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IMPLEMENTATION OF THE MR TRACTOGRAPHY
VISUALIZATION KIT BASED ON THE ANISOTROPIC
ALLEN–CAHN EQUATION

Pavel Strachota

Magnetic Resonance Diffusion Tensor Imaging (MR–DTI) is a noninvasive in vivo
method capable of examining the structure of human brain, providing information about
the position and orientation of the neural tracts. After a short introduction to the princi-
ples of MR–DTI, this paper describes the steps of the proposed neural tract visualization
technique based on the DTI data. The cornerstone of the algorithm is a texture diffu-
sion procedure modeled mathematically by the problem for the Allen–Cahn equation with
diffusion anisotropy controlled by a tensor field. Focus is put on the issues of the nu-
merical solution of the given problem, using the finite volume method for spatial domain
discretization. Several numerical schemes are compared with the aim of reducing the arti-
ficial (numerical) isotropic diffusion. The remaining steps of the algorithm are commented
on as well, including the acquisition of the tensor field before the actual computation begins
and the postprocessing used to obtain the final images. Finally, the visualization results
are presented.

Keywords: Allen–Cahn equation, anisotropic diffusion, finite volume method, MR–DTI,
MR tractography, medical visualization

AMS Subject Classification: 93E12, 62A10, 62F15

1. INTRODUCTION TO MR–DTI

Modern magnetic resonance (MR) systems used in medicine have become versatile
noninvasive diagnostic tools. Thanks to the wide capabilities of configuration of the
signal acquisition sequences, many different Magnetic Resonance Imaging (MRI)
methods aimed at examining different parts of human body have been developed.
The MR-DTI (Diffusion Tensor Imaging, [4]) technique allows the MR scanner to
examine anisotropic structures in tissues, such as heart muscle fibers or neural tracts
in the brain [6]. The principle of this method is summarized in the following para-
graphs.
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Physical background of MRI

The hardware of a MR scanner consists of the following components:

• A strong magnet generating a static primary magnetic field B0, as homoge-
neous as possible. There exist devices utilizing permanent magnets, electro-
magnets (resistive magnets), and superconducting coils. Only the last type is
suitable for MR–DTI.

• Shim coils being part of the hardware subsystem designated for improving the
homogeneity of B0.

• Gradient coils able to temporarily introduce secondary magnetic field gradients
aligned along the axes of the machine’s intrinsic coordinate system. As a
combination of these, a magnetic field gradient can be generated along an
arbitrary direction in space. Among other purposes, gradient coils are crucial
for spatial encoding of the MR signal.

• Radio frequency (RF) coil responsible for actions leading to MR signal gener-
ation and also used for signal measurement.

• Other components including various types of measurement coils mounted to
patient’s body, coil cooling systems, control systems, bed adjustment mecha-
nisms etc.

The most common examination method is focused on the 1
1H nuclei (i. e. single

protons) contained in abundance within all soft tissues of human body, mainly as
part of H2O molecules [5, 11]. Their angular momentum (spin) generates magnetic
moment. When the patient enters the MR scanner, the proton spins begin to precess
around the direction of B0, i. e. the direction along the bore of the coil, usually
referred to as the z axis. The precession occurs at the Larmor frequency [5]

ω = γB0,

where γ is the gyromagnetic ratio, a constant specific to the 1
1H nucleus. The net

magnetization, i. e. the vector sum of magnetic moments of the individual protons
in some macroscopic volume, becomes nonzero and aligns with the field B0, as the
distribution of the spin precession phase is uniform.

Afterwards, a sequence of pulses is applied in order to generate the MR signal, to
measure it subsequently, and to locate its origin in space. For the sake of simplicity,
one can consider only the following parts of the sequence; for details, we refer the
reader again to [5, 11] and to [19].

• The z-oriented gradient is turned on, making the Larmor frequency depend on
the z coordinate, i. e. ω = ω (z). At the same time, the RF electromagnetic
pulse is applied, with a spectrum spanning a narrow neighborhood of some
frequency ωRF. Due to resonance, only the protons satisfying ω (z) ≈ ωRF are
influenced, which is the principle of slice selection. In the affected layer, the
proton precession is synchronized, causing the net magnetization to precess
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around the z axis. Its longitudinal component (parallel with z) is reduced or
canceled due to flipping of the proton magnetic moment orientations [5].

• After the RF pulse vanishes, the net magnetization gradually relaxes to equi-
librium. During this period, the MR signal, i. e. the electric current induced
by net magnetization precession, can be detected in the measurement coil(s).

• Before the actual measurement, a short pulse of magnetic field gradient along
one of the remaining axes (WLOG denoted by y) is imposed on the tissue,
creating a phase shift of the net magnetization precession along y.

• The gradient along x is turned on and at the same time, the measurement of
the signal sample is performed. As the magnetic field gradient also triggers
the gradient of Larmor frequency along x, a Fourier transform of the signal
sample can be used to obtain spatial distribution of the MR signal strength
along x (frequency encoding).

Layer selection together with frequency encoding and repeated measurements with
different phase shifts (phase encoding) finally provide a complete MR signal image
on a 3D spatial grid. Its typical resolution is 128 or 256 volume elements (voxels) in
the x, y directions, with the diameter of the voxel around 1–4 mm. The resolution
in the z direction can be lower, depending on the thickness of the slice.

Extension to DWI

The particular MRI techniques differ among other aspects in the additional steps of
the acquisition procedure and in the interpretation of either the MR signal strength
or the relaxation time. DWI (Diffusion Weighted Imaging) adds the following steps
between the RF pulse and the measurement itself [14, 17].

1. A “dephase” pulse of magnetic field gradient in a selected direction is imposed
on the tissue. Again, this leads to a phase shift and disrupts the synchronicity
of the proton spin precession.

2. After a short period, a “rephase” pulse of an inverse gradient is applied, restor-
ing the synchronicity of spin precession in H2O molecules that have not moved.

In molecules that have moved along the gradient direction due to diffusion (i. e.
Brownian motion), the precession cannot be resynchronized this way. That results
in a measurable MR signal loss, proportional to the water diffusion strength in
the direction of the applied gradient. The signal loss can be compared with the
reference image obtained without the dephase-rephase sequence to get a diffusion
weighted image.

DTI and the diffusion tensor field

Denote by Ω0 the examined volume of the brain. The purpose of DTI is to measure
the strength and directional distribution of water molecule diffusion in each voxel
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x ∈ Ω0 and encode the information into a diffusion tensor field. Performing series of
DWI measurements with different gradient directions allows us to assemble ∀x ∈ Ω0

a system of Stejskal–Tanner equations [20, 22] for the elements of the symmetric
positive definite diffusion tensor D (x) ∈ R3×3. Six equations are the necessary
minimum, however, using more gradient directions together with some estimation
method (such as least squares) for the resulting overdetermined equation system, one
can obtain a more robust calculation of D (x). There exist MR scanners capable of
measuring over 200 different directions, whose optimal choice is a matter of ongoing
research (e. g. [9]).

The diffusion tensor is a second order approximation of the directional distribu-
tion of water diffusion strength at the given point x. It can be interpreted by the
diffusion ellipsoid defined as

Γ (x) =
{

η ∈ R3
∣∣ ηT D (x)

−1
η = 1

}
.

The diffusion strength along the vector v is proportional to the distance from the
origin to Γ (x) in the direction of v and the eigenvalues of D (x) represent the lengths
of the principal axes of Γ (x).

It has been observed that diffusion prevails in the direction parallel to the neural
fiber tracts [4]. Hence, it is possible to perform MR tractography, i. e. to reconstruct
a model of the fiber bundles by following the pathways of the strongest diffusion.

2. OVERVIEW OF THE PROPOSED VISUALIZATION ALGORITHM

Principle of the method

There are several approaches to the realization of the tractography procedure (see
e. g. [8, 22]). We have elaborated an algorithm based on imitating the diffusion
processes taking place in the brain tissue, similar to the technique introduced in
[21]. The idea is to apply an anisotropic diffusion process [18] to a noisy 3D tex-
ture contained in the domain Ω ⊂ Ω0, representing the chosen region of interest
(ROI). The anisotropy of the diffusion is controlled by the tensor field D so that
the distribution of the texture diffusion strength corresponds to the physical process
measured in the brain. As a result, the initial noisy image is smeared in such a way
that the streamlines of the tensor field become distinguishable. The 3D volume Ω
can then be sliced to produce human readable planar images.

The described steps have been implemented in the MEGIDDO (Medical Employ-
ment of Generating Images by Degenerate Diffusion Operator) software kit. In the
following paragraphs, we will focus on the details of its data processing workflow
(see Figure 1).

Data acquisition

Raw DWI datasets are delivered from the scanner either in a proprietary format
used for the vendor supplied software or in the well documented ANALYZE 7.5 or
DICOM formats. Currently, the DTI module of MedINRIA (developed within the
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FiberTracking
(6 fixed gradients only) +FA computation
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Solution data
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Diffusion tensor dataset (VTK)
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+Fractional Anisotropy (ANALYZE)

Color map

(ANALYZE format)
Input datasets

Fig. 1. MEGIDDO data processing workflow.

ASCLEPIOS project at INRIA, Sophia Antipolis, France) is used to process these
images and to compute the diffusion tensor field, which may also involve thresholding
and smoothing to cope with noise in the input data [20]. Alternatively, one can use
the FiberTracking utility [8], which is limited to 6 gradient directions only.

Fractional anisotropy and diffusion ellipsoid stretching

Denote by λ1 ≥ λ2 ≥ λ3 the eigenvalues of D (x) for some x ∈ Ω and let vi repre-
sent the eigenvector corresponding to λi. The diffusion strength therefore assumes
its maximum in the direction of v1 and is proportional to λ1. Hence, v1 may also
represent the tangential direction of the possible neural tract at the point x. The
number of neural fibers actually present at this location may be considered propor-
tional to the anisotropy strength, which is quantified by the fractional anisotropy
(FA, see e. g. [4]) defined as

FA =

√
3

(
(λ1 − λ)

2
+ (λ2 − λ)

2
+ (λ3 − λ)

2
)

√
2 (λ2

1 + λ2
2 + λ2

3)
, (1)

where

λ =
1

3
(λ1 + λ2 + λ3) .

It is easy to verify that FA ∈ [0, 1), where 0 indicates perfect isotropy (one should
not expect any anisotropic structures, i. e. fibers, at the point x) and 1 would mean
perfect anisotropy (λ2 = λ3 = 0, Γ degenerates to a line segment). Generally, the
greater the value of FA, the more neural fibers are present. However, the converse
does not hold: As the diffusion ellipsoid is a quadric surface, it cannot represent the
focusing of anisotropy to more than one main direction (e. g. fiber bundle crossing).
In such a case, FA would approach zero.

Even though the idea was to use the original tensor field D for the visualization
process, the anisotropy strength described by D has proved to be too weak to
produce observable streamlines. To overcome this difficulty, a preprocessing utility
has been created to modify D so that the corresponding diffusion ellipsoids are
stretched along their largest principal axis. For each voxel x, the positive eigenvalues
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λi are calculated by an explicit formula for finding the roots of the characteristic
polynomial of D (x), operating in R. Afterwards, the symmetry of D (x) is used with
advantage to find an orthonormal set of eigenvectors vi. The fractional anisotropy
and the modified tensor field D̃ are then computed and saved together to a single
NetCDF dataset.

Anisotropic diffusion by the Allen–Cahn equation

When the tensor field is ready, the actual visualization phase takes place. Generally,
the diffusion process found in various contexts can be described by a mathematical
model formulated as a problem for a partial differential equation with a diffusion
term (see e. g. [3, 13]). For the purposes of the proposed algorithm, the Allen–Cahn
equation [2] has been chosen.

Consider the time interval J = (0, T ), the domain Ω ⊂ R3 in the form of a block
and the diffusion tensor field D̃ : Ω̄ 7→ R3×3 representing the input data. The initial
boundary value problem for the Allen–Cahn diffusion equation reads

ξ
∂p

∂t
= ξ∇ · D̃∇p +

1

ξ
f0(p) in J × Ω, (2)

∂p

∂n

∣∣∣∣
∂Ω

= 0 on J × ∂Ω, (3)

p|t=0 = I in Ω, (4)

where p is the unknown function p : J̄ × Ω̄ → R interpreted as the texture intensity,
I represents a noisy initial condition, f0 (p) = p (1 − p)

(
p − 1

2

)
, and ξ > 0 is a small

parameter related to the thickness of the diffusion interface layer [1].

The problem (2) – (4) is solved numerically on a structured rectangular grid, which
will be discussed in more detail in the next section. In principle, the procedure
consists of the following steps:

1. The tensor field is interpolated from the original voxel grid onto the computa-
tion grid, which is finer in order to achieve greater resolution of the resulting
streamlines. In particular, trilinear element wise interpolation is employed.
This causes a change of shape of the corresponding diffusion ellipsoid along
the way from one voxel to another. As shown in [17], more complex forms of
interpolation might be preferred in some cases, so that only the orientation is
changed, but the shape is maintained. More precisely, the fractional anisotropy
as the function FA : Ω → [0, 1) is supposed to satisfy

min
t∈[x,y]

FA (t) = min {FA (x) , FA (y)} ,

where [x, y] is the line segment connecting the neighboring voxels at positions
x, y.

2. The initial condition containing random impulse noise is generated on the
computational grid.
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3. The numerical solution of the given problem is found. The solution is a function
of both space and time and its value at some final time T > 0 is considered the
visualization result. The most suitable setting of T is estimated by experiment.

Colorization and slicing

After the diffusion process is completed, the postprocessing phase begins, which
involves slicing and colorization. The 3D grid is divided into slices cut in one of the
principal planes of the human body: transverse, sagittal, or coronal plane [10]. These
planar grayscale images are then colorized by multiplying the brightness of each pixel
by the color representation of FA at the corresponding voxel of the domain Ω0 (see
Figure 6). The color is obtained by using a linear function mapping the interval

[
0, max

x∈Ω0

FA (x)

]

onto the color scale. The NetCDF dataset produced by performing the diffusion
process can be reused to generate several sets of slices.

3. NUMERICAL SOLUTION OF THE PROBLEM FOR THE ALLEN–CAHN
EQUATION

For numerical solution of the problem (2) – (4), the method of lines is used [15, 16],
allowing to separate the steps of temporal and spatial discretization and to choose
an arbitrary suitable technique for each of them:

• Temporal discretization is carried out by the 4th order Runge–Kutta–Merson
method with adaptive time stepping, which automates the time step adjust-
ment so that it always satisfies the stability condition of the numerical scheme.

• For spatial discretization, the finite volume (FV) method [7] on a rectangular
structured grid is employed.

The latter step yields a semidiscrete scheme in the form

ξ
d

dt
pK (t) = ξ

∑

σ∈EK

FK,σ (t) +
1

ξ
f0,K (t) ,

where EK is the set of all faces of the cell K. FK,σ (t) are the respective numerical
fluxes at the time t, which contain higher order difference quotients observing a
symmetric 5-point stencil and approximating the derivatives ∂xp, ∂yp, ∂zp at the
center of the face σ.

• The difference quotient approximating the derivative in the direction perpen-
dicular to the face σ uses a non-equidistant point distribution in order to
prevent redundant interpolation (Figure 2 a).

• The remaining derivatives are approximated using a uniform 5-point stencil.
The stencil points (the crosses along the dashed line in Figure 2 b) are interpo-
lated from the neighboring grid nodes using 1-dimensional cubic interpolation.

The choice of the higher order scheme is justified in the following paragraph.
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Fig. 2. Difference quotients in derivative approximations.

Artificial diffusion

The resulting streamline visualization is expected to form fine high frequency struc-
tures with steep gradients in the direction perpendicular to the streamlines, spanning
a small number of grid nodes. However, the numerical scheme distorts this behavior
of the solution by introducing undesired artificial (numerical) isotropic diffusion. By
means of Fourier error analysis [12], the number of grid points per wave (PPW )
can be estimated for a given difference operator. Depending on the spectrum of the
solution, this quantity defines the grid density necessary to produce an approxima-
tion error below the desired level. As PPW decreases significantly with the order
of the difference operator, we obtain two general possibilities of artificial diffusion
reduction: increasing the order of approximation and/or refining the grid. However,
due to the CPU and memory requirements of the computation on a 3D grid, the
latter is not an option.

The comparison of four different schemes restricted to R2 is shown in Figure 3.
In both cases, the initial condition depicted on the very left underwent a process
of anisotropic diffusion directed along the axis y = x. The results achieved by
the respective schemes are ordered with respect to the increasing effect of artificial
isotropic diffusion. The first result corresponds to the scheme described above.

Parallelization

In order to allow visualization of the whole brain at once at high resolution, the
numerical algorithm has been parallelized. As the target platform, any UNIX clus-
ter (i. e. distributed memory architecture) supporting the MPI library for message
passing can be used. At the moment, the grid is decomposed into simple slices along
the y axis (with respect to input dataset ordering), making it possible to utilize an
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t = 0.0004

210 3 4

t = 0.002

t = 0.0004

210 3 4

t = 0.002

0. Initial condition

1. FV, 5-point (4th order), cubic interpolation 3. FV, 2nd order central difference

2. FV, 5-point, linear interpolation 4. Finite difference, 1st order forward-backward

Fig. 3. Artificial diffusion in different numerical schemes, 2 time levels.

arbitrary number of processes for the computation. The EOC analysis discussed
below as well as the results presented in the last section have been obtained using
the IBM Cluster 1350 and the IBM Bladecenter LS21 systems at the CINECA high
performance computing center in Bologna, Italy (see Acknowledgments).

Convergence

Experimental order of convergence (EOC) has been measured for the higher order
FV scheme with cubic interpolation. EOC is obtained by computing the solution on
a sequence of gradually refining grids (Ti) and is defined as

EOCi = log

(
Errori

Errori−1

)/
log

(
hi

hi−1

)
,

where hi = maxK∈Ti diam (K) is the mesh size and Errori is the difference of the ith
solution from the precise solution measured in an appropriate norm. As the precise
solution is not known, it has been replaced by the numerical solution on a very
fine mesh. The results confirming the convergence together with the computational
details are summarized in Table 1.
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Table 1. EOC results for the higher order finite volume scheme.

Computational domain Ω = (0, 1) × (0, 1) ×
`

0, 1
2

´

.

Precise solution replaced by numerical solution using h = 1.276 × 10−3,

consuming 44 min of wall time on 80 cores of the IBM Bladecenter LS21.

h L∞(J ; L2(Ω))
error

EOC in
L∞(J ; L2(Ω))

L∞(J ; L∞(Ω))
error

EOC in
L∞(J ; L∞(Ω))

1.020E-02 1.806E-04 − 3.798E-03 −
5.102E-03 6.137E-05 1.557E+00 1.188E-03 1.675E+00
2.551E-03 1.828E-05 1.747E+00 5.256E-04 1.177E+00

Coronal layer, slice 480 of 900

Sagittal layer, slice 265 of 751

Transverse layer, slice 200 of 445

FA 0 max

Fig. 4. Slices of the DTI complete brain visualization, examination of

a healthy volunteer. Dataset dimensions: 900 × 751 × 445 voxels.

4. VISUALIZATION RESULTS

In Figures 4 and 5, we demonstrate the function of the MEGIDDO visualization kit on
two sample input datasets. The streamlines of the tensor field indicate the location
and direction of the neural tracts. Colorization by the value of fractional anisotropy
FA is obtained by performing the color mapping procedure depicted schematically
in Figure 6 and explained in detail in the last paragraph of Section 2.

The source diffusion tensor field for images in Figure 4 has been acquired by 7
DWI examinations of a healthy volunteer with the standard encoding of 6 gradi-
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max0FA

Coronal layer, slice 320 of 900Transverse layer, slice 156 of 397

Sagittal layer, slice 224 of 704

Fig. 5. Slices of the DTI complete brain visualization, examination of a patient. Dataset

dimensions: 900 × 704 × 397 voxels.

FA 0 max

Final colorized sliceFA image using color scaleRaw solution slice

Fig. 6. Colorization of the raw result of the visualization process.

ent directions [22]. The second dataset has been obtained from 20 measurements
with different gradient directions, performed by a modern 3T scanner at IKEM,
Prague. The resulting tractography in Figure 5 depicts pathological morphology in
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the patient’s cerebrum.
In terms of computational resources, the visualizations in Figures 4, 5 are feasible

on 16 cores of AMD Opteron 2.4 GHz within less than 100 min, using approximately
20GiB of memory.

5. CONCLUSION

We present a fully functional implementation of the DTI visualization procedure
based on anisotropic diffusion of a noisy texture. This approach may represent a
suitable complement to the established tractography techniques utilizing explicit
fiber tracking algorithms. While these methods usually require the user to specify
starting and ending ROI [8] so that they can find the likely connections between
them, our approach provides a global overview of the fiber tract structure in the
whole brain or in the specified region. The main drawback of the current algorithm
are its extensive resource demands in terms of memory and CPU time. Further
efforts should therefore be focused on optimization of the numerical algorithm and
on finding possibilities of incorporating the visualization results into some medical
viewer software.
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M. Kimura, and T. Nakaki, eds.), volume 6 of COE Lecture Note, Faculty of Mathe-
matics, Kyushu University Fukuoka, 2007, pp. 156–164.

[14] S. Mori and J. Zhang: Principles of diffusion tensor imaging and its applications to
basic neuroscience research. Neuron 51 (2006), 527–539.

[15] T. Oberhuber: Finite difference scheme for the Willmore flow of graphs. Kybernetika
43 (2007), 6, 855–867.

[16] W.E. Schiesser: The Numerical Method of Lines: Integration of Partial Differential
Equations. Academic Press, San Diego 1991.

[17] R. Sierra: Nonrigid Registration of Diffusion Tensor Images. Master’s Thesis, Swiss
Federal Institute of Technology, Zurich 2001.

[18] P. Strachota: Anisotropic Diffusion in Mathematical Visualization. In: Science and
Supercomputing in Europe – Report 2007, Bologna 2008, CINECA Consorzio Interuni-
versitario, pp. 826–831,

[19] J. S. Suri, S.K. Setarehdan, and S. Singh, eds.: Advanced Algorithmic Approaches to
Medical Image Segmentation: State-of-the-art Application in Cardiology, Neurology,
Mammography and Pathology. Springer–Verlag, New York 2002.
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