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PRIMAL INTERIOR–POINT METHOD
FOR LARGE SPARSE MINIMAX OPTIMIZATION

Ladislav Lukšan, Ctirad Matonoha and Jan Vlček

In this paper, we propose a primal interior-point method for large sparse minimax opti-
mization. After a short introduction, the complete algorithm is introduced and important
implementation details are given. We prove that this algorithm is globally convergent un-
der standard mild assumptions. Thus the large sparse nonconvex minimax optimization
problems can be solved successfully. The results of extensive computational experiments
given in this paper confirm efficiency and robustness of the proposed method.
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1. INTRODUCTION

Consider the minimax problem: Minimize a function

F (x) = max
1≤i≤m

fi(x), (1)

where fi : Rn → R, 1 ≤ i ≤ m, are smooth functions satisfying the following two
assumptions:

Assumption 1. Functions fi(x), 1 ≤ i ≤ m, are bounded from below on Rn, i. e.,
there is F ∈ R such that fi(x) ≥ F , 1 ≤ i ≤ m, for all x ∈ Rn.

Assumption 2. Functions fi(x), 1 ≤ i ≤ m, are twice continuously differentiable
on the convex hull of the level set L(F ) = {x ∈ Rn : F (x) ≤ F} for a sufficiently
large upper bound F and they have bounded the first and second-order derivatives on
convL(F ), i. e., constants g and G exist such that ‖∇fi(x)‖ ≤ g and ‖∇2fi(x)‖ ≤ G
for all 1 ≤ i ≤ m and x ∈ convL(F ) where ‖.‖ denotes the Euclidean norm.

In this paper, we assume that problem (1) is partially separable, which means that
functions fi(x), 1 ≤ i ≤ m, depend on a small number of variables (ni, say, where
ni is a small number independent of n).
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Minimization of F is equivalent to the nonlinear programming problem with n+1
variables x ∈ Rn, z ∈ R:

minimize z subject to fi(x) ≤ z, 1 ≤ i ≤ m. (2)

The necessary first-order (KKT) conditions for a solution of (2) have the form

m∑

i=1

ui∇fi(x) = 0,
m∑

i=1

ui = 1, ui ≥ 0, z − fi(x) ≥ 0, ui(z − fi(x)) = 0, (3)

where ui, 1 ≤ i ≤ m, are Lagrange multipliers. Problem (2) can be solved by an
arbitrary nonlinear programming method utilizing sparsity (sequential linear pro-
gramming [4, 12]; sequential quadratic programming [7, 11]; interior-point [15, 21];
nonsmooth equation [5, 16]). In this paper, we introduce a feasible primal interior-
point method that utilizes a special structure of minimax problem (1). Constrained
problem (2) is replaced by a sequence of unconstrained problems

minimize B(x, z; µ) = z − µ
m∑

i=1

log(z − fi(x)) subject to z > F (x), (4)

where 0 < µ ≤ µ (we assume that µ → 0 monotonically). Inequality z > F (x) is
assured algorithmically.

A primal interior-point method investigated in this paper is based on line search
minimization of a logarithmic barrier function derived from the minimax problem
structure. Approximation of the Hessian matrix of this barrier function is obtained
by partitioned variable metric updates [10]. The resulting algorithm whose efficiency
is confirmed by extensive computational experiments is described in detail.

The paper is organized as follows. In Section 2, we introduce a primal interior-
point method (i. e. interior point method that uses explicitly computed approxima-
tions of Lagrange multipliers instead of their updates) and describe the correspond-
ing algorithm. Section 3 contains more details concerning this algorithm such as
a restart strategy, variable metric updates, and a barrier parameter decrease. In
Section 4 we study theoretical properties of the primal interior-point method and
prove that this method is globally convergent if Assumption 1 and Assumption 2
hold. Section 5 contains a short description of a smoothing method SM described in
[20] and [22] (and in other papers quoted therein), which is used for a comparison.
Finally, in Section 6 we present results of computational experiments confirming
the efficiency of the proposed method. Besides the SM method, we have used a
primal-dual interior point method PDIP proposed in [15] and the KNITRO software
[2] for a comparison. The last two methods, intended for solving general nonlinear
programming problems, were applied to equivalent problem (2).

2. DESCRIPTION OF THE METHOD

Differentiating B(x, z; µ) given by (4), we obtain necessary conditions for a minimum
in the form m∑

i=1

µ

z − fi(x)
∇fi(x) = 0, 1 −

m∑

i=1

µ

z − fi(x)
= 0. (5)
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Denoting gi(x) = ∇fi(x), 1 ≤ i ≤ m, A(x) = [g1(x), . . . , gm(x)] and

f(x) =




f1(x)
. . .

fm(x)


 , u(x, z; µ) =




µ/(z − f1(x))
. . .

µ/(z − fm(x))


 , e =




1
. . .
1


 , (6)

we can write (5) in the form

g(x, z; µ) , A(x)u(x, z; µ) = 0, γ(x, z; µ) , 1 − eT u(x, z;µ) = 0. (7)

These nonlinear equations can be solved by the Newton method. For this purpose,
we need second-order derivatives of B(x, z;µ). One has

∂g(x, z;µ)

∂x
=

m∑

i=1

ui(x, z; µ)Gi(x) +

m∑

i=1

µ

(z − fi(x))2
gi(x)gT

i (x)

= G(x, z; µ) + A(x)V (x, z; µ)AT (x),

∂g(x, z;µ)

∂z
= −

m∑

i=1

µ

(z − fi(x))2
gi(x) = −A(x)V (x, z;µ)e,

∂γ(x, z;µ)

∂x
= −

m∑

i=1

µ

(z − fi(x))2
gT

i (x) = −eT V (x, z; µ)AT (x),

∂γ(x, z;µ)

∂z
=

m∑

i=1

µ

(z − fi(x))2
= eT V (x, z;µ)e,

where Gi(x) = ∇2fi(x), 1 ≤ i ≤ m, G(x, z; µ) =
∑m

i=1 ui(x, z; µ)Gi(x), and

V (x, z;µ) = diag(µ/(z − f1(x))2, . . . , µ/(z − fm(x))2).

Using these expressions, we obtain a set of linear equations corresponding to a step
of the Newton method

[
G(x, z;µ) + A(x)V (x, z; µ)AT (x) −A(x)V (x, z; µ)e

−eT V (x, z; µ)AT (x) eT V (x, z;µ)e

] [
∆x
∆z

]
= −

[
g(x, z; µ)
γ(x, z; µ)

]
.

(8)
Note that matrix V (x, z;µ) is positive definite.

Increments ∆x and ∆z determined from (8) can be used for obtaining new quan-
tities

x+ = x + α∆x, z+ = z + α∆z,

where α > 0 is a suitable step-size, which is a standard way for solving general
nonlinear programming problems. For special nonlinear programming problem (2),
the structure of B(x, z; µ) allows us to obtain a minimizer z(x; µ) ∈ R of the function
B̃(z; µ) = B(x, z; µ) with x ∈ Rn fixed.
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Lemma 2.1. Function B̃(z; µ) : (F (x), ∞) → R has a unique stationary point,
which is its global minimizer. This stationary point is characterized by the equation

eT u(x, z;µ) = 1. (9)

Solution z(x; µ) of this equation satisfies inequalities

F (x) + µ = z(x; µ) ≤ z(x; µ) ≤ z(x; µ) = F (x) + mµ. (10)
Moreover,

eT u(x, z(x; µ);µ) ≤ 1 ≤ eT u(x, z(x;µ);µ). (11)

P r o o f . Function B̃(z; µ) : (F (x), ∞) → R is strictly convex in (F (x), ∞),
since it is a sum of linear and strictly convex functions. Thus if a stationary point
of B̃(z; µ) exists, it is its unique global minimizer. Let z(x; µ) be the solution of
equation (9) (which has the form (5)). Then

µ

z(x; µ) − F (x)
≤

m∑

i=1

µ

z(x; µ) − fi(x)
= 1 ≤

m∑

i=1

µ

z(x; µ) − F (x)
=

mµ

z(x; µ) − F (x)
.

Thus F (x) + µ ≤ z(x; µ) ≤ F (x) + mµ, which proves (10), and

m∑

i=1

µ

z(x; µ) − fi(x)
≤ 1 ≤

m∑

i=1

µ

z(x; µ) − F (x)
,

which proves (11). Inequalities (11) imply that the solution z(x; µ) of (9) (the
stationary point of B̃(z; µ)) exists. ¤

Solution z(x; µ) of nonlinear equation (9) can be obtained by efficient methods
proposed in [13, 14], which use localization inequalities (10) – (11). Therefore, we
can assume to have z = z(x;µ) with a sufficient precision, which implies that the
last element of the right-hand side in (8) is negligible. Assuming z = z(x; µ), we
denote

B(x; µ) = B(x, z(x; µ);µ) = z(x; µ) − µ
m∑

i=1

log(z(x; µ) − fi(x)), (12)

u(x;µ) = u(x, z(x; µ);µ), V (x; µ) = V (x, z(x;µ);µ) and G(x; µ) = G(x, z(x; µ); µ).
In this case, barrier function B(x; µ) depends only on x. In order to obtain a
minimizer (x, z) ∈ Rn+1 of B(x, z; µ), it suffices to minimize B(x; µ) over Rn.

Lemma 2.2. Consider barrier function (12). Then

∇B(x;µ) = A(x)u(x; µ) (13)

and

∇2B(x; µ) = G(x; µ) + A(x)V (x; µ)AT (x) − A(x)V (x; µ)eeT V (x; µ)AT (x)

eT V (x; µ)e
. (14)



Large Sparse Minimax Optimization 845

Solution ∆x of the Newton equation

∇2B(x; µ)∆x = −∇B(x; µ) (15)

is equal to the corresponding vector obtained by solving (8) with z = z(x;µ).

P r o o f . Differentiating B(x;µ), we obtain

∇B(x; µ) = ∇z(x; µ) −
m∑

i=1

µ

z(x; µ) − fi(x)
(∇z(x; µ) − gi(x))

= ∇z(x; µ)

(
1 −

m∑

i=1

µ

z(x; µ) − fi(x)

)
+

m∑

i=1

µ

z(x; µ) − fi(x)
gi(x)

=
m∑

i=1

µ

z(x; µ) − fi(x)
gi(x) = A(x)u(x; µ)

since

1 − eT u(x;µ) = 1 −
m∑

i=1

µ

z(x; µ) − fi(x)
= 0.

Differentiating the last equality, one has

m∑

i=1

µ

(z(x;µ) − fi(x))2
(∇z(x; µ) − gi(x)) = 0,

which gives

∇z(x; µ) =
A(x)V (x;µ)e

eT V (x;µ)e
.

Thus

∇2B(x; µ) =

m∑

i=1

ui(x; µ)Gi(x) +

m∑

i=1

µ

(z(x; µ) − fi(x))2
(gi(x) − ∇z(x; µ)) gT

i (x)

= G(x; µ) + A(x)V (x; µ)AT (x) − A(x)V (x;µ)eeT V (x; µ)AT (x)

eT V (x; µ)e
.

Using the second equation of (8) with eT u(x; µ) = 1, we obtain

∆z =
eT V (x;µ)AT (x)

eT V (x; µ)e
∆x,

which after substituting into the first equation gives
(

G(x; µ)+A(x)V (x; µ)AT (x)− A(x)V (x;µ)eeT V (x; µ)AT (x)

eT V (x; µ)e

)
∆x = −A(x)u(x; µ).

This is exactly equation (15) ¤

Note that we use (8) rather than (15) for a direction determination since nonlinear
equation (9) is solved with precision δ and, therefore, in general 1− eT u(x;µ) differs
from zero.
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Lemma 2.3. Let ∆x solve (15) (or (8) with z = z(x;µ)). If matrix G(x;µ)
is positive definite, then (∆x)T ∇B(x; µ) < 0 (direction vector ∆x is descent for
B(x; µ)).

P r o o f . Equation (15) implies

(∆x)T ∇2B(x; µ)∆x = −(∆x)T ∇B(x;µ).

Thus (∆x)T ∇B(x; µ) < 0 if ∇2B(x; µ) is positive definite. But

vT ∇2B(x; µ)v = vT G(x; µ)v +

(
vT A(x)V (x;µ)AT (x)v − (vT A(x)V (x;µ)e)2

eT V (x; µ)e

)

≥ vT G(x; µ)v

for an arbitrary v ∈ Rn by (14) and by the Schwarz inequality (since V (x; µ) is
positive definite). Thus (∆x)T ∇B(x;µ) < 0 if G(x; µ) is positive definite. ¤

Equality
V (x; µ) =

1

µ
U2(x; µ),

where U(x; µ) = diag(u1(x; µ), . . . , um(x; µ)), implies that ‖V (x; µ)‖ → ∞ as µ → 0.
Thus ∇2B(x; µ) can be ill-conditioned for µ small enough (see (14)). For this reason,
it is necessary to use a lower bound µ for µ (more details are given in Section 3).

The following lemma gives upper bounds for ‖∇2B(x;µ)‖.

Lemma 2.4. Let Assumption 2 be satisfied. If µ ≥ µ > 0, then

‖∇2B(x; µ)‖ ≤ m(G + g2‖V (x;µ)‖) ≤ m

(
G +

g2

µ

)
.

P r o o f . Using (14) and Assumption 2, we obtain

‖∇2B(x; µ)‖ ≤
∥∥G(x;µ) + A(x)V (x;µ)AT (x)

∥∥

≤
∥∥∥∥∥

m∑

i=1

ui(x, µ)Gi(x)

∥∥∥∥∥ +

∥∥∥∥∥
m∑

i=1

Vi(x; µ)gi(x)gT
i (x)

∥∥∥∥∥
≤ mG + mg2‖V (x; µ)‖.

Since V (x; µ) is diagonal and fi(x) ≤ F (x) for all 1 ≤ i ≤ m, one has

‖V (x;µ)‖ =
µ

(z(x;µ) − F (x))2
≤ 1

µ
≤ 1

µ

using (10). ¤

Now we return to the direction determination. To simplify the notation, we write
equation (8) in the form

[
H −a

−aT α

] [
d
δ

]
= −

[
g
γ

]
(16)
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where

H = G + A(x)V (x, z; µ)AT (x), G = G(x, z; µ), (17)

a = A(x)V (x, z; µ)e, α = eT V (x, z;µ)e, and d = ∆x, δ = ∆z. Since

[
H −a

−aT α

]−1

=

[
H−1 − H−1aη−1aT H−1 −H−1aη−1

−η−1aT H−1 −η−1

]
,

where η = aT H−1a − α we can write

[
d
δ

]
= −

[
H −a

−aT α

]−1 [
g
γ

]
=

[
H−1(a δ − g)

δ

]
, (18)

where

δ = η−1(aT H−1g + γ).

Matrix H is sparse if A(x) has sparse columns. If H is not positive definite, it is
advantageous to change it before a computation of the direction vector. Thus we
use the sparse Gill–Murray decomposition [6] of the form

H + E = LDLT , (19)

where E is a positive semidefinite diagonal matrix that assures positive definiteness
of LDLT . Using the Gill–Murray decomposition, we solve two equations

LDLT c = a, LDLT v = g (20)

and set

δ =
aT v + γ

aT c − α
, d = c δ − v. (21)

The above analysis gives a reason for high efficiency of the primal interior point
method for partially separable minimax optimization. We decompose a sparse ma-
trix H = G + AV AT of order n and use back substitution (20). If a primal-dual
interior point method is applied to equivalent problem (2), an equation with matrix

[
G̃ Ã

ÃT −M

]
, G̃ =

[
G 0
0 0

]
, Ã =

[
A

−eT

]

of order n + m + 1 has to be solved. Further elimination is impossible, since matrix
G̃ is singular, Ã has a dense row, and some elements of the diagonal matrix M
tends to zero. Therefore, we have to use either the Bunch–Parlett decomposition [1]
(often with a large fill-in) or the iterative CG algorithm with a suitable (indefinite)
preconditioner. For this reason, the number of operations and the computational
time per iteration are much larger if a primal-dual interior point method is used.

In (17), we assume that G = G(x, z; µ), where G(x, z; µ) is given either analyt-
ically or determined by using automatic differentiation, see [9]. In practical com-
putations, G is frequently an approximation of G(x, z; µ) obtained by using either
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gradient differences or variable metric updates. In this paper, we confine our at-
tention to partitioned variable metric updates described in [10]. In this case, G is
defined by the expression

G =
m∑

i=1

ui(x; µ)Gi, (22)

where approximations Gi of ∇2fi(x) are successively updated (more details are given
in the next section).

Now we are in a position to describe the basic algorithm. This algorithm provides
restarts if the direction vector d ∈ Rn does not satisfy the inequality

−gT d ≥ ε0‖g‖‖d‖ (23)

(with a suitable constant 0 < ε0 < 1). The step-length α > 0 is obtained by the
Goldstein rule [8] in such a way that

B(x + αd;µ) ≤ B(x; µ) + ε1αgT d (24)

(with a suitable constant 0 < ε1 < 1/2) and either

B(x + αd; µ) ≥ B(x;µ) + (1 − ε1)αgT d (25)

or α = ∆/‖d‖ (if (25) implies α > ∆/‖d‖) hold.

Algorithm 1.

Data: Termination parameter ε > 0, precision of the nonlinear equation solver δ > 0,
bounds for the barrier parameter 0 < µ < µ, rate of the barrier parameter
decrease 0 < λ < 1, restart parameter ε0 > 0, line search parameter ε1 > 0,
rate of the step-size decrease 0 < β < 1, step bound ∆ > 0.

Input: Sparsity pattern of matrix A(x). Initial estimation of vector x.

Step 1: Initiation. Choose µ ≤ µ. Determine the sparsity pattern of matrix H(x)
from the sparsity pattern of matrix A(x). Carry out a symbolic decomposition
of H(x). Compute values fi(x), 1 ≤ i ≤ m, and F (x) = max1≤i≤m fi(x). Set
k := 0 (iteration count) and r := 1 (restart indicator).

Step 2: Termination. Solve nonlinear equation (9) with a precision δ to obtain value
z(x; µ) and vector u(x; µ) = u(x, z(x; µ);µ). Compute matrix A := A(x) and
vector g := g(x; µ) = A(x)u(x;µ). If µ ≤ µ and ‖g‖ ≤ ε, then terminate the
computation. Otherwise set k := k + 1.

Step 3: Approximation of Hessian matrices. If r = 0, update matrices Gi, 1 ≤ i ≤
m, by using partitioned variable metric updates and compute G by (22). If
r = 1, set Gi := Ii, 1 ≤ i ≤ m, (Ii are unit matrices of desired orders) and
compute G by (22). If r = 2, set G := I.

Step 4: Direction determination. Determine matrix H by (17). Determine vector d
from (20) – (21) by using the Gill–Murray decomposition (19) of matrix H.

Step 5: Restart. If r < 2 and (23) does not hold, then set r := r + 1 and go to
Step 3, else set r := 0.
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Step 6: Step-length selection. Select step-length α in such a way that (24) and either
(25) or α = ∆/‖d‖ hold (note that nonlinear equation (9) has to be solved at
the point x + αd). Set x := x + αd. Compute values fi(x), 1 ≤ i ≤ m, and
F (x) = max1≤i≤m fi(x).

Step 7: Barrier parameter update. Determine a new value of the barrier parameter
µ ≥ µ (not greater than the current one) by one of the procedures described
in Section 3. Go to Step 2.

The above algorithm requires several notes. The restart strategy in Step 5 has
only theoretical significance since it is necessary for proving the global convergence
of Algorithm 1. Nevertheless, restarts appear rarely (approximately one restart after
2500 iterations as it is shown in Table 3 –Table 5 in Section 6) and have no practical
influence on the efficiency of Algorithm 1.

Since function B(x; µ) is smooth, the line search utilized in Step 6 always finds a
step-length satisfying the Goldstein conditions (24) and either (25) or α = ∆/‖d‖.
The use of ∆ has no theoretical significance but is very useful for practical computa-
tions. First, the problem functions can sometimes be evaluated only in a relatively
small region (if they contain exponentials) so an upper bound for step-length is nec-
essary. Secondly, the problem can be very ill-conditioned far from the solution point,
thus large steps are unsuitable. Finally, if the problem has more local solutions, a
suitably chosen ∆ can cause a better local solution to be reached. Therefore, ∆ is a
parameter, which has to be sometimes adjusted.

An important part of Algorithm 1 is the barrier parameter update. There are sev-
eral influences that should be taken into account, which make updating procedures
rather complicated. More details are given in Section 3.

Finally, note that the proposed interior-point method is very similar algorithmi-
cally (but not theoretically) to the smoothing method described in [20] and [22].
Thus Algorithm 1 can be easily adapted to an algorithm implementing the smooth-
ing method (see Section 5). These methods are compared in Section 6.

3. IMPLEMENTATION DETAILS

In Section 2, we have proved (Lemma 2.3) that direction vector d obtained by solving
equation (16) is descent for B(x; µ) if matrix G(x; µ) is positive definite. Matrix (22)
obtained by partitioned variable metric updates is always positive definite, but it
can be ill conditioned. Thus inequality (23) may not be satisfied. If (23) does not
hold after the first restart, we set G = I. In this case, the approximation B of
∇2B(x; µ) has the form

B = I + A(x)V (x;µ)AT (x) − A(x)V (x; µ)eeT V (x; µ)AT (x)

eT V (x; µ)e
(26)

and the minimum eigenvalue of B is not less than 1 (see proof of Lemma 2.3). Using
the same way as in the proof of Lemma 2.4, we can write

κ(B) ≤ ‖B‖ ≤
∥∥I + A(x)V (x; µ)AT (x)

∥∥ ≤ 1 + mg2‖V (x; µ)‖ ≤ 1 +
mg2

µ
(27)
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(procedure used in Step 7 of Algorithm 1 assures that µ ≥ µ). If d solves equation
Bd + g = 0, then (27) implies the inequality

−gT d ≥ 1

κ(B)
‖g‖‖d‖ ≥

µ

µ + mg2 ‖g‖‖d‖. (28)

Thus inequalities (23) and (28) imply that direction vectors are uniformly descent
and the following lemma (proved, e. g., in [3]), holds.

Lemma 3.1. If Assumption 1 and Assumption 2 hold, the Goldstein line search
(Step 6 of Algorithm 1) assures that a constant c exists such that

B(xk+1;µk) − B(xk;µk) ≤ −c‖g(xk;µk)‖2 ∀k ∈ N (29)

(note that g(xk; µk) = ∇B(xk; µk) by Lemma 2.2).

If only Assumption 1 hold, the Goldstein line search implies weaker inequality

B(xk+1; µk) − B(xk; µk) ≤ 0 ∀k ∈ N. (30)

Matrix G appearing in Step 3 of Algorithm 1 is computed by using partitioned
variable metric updates described in [10]. In our implementation, we use safeguarded
scaled BFGS updates. In this case, G is given by (22). Let Rn

i ⊂ Rn, 1 ≤ i ≤
m, be subspaces defined by independent variables of functions fi and Zi ∈ Rn×ni

be matrices whose columns form canonical orthonormal bases in these subspaces
(they are columns of the unit matrix of order n). Then we can define reduced
approximations of the Hessian matrices G̃i = ZT

i GiZi, 1 ≤ i ≤ m. New reduced
approximations of the Hessian matrices, used in the next iteration, are computed by
the formulas

G̃+
i =

1

γ̃i

(
G̃i − G̃is̃is̃

T
i G̃i

s̃T
i G̃is̃i

)
+

ỹiỹ
T
i

s̃T
i ỹi

, s̃T
i ỹi > 0,

G̃+
i = G̃i, s̃T

i ỹi ≤ 0,

where
s̃i = ZT

i (x+ − x), ỹi = ZT
i (∇fi(x

+) − ∇fi(x)), 1 ≤ i ≤ m,

and where either γ̃i = 1 or γ̃i = s̃T
i G̃is̃i/s̃T

i ỹi. (we denote quantities from the next
iteration by +). The particular choice of γ̃i is determined by the controlled scaling
strategy described in [18]. In the first iteration we set G̃i = Ii, 1 ≤ i ≤ m, where Ii

are unit matrices of suitable orders. Finally, G+
i = ZiG̃

+
i ZT

i , 1 ≤ i ≤ m.
A very important part of Algorithm 1 is the barrier parameter update. There are

two requirements, which play opposite roles. First, µ → 0 should hold, since this
is the main property of every interior-point method. On the other hand, round-off
errors can cause that z(x; µ) = F (x) when µ is too small (since F (x)+µ ≤ z(x; µ) ≤
F (x)+mµ and µ → 0, which leads to a breakdown (division by z(x; µ)−F (x) = 0).
Thus a lower bound µ for the barrier parameter has to be used (we recommend value

µ = 10−10 in double precision arithmetic).
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Algorithm 1 is also sensitive to the way in which the barrier parameter decreases.
Denoting by s(x; µ) = z(x; µ)e − f(x) vector of slack variables, we can see from (6)
that ui(x; µ)si(x; µ) = µ, 1 ≤ i ≤ m. In this case, interior-point methods assume
that µ decreases linearly (see [21]). We have tested various possibilities for the
barrier parameter update including simple geometric sequences, which proved to be
unsuitable. Better results were obtained by the following two procedures:

Procedure A.

Phase 1: If ‖g(xk; µk)‖ ≥ g, we set µk+1 = µk, i. e., the barrier parameter is not
changed.

Phase 2: If ‖g(xk; µk)‖ < g, we set

µk+1 = max
(
µ̃k+1, µ

)
, (31)

where

µ̃k+1 = min
[
max(λµk, µk/(σµk + 1)), max(‖g(xk; µk)‖2, 10−2k)

]
. (32)

Values µ = 10−10, λ = 0.85, σ = 100 are chosen as defaults.

Procedure B.

Phase 1: If ‖g(xk; µk)‖2 ≥ ρµk, we set µk+1 = µk, i. e., the barrier parameter is not
changed.

Phase 2: If ‖g(xk; µk)‖2 < ρµk, we set

µk+1 = max(µ, ‖gk‖2). (33)

Values µ = 10−10 and ρ = 0.1 are chosen as defaults.

The choice of g in Procedure A is not critical. We can set g = ∞ but a lower value is
sometimes more suitable (especially for smoothing methods described in Section 5).
More details are given in Section 6. Formula (32) requires several notes. The
first argument of the minimum controls the rate of the barrier parameter decrease,
which is linear (geometric sequence) for small k (term λµk) and sublinear (harmonic
sequence) for large k (term µk/(σµk +1)). Thus the second argument, which assures
that µ is small in the neighborhood of the solution, plays an essential role for large
k. Term 10−2k assures that µ = µ does not hold for small k. This situation can arise
when ‖g(xk; µk)‖ is small, even if xk is far from the solution. The idea of Procedure B
follows from the requirement that B(x; µ) should be sufficiently minimized for a
current value of µ. Thus parameter µk is changed only if ‖g(xk; µk)‖ is sufficiently
small. Note that sequence {µk}∞

1 obtained by Procedure A or Procedure B is non-
increasing and bounded by µ1 ≤ µ.

4. GLOBAL CONVERGENCE

In the subsequent considerations, we will assume that δ = ε = µ = 0 and all
computations are exact, and investigate an infinite sequence {xk}∞

1 generated by
Algorithm 1. First we clarify the dependence of z(x;µ) and B(x;µ) on the parameter
µ. For this purpose, we assume that z(x; µ) and B(x; µ) are functions of µ.
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Lemma 4.1. Let z(x; µ) be a solution of equation (9) (for fixed x and variable µ),
i. e., 1 − eT u(x, z(x;µ);µ) = 0. Then

∂z(x; µ)

∂µ
> 0,

∂B(x; µ)

∂µ
= −

m∑

i=1

log(z(x; µ) − fi(x)).

P r o o f . Differentiating the second equation in (5), which has the form

1 −
m∑

i=1

µ

z(x; µ) − fi(x)
= 0,

by µ, we obtain

−
m∑

i=1

1

z(x; µ) − fi(x)
+

m∑

i=1

µ

(z(x; µ) − fi(x))2
∂z(x; µ)

∂µ
= 0,

which gives

∂z(x; µ)

∂µ
=

(
m∑

i=1

µ2

(z(x;µ) − fi(x))2

)−1

=

(
m∑

i=1

u2
i (x; µ)

)−1

> 0.

Differentiating function

B(x; µ) = z(x; µ) − µ
m∑

i=1

log(z(x; µ) − fi(x)),

one has

∂B(x; µ)

∂µ
=

∂z(x; µ)

∂µ
−

m∑

i=1

log(z(x; µ) − fi(x)) −
m∑

i=1

µ

z(x;µ) − fi(x)

∂z(x; µ)

∂µ

=
∂z(x; µ)

∂µ

(
1 −

m∑

i=1

µ

z(x; µ) − fi(x)

)
−

m∑

i=1

log(z(x; µ) − fi(x))

= −
m∑

i=1

log(z(x;µ) − fi(x)). ¤

Now we prove that B(x; µ), z(x; µ), and F (x) are bounded and B(x; µ) is a
Lipschitz continuous function of µ.

Lemma 4.2. Let Assumption 1 be satisfied. Let {xk}∞
1 and {µk}∞

1 be sequences
generated by Algorithm 1. Then sequences {B(xk; µk)}∞

1 , {z(xk; µk)}∞
1 , {F (xk)}∞

1

are bounded. Moreover, there is L ≥ 0 such that

B(xk+1; µk+1) ≤ B(xk+1; µk) + L(µk − µk+1) (34)
for all k ∈ N.

P r o o f . (a) Using (12) and Assumption 1, we can write

B(x; µ) − F = z(x; µ) − F − µ
m∑

i=1

log(z(x; µ) − fi(x))

≥ z(x; µ) − F − mµ log(z(x; µ) − F ).
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Convex function ψ(t) = t − mµ log(t) has a unique minimum at a point t = mµ,
since ψ′(mµ) = 1 − mµ/mµ = 0. Thus

B(x; µ) ≥ F + mµ − mµ log(mµ) ≥ F + min (0, mµ1(1 − log(mµ1))

≥ F + min (0, mµ1(1 − log(2mµ1))
∆
= B. (35)

Boundedness of z(x; µ) and F (x) from below follows from Assumption 1 and in-
equalities (10).
(b) As in (a), we can write

B(x;µ) − F ≥ z(x;µ) − F

2
+

z(x; µ) − F

2
− mµ log(z(x; µ) − F ).

The convex function ψ̃(t) = t/2 − mµ log(t) has a unique minimum at a point
t = 2mµ. Thus

B(x; µ) ≥ z(x;µ) − F

2
+ F + min (0, mµ1(1 − log(2mµ1)) =

z(x; µ) − F

2
+ B

or z(x; µ) − F ≤ 2(B(x; µ) − B) (36)

(c) Using the mean value theorem and Lemma 4.1, we obtain

B(xk+1; µk+1) − B(xk+1; µk) =
m∑

i=1

log(z(xk+1, µ̃k) − fi(xk+1))(µk − µk+1)

≤
m∑

i=1

log(z(xk+1; µk) − fi(xk+1))(µk − µk+1)

≤ m log(z(xk+1; µk) − F )(µk − µk+1), (37)

where 0 < µk+1 ≤ µ̃k ≤ µk. Using the relation log(t) ≤ t/e (where e = exp(1)),
inequalities (30), (36) and (37) imply

B(xk+1; µk+1) − B ≤ B(xk+1; µk) − B + m log(z(xk+1; µk) − B)(µk − µk+1)

≤ B(xk+1; µk) − B + me−1(z(xk+1;µk) − B)(µk − µk+1)

≤ B(xk+1; µk) − B + 2me−1(B(xk+1; µk) − B)(µk − µk+1)

= (1 + λδk)(B(xk+1;µk) − B)

≤ (1 + λδk)(B(xk; µk) − B),

where λ = 2m/e and δk = µk − µk+1. Then

B(xk+1; µk+1) − B ≤
k∏

i=1

(1 + λδi)(B(x1; µ1) − B)

≤
∞∏

i=1

(1 + λδi)(B(x1; µ1) − B)
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and since ∞∑

i=1

λδi = λ(µ1 − lim
k→∞

µk) ≤ λµ1

the above product is finite. This together with (10) and (36) proves that sequences
{B(xk; µk)}∞

1 , {z(xk; µk)}∞
1 , and {F (xk)}∞

1 are bounded from above.
(d) Using (37), we can write

B(xk+1; µk+1) − B(xk+1; µk) ≤ m log(z(xk+1; µk) − F )(µk − µk+1)

≤ m log(F (xk+1) + mµk − F )(µk − µk+1)

≤ m log(F + mµ1 − F )(µk − µk+1)
∆
= L(µk − µk+1),

for all k ∈ N, where existence of F follows from boundedness of {F (xk)}∞
1 . ¤

The assertion of Lemma 4.2 does not depend on bounds g and G, since Assump-
tion 2 is not used. Thus an upper bound F (independent of g and G) exists such
that F (xk) ≤ F for all k ∈ N. This bound can be used for the definition of the level
set in Assumption 2.

Lemma 4.3. Let Assumption 1 and Assumption 2 be satisfied. Then the values
{µk}∞

1 , generated by Algorithm 1, form a non-increasing sequence such that µk → 0.

P r o o f . In Phase 1, the value of µ is fixed. Since the function B(x; µ) is con-
tinuous, bounded from below by Lemma 4.2, and since (29) (with µk = µ) holds, it
can be proved (see [3]) that ‖g(xk; µ)‖ → 0 if Phase 1 contains an infinite number of
consecutive steps. Thus a step (with index l) belonging to Phase 1 exists such that
either ‖g(xl;µ)‖ < g in Procedure A or ‖g(xl; µ)‖2 < ρµ in Procedure B. This is a
contradiction with the definition of Phase 1. ¤

Theorem 4.4. Let Assumption 1 and Assumption 2 be satisfied. Consider a
sequence {xk}∞

1 generated by Algorithm 1 (with δ = ε = µ = 0). Then

lim
k→∞

m∑

i=1

ui(xk; µk)gi(xk) = 0,
m∑

i=1

ui(xk; µk) = 1

and

ui(xk;µk) ≥ 0, z(xk; µk) − fi(xk) ≥ 0, lim
k→∞

ui(xk;µk)(z(xk; µk) − fi(xk)) = 0

for 1 ≤ i ≤ m.

P r o o f . (a) Since δ = 0, it holds 1−eT u(xk; µk) = 0. Inequalities ui(xk; µk) ≥ 0,
z(xk;µk) − fi(xk) ≥ 0 follow from (6) and from Lemma 2.1.

(b) Using (29) and (34), we can write

B(xk+1; µk+1) − B(xk; µk) = (B(xk+1; µk+1) − B(xk+1; µk))

+ (B(xk+1; µk) − B(xk; µk))

≤ L(µk − µk+1) − c‖g(xk; µk)‖2,



Large Sparse Minimax Optimization 855

which implies

B ≤ lim
k→∞

B(xk; µk) ≤ B(x1;µ1) + L
∞∑

k=1

(µk − µk+1) − c
∞∑

k=1

‖g(xk; µk)‖2

= B(x1; µ1) + Lµ1 − c
∞∑

k=1

‖g(xk; µk)‖2,

where B = F + min (0, mµ1(1 − log(2mµ1)) (see proof of Lemma 4.2). Thus one
has ∞∑

k=1

‖g(xk;µk)‖2 ≤ 1

c
(B(x1; µ1) − B + Lµ1) < ∞,

which implies g(xk;µk) =
∑m

i=1 ui(xk; µk)gi(xk) → 0.

(c) Let 1 ≤ i ≤ m be chosen arbitrarily. Using the definition of ui(xk; µk), we obtain

ui(xk; µk)(zi(xk; µk) − fi(xk)) =
µk

zi(xk; µk) − fi(xk)
(zi(xk; µk) − fi(xk)) = µk → 0

by Lemma 4.3. ¤

Corollary 4.5. Let assumptions of Theorem 4.4 hold. Then every cluster point
x ∈ Rn of sequence {xk}∞

1 satisfies KKT conditions (3), where u ∈ Rm is a cluster
point of sequence {u(xk; µk)}∞

1 .

Assuming that values δ, ε, µ are nonzero, we can prove the following theorem
informing us about the precision obtained, when Algorithm 1 terminates.

Theorem 4.6. Consider sequence {xk}∞
1 generated by Algorithm 1. Let Assump-

tion 1 and Assumption 2 hold. Then, choosing δ > 0, ε > 0, µ > 0 arbitrarily, there
is an index k ≥ 1 such that

‖g(xk; µk)‖ ≤ ε, |1 − eT u(xk; µk)| ≤ δ,
and

ui(xk; µk) ≥ 0, z(xk; µk) − fi(xk) ≥ 0, ui(xk; µk)(z(xk; µk) − fi(xk)) ≤ µ

for all 1 ≤ i ≤ m.

P r o o f . Equality |1 − eT u(xk; µk)| ≤ δ follows immediately from the fact that
equation eT u(xk; µk) = 1 is solved with the precision δ. Inequalities ui(xk; µk) ≥ 0,
z(xk;µk)−fi(xk) ≥ 0 follow from (6) and Lemma 2.1 as in the proof of Theorem 4.4.
Since µk → 0 by Lemma 4.3 and g(xk; µk) → 0 by Theorem 4.4, there is an index
k ≥ 1 such that µk ≤ µ and ‖g(xk;µk)‖ ≤ ε (thus Algorithm 1 terminates at the
kth iteration). Using (6), we obtain

ui(xk; µk)(z(xk; µk) − fi(xk)) =
µk

z(xk; µk) − fi(xk)
(z(xk;µk) − fi(xk)) = µk ≤ µ.

¤
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5. SMOOTHING METHOD
FOR LARGE SPARSE MINIMAX OPTIMIZATION

In this section, we briefly describe a smoothing method for large sparse minimax
optimization which is algorithmically very similar to the proposed interior-point
method and which will be used for a comparison. This smoothing method investi-
gated in [20] and [22] (and in other papers quoted therein) uses smoothing function

S(x; µ) = µ log
m∑

i=1

exp

(
fi(x)

µ

)
= F (x) + µ log

m∑

i=1

exp

(
fi(x) − F (x)

µ

)
, (38)

where F (x) is given by (1) and µ > 0 (we assume that µ → 0 monotonically). The
following result is proved in [20].

Lemma 5.1. Consider smoothing function (38). Then

∇S(x; µ) = A(x)Ũ(x; µ)e (39)

and

∇2S(x; µ) = G̃(x; µ)+
1

µ
A(x)Ũ(x; µ)AT (x)− 1

µ
A(x)Ũ(x; µ)eeT Ũ(x; µ)AT (x), (40)

where G̃(x;µ) =
∑m

i=1 ũi(x; µ)Gi(x), Ũ(x;µ) = diag(ũ1(x; µ), . . . , ũm(x;µ)), and

ũi(x; µ) =
exp(fi(x)/µ)∑m

j=1 exp(fj(x)/µ)
=

exp((fi(x) − F (x))/µ)∑m
j=1 exp((fj(x) − F (x))/µ)

(41)

for 1 ≤ i ≤ m, which implies eT ũ(x; µ) = 1.

Note that (40) together with the Schwarz inequality implies

vT ∇2S(x; µ)v = vT G̃(x; µ)v +
1

µ

(
vT A(x)Ũ(x; µ)AT (x)v − (vT A(x)Ũ(x; µ)e)2

eT Ũ(x; µ)e

)

≥ vT G̃(x; µ)v.

Thus ∇2S(x; µ) is positive definite if G̃(x; µ) is positive definite.
Using Lemma 5.1, we can write one step of the Newton method in the form

x+ = x + αd where ∇2S(x;µ)d = −∇S(x; µ) or

(
H̃ − 1

µ
g̃g̃T

)
d = −g̃, (42)

where

H̃ = G̃(x; µ) +
1

µ
A(x)Ũ(x;µ)AT (x) (43)



Large Sparse Minimax Optimization 857

and g̃ = A(x)Ũ(x; µ)e. It is evident that matrix H̃ has the same sparsity pattern as
H in (17). Since (

H̃ − 1

µ
g̃g̃T

)−1

= H̃−1 +
H̃−1g̃g̃T H̃−1

µ − g̃T H̃−1g̃
,

the solution of (42) can be written in the form

d =
µ

g̃T H̃−1g̃ − µ
H̃−1g̃. (44)

If H̃ is not positive definite, it is advantageous to change it before computation of the
direction vector. Thus we use the sparse Gill–Murray decomposition H̃+Ẽ = L̃D̃L̃T ,
solve equation

L̃D̃L̃T v = g̃ (45)

and set
d =

µ

g̃T v − µ
v. (46)

More details concerning the smoothing method can be found in [20] and [22], where
the proof of its global convergence is introduced.

The above considerations and formulas form a basis for the algorithm, which is
very similar to Algorithm 1. This algorithm differs from Algorithm 1 in Step 2,
where no nonlinear equation is solved (since vector ũ(x; µ) is computed directly
from (41)), in Step 4, where (20) – (21) are replaced by (45) – (46), and in Step 6,
where B(x;µ) is replaced by S(x; µ). Note that µ in (38) has a different meaning
from µ in (12) so procedures for updating these parameters need not be identical.
Nevertheless, Procedure A described in Section 3 was successful in connection with
the smoothing method (we have also tested procedures proposed in [20] and [22], but
they were less efficient). Finally, note that the smoothing method described in this
section has also insufficiencies concerning finite precision computations. If µ is small,
than many evaluations of exponentials lead to underflows. This effect decreases the
precision of computed gradients, which brings a problem with the termination of the
iterative process. For this reason, a lower bound µ has to be used, which is usually
greater than the corresponding bound in the interior point method (we recommend
µ = 10−6 for the smoothing method).

6. COMPUTATIONAL EXPERIMENTS

The primal interior-point method was tested by using two collections of 22 relatively
difficult problems with optional dimension chosen from [19], which can be down-
loaded (together with the above report) from www.cs.cas.cz/luksan/test.html

as Test 14 and Test 15. Functions fi(x), 1 ≤ i ≤ m, given in [19], serve for defining
objective functions

F (x) = max
1≤i≤m

fi(x) (47)

and
F (x) = max

1≤i≤m
|fi(x)| = max

1≤i≤m
[max(fi(x), −fi(x))] . (48)
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Function (47) is not used in connection with Test 15, since Assumption 1 is not
satisfied in this case (sometimes F (x) → −∞).

In Procedure A, Procedure B and Algorithm 1, we have used parameters ε = 10−6,
δ = 10−6, µ = 10−10, µ = 1, g = ∞, λ = 0.85, σ = 100, ρ = 0.1, ε0 = 10−8,

ε1 = 10−4, ∆ = 1000 as defaults. Value ∆ was sometimes decreased (in NT cases,
see below). In the implementation of the smoothing method described in Section 5,
we have used the same default values with the following three exceptions: µ = 10−6,
g = 1, λ = 0.95.

The first set of tests concerns a comparison of the primal interior point method
PIP (Algorithm 1), with the smoothing method SM described in the previous section
and the primal-dual interior point method PDIP described in [15]. All these meth-
ods are implemented in the interactive system for universal functional optimization
UFO [17] as line-search subroutines for discrete minimax optimization and nonlinear
programming. All mentioned subroutines use the same modules for numerical dif-
ferentiation, stepsize selection, and variable metric updates, so the results are quite
comparable. Method PDIP was used for solving equivalent nonlinear programming
problem (2). For an additional comparison, we have used a Fortran version of
the KNITRO software described in [2]. This code with options hessopt=6 (LBFGS),
opttol=10−8, xtol=10−12 was also used for solving problem (2).

The methods listed above were tested by using medium-size test problems with
200 variables. The results of computational experiments are reported in three tables,
where only summary results (over all 22 test problems) are given. Here Method is
the method used, NIT is the total number of iterations, NFV is the total number of
function evaluations, NFG is the total number of gradient evaluations, NR is the total
number of restarts, NL is the number of problems for which the lowest known local
minimum was not found (even if the default value of parameter ∆ was changed),
NF is the number of problems for which no local minimum was found (either a
premature termination occurred or the number of function evaluations exceeded the
upper bound), NT is the number of problems for which the default value of parameter
∆ was changed (for KNITRO, NT corresponds to the number of problems for which
artificial box constraints had to be added), and Time is the total computational
time in seconds. It is necessary to note that both the primal interior point and the
smoothing algorithms used Procedure A in all cases.

Table 1. Test 14: Function (47) with 200 variables.

Method NIT NFV NFG NR NL NF NT Time

PIP 1615 2429 1637 – – – 1 1.50
SM 7244 21008 7266 – 1 – 8 9.14
PDIP 1790 3925 1790 5 1 – 9 4.63
KNITRO 6661 12364 6683 – 1 – 6 33.59
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Table 2. Test 14: Function (48) with 200 variables.

Method NIT NFV NFG NR NL NF NT Time

PIP 3227 5279 3248 1 – – 3 1.88
SM 2985 6311 3006 1 1 – 6 4.84
PDIP 2836 7023 2837 6 1 – 8 7.97
KNITRO 5868 8949 5890 – 1 – 5 36.28

Table 3. Test 15: Function (48) with 200 variables.

Method NIT NFV NFG NR NL NF NT Time

PIP 2435 5045 2457 1 1 – 1 2.56
SM 9326 18290 9348 1 2 – 5 38.06
PDIP 2056 3883 2056 – 2 – 4 7.00
KNITRO 1166 1934 1168 – 3 – 2 24.62

Results introduced in the above tables imply the following conclusions. Pri-
mal interior-point method PIP (Algorithm 1) seems to be more efficient than other
methods tested. Smoothing method SM is more sensitive to the choice of its pa-
rameters, converges more slowly and requires greater CPU time (since computation
of exponentials is time consuming). Primal-dual interior-point methods for general
nonlinear programming problems (PDIP and KNITRO) convert the original problem
to the problem with n+1 basic variables, m (or 2m for function (48)) slack variables
and the same number of equality constraints. Thus the size of linear algebra sub-
problems and the resulting CPU time is considerably larger. Note that PDIP uses
constant penalty parameter (see [15]), which had to be sometimes adjusted. Thus
the number NT is slightly greater for PDIP.

The second set of tests concerns a comparison of PIP, SM, PDIP, and KNITRO by
using large-scale test problems with 1000 variables. The results of computational
experiments are given in three tables, where P is the problem number, NIT is the
number of iterations, NFV is the number of function evaluations and F is the function
value reached. The last two rows of every table contain summary results including
the number of problems for which the default value of parameter ∆ was changed
and the total computational time in seconds.

The results introduced in these tables confirm conclusions following from the
previous tables. Primal interior-point method PIP seems to be more efficient than
smoothing method SM and primal-dual interior point methods PDIP and KNITRO in
all indicators. The computational time is significantly shorter and also the number
of iterations is usually smaller in comparison with other methods. We believe that
the efficiency of the primal interior-point methods could be even improved by using
more sophisticated procedures for the barrier parameter decrease, more complicated
variable metric updates, different strategies for restarts or suitable trust region re-
alizations. Note that KNITRO, even if it uses sparse matrix techniques and efficient
linear solvers, is not intended for partially separable minimax problems. Since parti-
tioned variable metric updates are not implemented in KNITRO, we had to use LBFGS
updates, which are usually less efficient (the other algorithmic options of KNITRO
gave worse results).
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Table 4. Test 14: Function (47) with 1000 variables.



Large Sparse Minimax Optimization 861

P
I
P

S
M

P
D
I
P

K
N
I
T
R
O

P
N
I
T

N
F
V

F
N
I
T

N
F
V

F
N
I
T

N
F
V

F
N
I
T

N
F
V

F

3
6
8

6
9

3
.2

1
5
4
E

-0
8

6
9

8
2

5
.3

3
4
6
E

-0
8

6
1

7
1

4
.2

7
2
4
E

-1
1

1
4
6

1
5
5

5
.3

4
2
6
E

-0
7

4
7
6

9
7

0
.5

4
2
7
6
1

5
6
5

7
0
5

0
.5

4
2
7
6
1

5
0

5
4

0
.5

4
2
7
6
1

1
5
5
9

4
6
8
7

0
.5

4
2
7
6
3

5
9
9

1
0
2

1
.0

3
4
0
E

-0
7

1
0
9

2
5
5

2
.0

8
7
5
E

-0
7

3
2

3
3

1
.7

0
8
7
E

-0
8

3
2

4
4

1
.9

9
9
9
E

-0
7

6
8
8

1
2
8

1
.1

5
6
5
E

-0
7

9
0

1
6
2

5
.7

9
0
7
E

-0
7

6
1

6
2

4
.1

9
3
2
E

-1
0

5
7

7
2

1
.9

9
9
9
E

-0
7

7
3
4

6
6

0
.2

6
0
1
6
2

1
4
4

4
1
6

0
.2

6
0
1
6
2

4
6

4
6

0
.2

6
0
1
6
3

6
3

9
6

0
.2

6
0
1
6
3

8
2
5

6
5

1
5
5
6
.5

0
6

5
2

1
5
5
6
.5

0
1
8
8

2
6
3

1
5
5
6
.5

0
1
4
3

2
1
5

1
5
5
6
.5

0
1
1

6
4

6
9

5
.3

8
8
3
E

-0
2

3
4
5

3
4
7

5
.3

8
8
3
E

-0
2

9
1

1
0
5

5
.3

8
8
3
E

-0
2

1
1
6
0

2
9
3
4

5
.3

8
8
3
E

-0
2

1
2

2
9
5

8
2
0

0
.9

9
6
4
9
2

1
6
8

3
0
5

0
.9

9
6
4
9
2

1
9
1

4
8
9

0
.9

9
6
4
9
2

1
1
7

2
5
9

0
.9

9
6
4
9
2

1
3

1
6

1
7

6
.2

3
3
0
E

-0
8

6
7

1
.5

6
9
8
E

-1
2

2
3

2
3

3
.4

7
5
7
E

-0
6

3
4

6
3

2
.1

5
8
8
E

-0
7

1
4

5
7

3
.6

1
7
3
E

-1
2

4
6
6

3
.9

1
2
4
E

-1
2

1
2

1
2

1
.0

6
0
4
E

-0
8

9
1
0

8
.6

9
4
9
E

-0
7

1
5

3
6

3
8

3
.9

9
6
0
E

-0
3

3
8

8
3

3
.9

9
6
0
E

-0
3

8
8

1
0
5

3
.9

9
6
0
E

-0
3

4
0
4

8
7
2

3
.9

9
6
0
E

-0
3

1
6

3
1

8
4

2
.2

7
0
6
E

-1
4

3
0
7

6
7
6

5
.9

5
2
8
E

-1
0

8
2

8
3

3
.6

5
6
5
E

-1
0

7
0

1
2
4

4
.8

8
0
1
E

-0
7

1
7

6
6

1
7
1

6
.5

7
2
9
E

-0
7

7
5

8
3

1
.2

4
3
8
E

-0
6

6
6

8
3

8
.3

6
2
9
E

-0
8

5
9
5

6
2
9

5
.9

6
1
8
E

-0
7

1
8

5
7

8
0

2
.0

5
7
9
E

-0
7

1
2
8

2
8
8

9
.1

7
4
4
E

-0
7

2
5
4

2
8
7

1
.6

1
0
6
E

-0
7

5
2
6

5
6
7

1
.7

5
2
0
E

-0
6

1
9

9
1
8

4
2
.5

0
7
6

4
8

4
2
.5

0
7
5

2
3

7
0

4
2
.5

0
7
6

1
4
9

2
5
0

4
2
.5

0
7
6

2
0

2
5
2

2
9
5

1
.4

9
9
9
E

-0
4

5
8
1

1
7
4
1

5
.9

8
8
2
E

-0
5

1
0
4

1
3
6

9
.9

9
6
9
E

-0
6

9
7
8

1
9
8
7

4
.1

5
0
2
E

-0
4

2
1

1
2

1
7

5
.9

9
4
0
E

-0
3

6
9

2
3
6

5
.9

9
4
0
E

-0
3

4
7

7
8

5
.9

9
4
0
E

-0
3

7
3

2
1
0

5
.9

9
4
0
E

-0
3

2
2

3
9

4
8

1
.1

5
6
3
E

-0
3

4
2

6
8

1
.1

5
6
3
E

-0
3

1
2
5

1
9
3

1
.1

5
6
4
E

-0
3

1
5
9
6

3
1
4
4

1
.1

5
6
4
E

-0
3

Σ
1
2
7
2

2
1
9
1

N
T

=
2

2
7
5
0

5
5
8
0

N
T

=
7

1
5
4
4

2
1
9
3

N
T

=
4

7
7
1
1

1
6
3
1
8

N
T

=
1
2

T
i
m
e

=
4
.0

6
T
i
m
e

=
1
8
.8

1
T
i
m
e

=
3
0
.3

6
T
i
m
e

=
7
0
8
.0

6

Table 5. Test 14: Function (48) with 1000 variables.
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Table 6. Test 15: Function (48) with 1000 variables.
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