of the
state-output error system be introduced as follows in the specific coordinates (see
the Section 2):

P̃ (t) = ‖ỹ(t)‖2 (34)

Ẽ(t) = δ‖x̃(t)‖2 (35)

where δ > 0 is a scaling parameter.
The state-output error convergence property is equivalent to the power balance

relation [15, 18]:
dẼ(t)

dt
= −[ρ−1(t)P̃ (t) + σ(t)‖ṽ(t)‖2] (36)

where ṽ(t) is a dual output error signal and ρ(t) > 0, σ(t) > 0 are design parameters.
The design parameters specify required rate and/or mode of convergence.

Let us combine the power balance relations for the state-output error system S̃
(36) and for the original system S:

dE(t)

dt
= ρ−1(t)P (t) − σ(t)‖v(t)‖2 (37)

where v(t) is a dual output signal, P (t) = ‖y(t)‖2 and E(t) = δ‖x(t)‖2. We get the
parametrization of the observer [6]:

K̂(t) = S(t)CT (t)ρ−1(t) (38)
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dS(t)

dt
= A(t)S(t) + S(t)AT (t) + B(t)

σ(t)

δ
BT (t) − S(t)CT (t)

ρ−1(t)

δ
C(t)S(t). (39)

Consequently, the Lyapunov function for the given system S has the form:

V [x(t)] = xT (t)S−1(t)x(t). (40)

Remark 6. The dual signals are introduced with respect to generalizing Tellegen’s
theorem [7, 28].

Relation to optimal filtering: Let us invoke the design parameters as follows:
δ = 1, σ(t) · I = Q(t) and ρ(t) · I = R(t). Then the relations (38), (39) become to:

K̂(t) = S(t)CT (t)R−1(t) (41)

dS(t)

dt
= A(t)S(t) + S(t)AT (t) + B(t)Q(t)BT (t) − S(t)CT (t)R−1(t)C(t)S(t). (42)

It is obvious that the formulas are equivalent to the relation for the Kalman gain
matrix and Riccati differential equation [4, 19] in case of input and output signals
disturbances being mutually independent white noises with zero mean and covariance
matrices Q(t) and R(t). This yields that the variance functions σ(t) and ρ(t) in the
matrices (placed on their diagonals) determine the convergence characteristics (36).

Consider for now a time-invariant restriction in order to get more explicit results.
The appropriate representation of the state-output error system has the form:

R(S̃) :
dx̃(t)

dt
= M̃x̃(t) = (A − K̂C)x̃(t) (43)

ỹ(t) = Ñ x̃(t) = Cx̃(t). (44)

When the output error signal energy (15) is chosen as an optimality criterion:

J̃ =

∫ ∞

t0

P̃ (t) dt =

∫ ∞

t0

‖ỹ(t)‖2 dt (45)

then the optimal solution is specified as the following matrices (see (13), (14)) having
the dissipation normal form structure:

M̃ = A − K̂C = ω0




−1 1 0 · · · 0
−1 0 1 · · · 0
...

. . .
. . .

. . .
...

0 · · · −1 0 1
0 · · · 0 −1 0




, ω0 > 0 (46)

Ñ = C = [1 0 . . . 0] (47)
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or as the recursively given optimal transfer function (for B = [0 . . . 0 ω0]
T
):

Fn(s) =
ωn

0

Pn(s)
(48)

P0(s) = 1 (49)

P1(s) = s + ω0 (50)

Pk(s) = sPk−1(s) + ω2
0Pk−2(s) for k ∈ {2, . . . , n}. (51)

Relation to frequency domain filtering: Let us have the following optimal
transfer functions for various orders:

• n = 1, ω0 = 1: F1(s) = 1
P1(s)

• n = 2, ω0 = 1: F2(s) = 1
P2(s)

• n = 7, ω0 = 1: F7(s) = 1
P7(s)

• n = 14, ω0 = 1: F14(s) = 1
P14(s)

• n = 21, ω0 = 1: F21(s) = 1
P21(s)

Corresponding frequency responses of the transfer functions are depicted in Figure 1.
It is shown in the figure that the responses converge to the response of the ideal low
pass frequency filter with increasing order. The cutoff frequency is given by ω0.
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Fig. 1. Frequency responses for ω0 = 1 and the orders n = 1, 2, 7, 14, 21.

The matrix M̃ implies the lattice structure of the filters shown in Figure 2. Its
leap-frog realization [10] is robust with respect to system parameters uncertainties.
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The discrete-time modification depicted in Figure 3 gives the lattice-ladder real-
ization of IIR digital filters [21]. On condition that the parameter values δi = 1
then it is reduced to a FIR digital filter. Moreover, the realization is robust with
respect to rounding errors. Another interesting thing is the fact that the optimal
filter described by (46), (47) eliminates a constant systematic error from a disturbed
signal [6].

Fig. 2. Lattice structure of the filters.

Fig. 3. Lattice-leader realization of IIR digital filters.

5. CONCLUSIONS

It is shown in the paper that it is possible to make be compatible both the ob-
server and the filter design approaches from the structural point of view and in
spite of the different aims for their design. The error invariance and the error
convergence properties are introduced to be unifying tools in it. While the error in-
variance property specifies their structure, the error convergence property provides
their parametrization, respectively. Moreover, it is demonstrated that the asymp-
totic observer corresponds to the optimal Kalman–Bucy filter under introducing the
power balance relations as well as to the low pass frequency filters of various orders
under minimizing the output error signal energy as an optimality criterion. These
facts are very interesting and constitute concrete new findings of the paper. At first,
no optimization is required and yet the optimal Kalman–Bucy filter appears. On



Unifying Approach to Observer–Filter Design 455

the other hand, the frequency filters and their realizations arise when the optimality
criterion is used. Finally, the filters are obtained as special cases of the developed
asymptotic observer-filter design approach.

In addition, an optimal low pass frequency filter of the third order given by the
formulas (48) – (51) has already been implemented in practice into a vibrodiagnostic
device for pre-processing of signals from relative turbine rotor vibration sensors. The
signals are then used in an estimation procedure that performs turbine rotor analyzes
under low RPM [25] (i. e. it evaluates turbine rotor shaft eccentricity and ovality).
On one hand, the filter provides very good filtration results with respect to possible
measurement noise elimination and decay of higher harmonic component amplitudes
contained in the signals (e. g. grid frequency and its higher harmonics). On the other
hand, it preserves amplitude and phase values of useful harmonic components of the
signals. It is much effective than for example averaging commonly used in industrial
practice within this kind of application (the estimation procedure is more accurate).

Finally, it should be stated that the class of filters investigated in the paper does
not include such important filters as for example particle or fractional filters.
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