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KYBERNET IK A — VOLUME 4 5 ( 2 0 0 9 ) , N U MBE R 4 , P AG E S 6 3 4 – 6 4 5

ON A VARIANT OF THE LOCAL PROJECTION METHOD
STABLE IN THE SUPG NORM

Petr Knobloch

We consider the local projection finite element method for the discretization of a scalar
convection-diffusion equation with a divergence-free convection field. We introduce a new
fluctuation operator which is defined using an orthogonal L2 projection with respect to a
weighted L2 inner product. We prove that the bilinear form corresponding to the discrete
problem satisfies an inf-sup condition with respect to the SUPG norm and derive an error
estimate for the discrete solution.
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1. INTRODUCTION

In our recent work [7], we presented a novel analysis of local projection finite element
methods applied to a scalar convection-diffusion-reaction equation

− ε ∆u + b · ∇u + c u = f in Ω , u = ub on ∂Ω . (1)

We assumed that Ω ⊂ Rd, d ≥ 1, is a bounded domain with a polyhedral Lipschitz-
continuous boundary ∂Ω, ε is a positive constant, b ∈ W 1,∞(Ω)d, c ∈ L∞(Ω), f ∈
L2(Ω) and ub ∈ H1/2(∂Ω). In addition, we used the frequently applied assumption
that

c − 1
2 div b ≥ σ0 > 0 in Ω , (2)

where σ0 is a constant. Under these assumptions we proved that the bilinear form of a
local projection stabilization satisfies an inf-sup condition in a norm which is stronger
than the natural norm for which the bilinear form is coercive. Moreover, we proved
that this stronger norm is equivalent to the norm of the streamline upwind /Petrov–
Galerkin (SUPG) method if additional assumptions are satisfied. This important
result implies that local projection methods are more stable than their coercivity
suggests and that they often lead to the same error estimates as the SUPG method.
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In the present paper, we extend the results of [7] to scalar convection-diffusion
equations with a divergence-free convection field b. Thus, we shall consider the
following problem:

− ε∆u + b · ∇u = f in Ω , u = ub on ∂Ω . (3)

We retain the above assumptions on the data, but instead of (2), we assume that

div b = 0 in Ω . (4)

Then the problem (3) has still a unique solution in H1(Ω) but the analysis of finite
element discretizations of (3) is complicated by the fact that the natural norm cor-
responding to the respective bilinear form does not contain the L2(Ω) norm. Let
us stress that the case c = 0 is the most difficult one among the problems (1) with
c ≥ 0 if (4) holds.

The problem (3) is a basic model problem for many convection-diffusion phenom-
ena arising in applications. It can also be viewed as a simplified model for a better
understanding of numerical methods for the incompressible Navier–Stokes or Oseen
equations.

We shall consider a new variant of the local projection method for which the
fluctuation operator is defined using an orthogonal L2 projection with respect to a
weighted L2 inner product. This allows us to prove that the underlying bilinear form
satisfies an inf-sup condition with respect to the SUPG norm without any additional
assumptions. We also present an error estimate which can be established in a simpler
way than usual error estimates for local projection methods.

The plan of the paper is as follows. First, in the next section, we introduce the
SUPG method and a general local projection discretization. Then, in Section 3, we
define a special fluctuation operator and prove the stability of the local projection
method with respect to the SUPG norm. Section 4 is devoted to the derivation of
an error estimate and, in Section 5, we present numerical results. Finally, Section 6
contains our conclusions. Throughout the paper, we use standard notation for usual
function spaces and norms, see, e. g., [5].

2. TWO STABILIZED DISCRETIZATIONS

Let Th be a triangulation of Ω consisting of open shape-regular cells K possessing
the usual compatibility properties. We set hK = diam(K) for any K ∈ Th and
assume that hK ≤ h for all K ∈ Th. Using the triangulation Th, we define a finite
element space Wh ⊂ H1(Ω), see, e. g., [5], and we set Vh = Wh ∩H1

0 (Ω). In addition,
we introduce a function ũbh ∈ Wh such that its trace approximates the boundary
condition ub.

We shall assume that the space Wh has standard approximation properties, i. e.,
there exist l ∈ N and an interpolation operator

ih ∈ L (H2(Ω),Wh) ∩ L (H2(Ω) ∩ H1
0 (Ω), Vh)
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satisfying

h−1
K ‖v − ihv‖0,K + |v − ihv|1,K + hK |v − ihv|2,K ≤ C hk

K |v|k+1,K

∀ v ∈ Hk+1(Ω), K ∈ Th, k = 1, . . . , l . (5)

Furthermore, we set ũbh = ihũb where ũb ∈ H2(Ω) is an extension of ub. Thus, we
have to assume that ub ∈ H3/2(∂Ω). Let us emphasize that this assumption is made
only for clarity of exposition and weaker assumptions on ub would not cause any
additional difficulties.

The simplest finite element discretization of (3) is the Galerkin discretization
which is obtained by replacing the space H1

0 (Ω) in the weak formulation of (3) by
its subspace Vh. This leads to the following discrete problem:

Find uh ∈ Wh such that uh − ũbh ∈ Vh and

aG(uh, vh) = (f, vh) ∀ vh ∈ Vh ,

where
aG(u, v) = ε (∇u, ∇v) + (b · ∇u, v)

and (·, ·) denotes the inner product in L2(Ω) or L2(Ω)d. Integrating by parts, we
obtain in view of (4)

aG(v, v) = ε |v|21,Ω ∀ v ∈ H1
0 (Ω) , (6)

which implies that the Galerkin discretization is uniquely solvable. If the solution
of (3) satisfies u ∈ Hk+1(Ω) for some k ∈ {1, . . . , l}, then we have the error estimate
(see, e. g., [5])

|u − uh|1,Ω ≤ C hk

(
1 +

h ‖b‖0,∞,Ω

ε

)
|u|k+1,Ω ,

where C is independent of h and the data of the problem. However, this estimate is
useless if ε ¿ h‖b‖0,∞,Ω, which we encounter in many applications. It is well known
that, in this case, the Galerkin solution is usually globally polluted by spurious
oscillations, cf., e. g., [9].

To enhance the stability and accuracy of the Galerkin discretization of (3) in the
convection dominated regime, various stabilization strategies have been developed.
One of the most popular approaches is the streamline upwind /Petrov–Galerkin
(SUPG) method proposed by Brooks and Hughes [4]. The discrete problem reads:

Find uh ∈ Wh such that uh − ũbh ∈ Vh and

aSUPG
h (uh, vh) = (f, vh + δ b · ∇vh) ∀ vh ∈ Vh ,

where
aSUPG

h (u, v) = aG(u, v) +
∑

K∈Th

(−ε∆u + b · ∇ u, δ b · ∇v)K

and δ ∈ L∞(Ω) is a nonnegative stabilization parameter. As usual, (·, ·)K denotes
the inner product in L2(K) or L2(K)d. If

0 ≤ δ|K ≤ h2
K

ε µ2
∀ K ∈ Th ,
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where µ is a constant from the inverse inequality

‖∆vh‖0,K ≤ µh−1
K |vh|1,K ∀ vh ∈ Vh, K ∈ Th ,

the bilinear form aSUPG
h is coercive on Vh with respect to the norm

|||v|||SUPG =
(
ε |v|21,Ω + ‖δ1/2 b · ∇v‖2

0,Ω

)1/2

. (7)

More precisely, we have

aSUPG
h (vh, vh) ≥ 1

2
|||vh|||2SUPG ∀ vh ∈ Vh .

Thus, there exists a unique SUPG solution and, if δ > 0, the SUPG method possesses
a stronger stability in the streamline direction than the Galerkin discretization.

Let the solution of (3) satisfy u ∈ Hk+1(Ω) for some k ∈ {1, . . . , l} and let the
stabilization parameter δ be constant on each element of Th. Then, applying the
techniques presented in [9], we derive that the SUPG solution satisfies the error
estimate

|||u − uh|||SUPG ≤ C hk

( ∑

K∈Th

γK |u|2k+1,K

)1/2

,

where

γK = ε + ‖δ1/2 b‖2
0,∞,K +

h2
K ‖b‖2

0,∞,K

max{ε, ‖δ1/2 b‖2
0,∞,K} .

Balancing the two terms in γK containing δ, we deduce that

δ|K ≈ h2
K

max{ε, hK‖b‖0,∞,K} .

Then γK . ε + 2 hK‖b‖0,∞,K and hence

|||u − uh|||SUPG ≤ C hk (ε + h ‖b‖0,∞,Ω)1/2 |u|k+1,Ω ,

where C is independent of h and the data of the problem. This is a significant im-
provement in comparison to the Galerkin method since the constant in the estimate
for the streamline derivative of the error now does not deteriorate for decreasing ε.
Moreover, spurious oscillations are suppressed and they are localized only along
sharp layers.

During the last decade, stabilization techniques based on local projections (LP)
have become very popular, see, e. g., [2], [3], and [8]. To formulate a LP method,
we introduce a discontinuous finite element space Dh ⊂ L2(Ω) and denote by πh a
projection operator which maps the space L2(Ω) onto Dh. Furthermore, we define
the so-called fluctuation operator κh = id − πh, where id is the identity operator
on L2(Ω). Then the local projection discretization of (3) considered in this paper
reads:
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Find uh ∈ Wh such that uh − ũbh ∈ Vh and

aLP
h (uh, vh) = (f, vh) ∀ vh ∈ Vh , (8)

where
aLP

h (u, v) = aG(u, v) + (κh(b · ∇u), τ κh(b · ∇v))

and τ ∈ L∞(Ω) is a nonnegative stabilization parameter. In view of (6) it is obvious
that the bilinear form aLP

h is coercive on Vh with respect to the local projection
norm

|||v|||LP =
(
ε |v|21,Ω + ‖τ1/2 κh(b · ∇v)‖2

0,Ω

)1/2

.

This assures the existence of a unique solution of the local projection discretization.
It was demonstrated in [6] that the stabilization parameter τ should be chosen

analogously as for the SUPG method. Therefore, we shall assume that there exists
a constant C1 ≥ 1 such that

1

C1

h2
K

max{ε, hK ‖b‖0,∞,K} ≤ τ |K ≤ C1
h2

K

max{ε, hK ‖b‖0,∞,K} ∀ K ∈ Th . (9)

Then, under suitable assumptions on the spaces Wh and Dh, the fluctuation operator
κh and the data of the problem (3) (see the following sections), it was proved in [6]
that the solution of the local projection discretization (8) satisfies the error estimate

|||u − uh|||LP ≤ C hk (ε + h)1/2 ‖u‖k+1,Ω .

As we see, the convergence rate is the same as for the SUPG method. However,
the norm in which the error is measured seems to be weaker than the SUPG norm
since the local projection term in ||| · |||LP measures only the fluctuations. We shall
show in the following sections that a suitable definition of the fluctuation operator
enables us to prove the convergence also with respect to the SUPG norm.

3. STABILITY WITH RESPECT TO THE SUPG NORM

The local projection method was introduced by Becker and Braack [1] as a two-level
approach since the space Wh was constructed on a mesh obtained by refining the
triangulation Th. The space Wh then consists of continuous functions which are
polynomials of degree l on each element of the finer triangulation whereas the space
Dh consists of discontinuous functions which are polynomials of degree l−1 on each
element of the triangulation Th (in case of quadrilateral or hexahedral elements
the polynomial degree is considered for each variable and possibly on the reference
element). The refinement of Th is constructed in such a way that the interior of
each element K ∈ Th contains one new vertex created by this refinement. Therefore,
for any K ∈ Th, we can define a bubble function bK with supp bK ⊂ K which is
piecewise (multi)linear with respect to the finer triangulation and hence its product
with any function from Dh belongs to Wh. Thus, we have the property

∀ K ∈ Th ∃ bK ∈ H1
0 (K) ∩ C(K) : 0 < bK ≤ 1 in K , bK · Dh ⊂ Wh , (10)
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where bK · Dh is regarded as a space of functions vanishing outside K. Recently, a
one-level approach was introduced in [8] where both Dh and Wh are constructed on
Th but, using the same space Dh as before, the space Wh is defined by enriching
elementwise the polynomials of degree l by bK · (Dh|K) with a polynomial bubble
function bK on K of the lowest possible degree. Thus, the condition (10) is satisfied
also in this case. We refer to [8] for a detailed description of various pairs of finite
element spaces Wh, Dh applicable to the local projection method.

Now we assume that we are given finite element spaces Wh and Dh satisfying
(10) and we fix one function bK from (10) for each K ∈ Th. We assume that there
exists a constant C2 ≥ 1 independent of h such that

‖q‖0,K ≤ C2 ‖b
1/2
K q‖0,K ∀ q ∈ Dh, K ∈ Th . (11)

If all functions bK are generated by one function defined on the reference element,
the inequality (11) can be proved by transforming the norms in (11) on the reference
element and applying equivalence of norms on finite-dimensional spaces. We shall
also need the inverse inequality

|vh|1,K ≤ C3 h−1
K ‖vh‖0,K ∀ K ∈ Th, vh ∈ Wh , (12)

which can be proved analogously as (11). Again, the constant C3 is assumed to be
independent of h.

Let us consider any K ∈ Th and define the bilinear form (·, ·)b,K by

(u, v)b,K = (bK u, v)K .

Then it is easy to see that (·, ·)b,K is an inner product on L2(K). We define the
operator πK : L2(K) → D(K) ≡ Dh|K as the projection onto the finite-dimensional
space D(K) which is orthogonal with respect to (·, ·)b,K . Thus, πK satisfies

(πK v, q)b,K = (v, q)b,K ∀ v ∈ L2(K), q ∈ D(K) . (13)

Clearly,

‖b
1/2
K πK v‖0,K ≤ ‖b

1/2
K v‖0,K ∀ v ∈ L2(K) .

This inequality together with (10) and (11) implies that, for any v ∈ L2(K),

‖bK πK v‖0,K ≤ ‖b
1/2
K πK v‖0,K ≤ ‖v‖0,K , (14)

‖πK v‖0,K ≤ C2 ‖v‖0,K . (15)

Note also that

(v, bK πK v)K = (v, πK v)b,K = (πK v, πK v)b,K = ‖b
1/2
K πK v‖2

0,K

and hence, in view of (11),

(v, bK πK v)K ≥ C−2
2 ‖πK v‖2

0,K . (16)

Using the operators πK , we define the operator πh introduced in the previous
section by (πh v)|K = πK (v|K) for any v ∈ L2(Ω) and K ∈ Th. The fluctuation
operator used in the local projection discretization (8) is defined by means of this
operator πh.

Now we are in the position to prove the main result of this paper.
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Theorem 1. Let the finite element spaces Wh and Dh satisfy (10), (11) and (12).
Let the fluctuation operator κh be defined using the operators πK from (13). Let
the stabilization parameter τ be constant on each element of the triangulation Th

and satisfy (9). Then the bilinear form aLP
h satisfies

sup
vh∈Vh

aLP
h (uh, vh)

|||vh|||SUPG

≥ β |||uh|||SUPG ∀ uh ∈ Vh , (17)

where β = 1/(
√

2 +
√

10C1 C3
2 C3)

2 and the norm ||| · |||SUPG is defined by (7) with
δ = τ .

P r o o f . Consider any uh ∈ Vh. We shall construct a function vh ∈ Vh such that

aLP
h (uh, vh) ≥ |||uh|||2SUPG and |||uh|||SUPG ≥ β |||vh|||SUPG . (18)

The inequalities (18) immediately imply the inf-sup condition (17).
First, we define functions wh ∈ Dh and zh ∈ Vh by

wh|K = τ
1/2
K πK(b · ∇uh) , zh|K = C2

2 τ
1/2
K bK wh|K ∀ K ∈ Th ,

where τK = τ |K . Then, according to (16),

(b · ∇uh, zh)K ≥ ‖wh‖2
0,K ∀ K ∈ Th .

Consequently,

aLP
h (uh, zh) ≥ ‖wh‖2

0,Ω + ε (∇uh,∇zh) + (κh(b · ∇uh), τ κh(b · ∇zh))

≥ ‖wh‖2
0,Ω − |||uh|||LP |||zh|||LP . (19)

Employing the inverse inequality (12), we obtain for any K ∈ Th

|zh|1,K ≤ C3 h−1
K ‖zh‖0,K = C2

2 C3 h−1
K τ

1/2
K ‖bK wh‖0,K

and hence, in view of (10) and (14),

|zh|1,K ≤ C2
2 C3 h−1

K τ
1/2
K ‖wh‖0,K (20)

and
|zh|1,K ≤ C2

2 C3 h−1
K τK ‖b · ∇uh‖0,K . (21)

Since ‖κh(b · ∇zh)‖0,K ≤ 2C2 ‖b‖0,∞,K |zh|1,K due to (15), it follows from (20) and
(9) that

|||zh|||2LP ≤ ζ ‖wh‖2
0,Ω with ζ = 5 C2

1 C6
2 C2

3 .

Therefore,
|||uh|||LP |||zh|||LP ≤ 1

2 ζ |||uh|||2LP + 1
2 ‖wh‖2

0,Ω

and (19) implies that

aLP
h (uh, zh) ≥ 1

2 ‖wh‖2
0,Ω − 1

2 ζ |||uh|||2LP .
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In view of (6), we have aLP
h (uh, uh) = |||uh|||2LP and hence, defining vh ∈ Vh by

vh = 4 zh + 2 (1 + ζ)uh ,

we obtain

1
2 aLP

h (uh, vh) ≥ ‖wh‖2
0,Ω + |||uh|||2LP

= ε |uh|21,Ω + ‖τ1/2 πh(b · ∇uh)‖2
0,Ω + ‖τ1/2 κh(b · ∇uh)‖2

0,Ω ,

which gives the first inequality in (18) by the triangular inequality. Finally, let us
prove the second inequality in (18). Using (9), we obtain for any K ∈ Th

τK‖b · ∇zh‖2
0,K ≤ τK ‖b‖2

0,∞,K |zh|21,K ≤ C1 hK ‖b‖0,∞,K |zh|21,K

and hence, in view of (21) and again (9), we derive

ε |zh|21,K + τK‖b · ∇zh‖2
0,K ≤ 2C2

1 C4
2 C2

3 τK ‖b · ∇uh‖2
0,K .

Thus
|||zh|||SUPG ≤

√
2 C1 C2

2 C3 |||uh|||SUPG ,

which shows that, for any β ≤ 1/(2 + 2 ζ + 4
√

2 C1 C2
2 C3), the second inequality in

(18) holds. ¤

4. ERROR ANALYSIS

In this section, we shall prove an error estimate for the solution of the local projection
discretization (8). Thanks to the inf-sup condition established in Theorem 1, the
proof can be carried out easier than for general local projection methods, cf., e. g., [6],
[8]. Similarly as for the space Wh, we shall assume that there exists an interpolation
operator jh ∈ L (L2(Ω), Dh) such that

‖q − jhq‖0,K ≤ C hk
K |q|k,K ∀ q ∈ Hk(Ω), K ∈ Th, k = 1, . . . , l , (22)

where the integer l is the same as for Wh.
It is well known that local projection stabilizations lead to nonconsistent dis-

cretizations. Indeed, the weak solution u of the problem (3) satisfies

aLP
h (u, vh) = (f, vh) + sh(u, vh) ∀ vh ∈ Vh ,

where
sh(u, v) = (κh(b · ∇u), τ κh(b · ∇v)) .

Consequently, the solution uh of the local projection discretization (8) obeys the
relation

aLP
h (u − uh, vh) = sh(u, vh) ∀ vh ∈ Vh .

From this we deduce using Theorem 1 and the triangular inequality that

β |||u − uh|||SUPG ≤ β |||u − ihu|||SUPG

+ sup
vh∈Vh

aLP
h (u − ihu, vh)

|||vh|||SUPG

+ sup
vh∈Vh

sh(u, vh)

|||vh|||SUPG

, (23)

where we now assume that u ∈ H2(Ω). The estimate of the second term on the
right-hand side of (23) will be based on the following lemma.
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Lemma 1. Under the assumptions of Theorem 1, we have for any w ∈ H1(Ω) and
v ∈ H1

0 (Ω)

aLP
h (w, v) ≤ C

( ∑

K∈Th

λK (h−2
K ‖w‖2

0,K + |w|21,K)

)1/2

|||v|||SUPG , (24)

where λK = ε + hK ‖b‖0,∞,K and C = 4
√

2C1 C2
2 .

P r o o f . Consider any w ∈ H1(Ω) and v ∈ H1
0 (Ω). In view of (4), we obtain

aLP
h (w, v) = ε (∇w,∇v) − (w, b · ∇v) + sh(w, v) .

Since τ is piecewise constant, we derive using (15)

aLP
h (w, v) ≤ 4C2

2 |||w|||SUPG |||v|||SUPG − (w, b · ∇v) .

The assumption (9) implies that, for any K ∈ Th,

‖τ1/2 b · ∇w‖2
0,K ≤ τK ‖b‖2

0,∞,K |w|21,K ≤ C1 hK ‖b‖0,∞,K |w|21,K ,

where again τK = τ |K . Therefore,

|||w|||SUPG ≤
( ∑

K∈Th

(ε + C1 hK ‖b‖0,∞,K) |w|21,K

)1/2

. (25)

Choosing any K ∈ Th and using the estimates

(w, b · ∇v)K ≤ ε−1/2 ‖b‖0,∞,K ‖w‖0,K ε1/2 |v|1,K ,

(w, b · ∇v)K ≤ τ
−1/2
K ‖w‖0,K ‖τ1/2 b · ∇v‖0,K ,

we get

(w, b · ∇v)K ≤ ‖b‖0,∞,K %
−1/2
K ‖w‖0,K (ε |v|21,K + ‖τ1/2 b · ∇v‖2

0,K)1/2

with %K = max{ε, τK‖b‖2
0,∞,K}. Since τK satisfies (9), we deduce that %K ≥

hK‖b‖0,∞,K/C1 and, consequently,

(w, b · ∇v) ≤
( ∑

K∈Th

C1 ‖b‖0,∞,K h−1
K ‖w‖2

0,K

)1/2

|||v|||SUPG .

This proves the lemma. ¤
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Theorem 2. Let the assumptions of Theorem 1 be satisfied and let (5) and (22)
hold. Let the solution of (3) satisfy u ∈ Hk+1(Ω) for some k ∈ {1, . . . , l} and let
b · ∇u ∈ Hk(Ω). Then the solution of the local projection discretization (8) satisfies

|||u−uh|||SUPG ≤ C hk (ε+h ‖b‖0,∞,Ω)1/2 |u|k+1,Ω +C hk+1/2

( ∑

K∈Th

|b · ∇u|2k,K

‖b‖0,∞,K

)1/2

,

where C is independent of h and the data of the problem (3).

P r o o f . Since κhqh = 0 for any qh ∈ Dh, we obtain

sh(u, vh) ≤ 4C2
2 ‖τ1/2 (b · ∇u − jh(b · ∇u))‖0,Ω |||vh|||SUPG ∀ vh ∈ Vh .

Thus, the theorem follows easily from (23), (25), (24), (5), (22), and (9). ¤
We see that if the term ∑

K∈Th

|b · ∇u|2k,K

‖b‖0,∞,K

can be bounded independently of h (e. g., if b 6= 0 in Ω), we have an analogous error
estimate as for the SUPG method.

5. NUMERICAL RESULTS

Our numerical tests show that the local projection operator considered in this paper
leads to similar results as the common local orthogonal L2 projection operator. We
shall demonstrate it for the following setting of the problem (3).

Example 1. We consider the problem (3) in Ω = (0, 1)2 with

ε = 10−8 , b = (1, 0) , f = 1 , ub = 0 .

The solution of Example 1 possesses an exponential boundary layer at x = 1 and
parabolic boundary layers at y = 0 and y = 1. Outside the layers, the solution is
very close to the function u0(x, y) = x.

We shall present numerical results for both the one-level approach and the two-
level approach of the local projection method (see Section 3). The one-level method
is defined using a triangulation Th consisting of 20 × 20 equal squares. The space
Wh is constructed using the Q2 element enriched by three bubble functions on each
element K of Th. Choosing functions bK ∈ Q2(K) satisfying (10), these three bubble
functions are bK x, bK y and bK x y. The two-level method uses a triangulation Th

consisting of 10 × 10 equal squares for constructing the space Dh. The space Wh is
constructed on the same triangulation as in the one-level case using the Q2 element.
For any K ∈ Th, the function bK satisfying (10) is piecewise bilinear with respect to a
decomposition of K into four equal squares. For both methods, the projection space
Dh is constructed using the Q1 element and the stabilization parameter is defined by

τ |K =
1

15
min

{
hK

‖b‖0,∞,K

,
h2

K

6 ε

}
∀ K ∈ Th .
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Fig. 1. LP solutions of Example 1 defined using local orthogonal L2 projections:

the one-level approach (left) and the two-level approach (right).
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Fig. 2. LP solutions of Example 1 defined using the local projection operator from

Section 3: the one-level approach (left) and the two-level approach (right).

The discrete solutions obtained are depicted in Figure 1 and Figure 2. The one-
level solution is visualized without the additional bubbles so that the corresponding
function belongs to the space Wh used for computing the two-level solution. The
lines in the figures connect the values of the solutions at vertices, midpoints of edges
and centres of elements of the 20 × 20 mesh. We observe that the solutions are not
significantly influenced by the choice of the local projection operator. It is important
that, like for residual-based stabilizations, spurious oscillations are localized along
boundary layer regions.
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6. CONCLUSIONS

In this paper, we proposed a new fluctuation operator in the local projection finite
element method for the numerical solution of scalar convection-diffusion equations.
This operator enabled us to prove stability and error estimates with respect to the
SUPG norm for general divergence-free convection fields. Numerical results show
that the local projection method with the new fluctuation operator still leads to
numerical solutions with oscillations localized to layer regions.
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