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A Hajós type result on factoring

finite abelian groups by subsets II

Keresztély Corrádi, Sándor Szabó

Abstract. It is proved that if a finite abelian group is factored into a direct
product of lacunary cyclic subsets, then at least one of the factors must be
periodic. This result generalizes Hajós’s factorization theorem.
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1. Introduction

Let G be a finite abelian group written multiplicatively with identity element
e. Let A1, . . . , An be subsets of G. We form the list of elements

(1) a1 · · · an, a1 ∈ A1, . . . , an ∈ An.

This list contains |A1| · · · |An| elements. The product A1 · · ·An is defined to be
the set of all elements on the list (1). If the elements on the list (1) are distinct,
that is, if

a1 · · · an = a′

1 · · ·a
′

n, a1, a
′

1 ∈ A1, . . . , an, a′

n ∈ An

always implies a1 = a′

1, . . . , an = a′

n, then we say that the product A1 · · ·An is
direct . If the product A1 · · ·An is direct and it is equal to G, then we say that
G is factored into subsets A1, . . . , An. We also express this fact by saying that
the equation G = A1 · · ·An is a factorization of G. Clearly, G = A1 · · ·An is a
factorization of G if and only if each element g of G is uniquely expressible in the
form

g = a1 · · · an, a1 ∈ A1, . . . , an ∈ An.

A subset A of G is called normalized if e ∈ A. A factorization G = A1 · · ·An

is called normalized if each Ai is a normalized subset of G. In this paper mainly
normalized factorizations will appear.

If G = A1 · · ·An is a normalized factorization of G and An = {e}, then clearly
G = A1 · · ·An−1 is also a normalized factorization of G. In other words the factors
that are equal to {e} can be cancelled from each normalized factorization of G
unless G = {e}. Throughout this note we assume that G 6= {e} and that in each
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normalized factorization of G there is no factor equal to {e}. Plainly Ai = ∅ is
not possible and so we may assume that |Ai| ≥ 2.

Let a be an element of G and let r be a nonnegative integer. We form the list
of elements

(2) e, a, a2, . . . , ar−1.

We assume that |a| ≥ r since otherwise there are repetition among the elements
(2). In other words we assume that the elements on the list (2) are distinct. The
set of elements on the list (2) of G is called a cyclic subset of G. We will use the
bracket notation [a, r] for this subset of G. If r = 1, then [a, r] = {e} indepen-
dently of the choice of the element a. If r = 0, then [a, r] = ∅ independently of
the choice of the element a.

In order to solve a long standing geometric conjecture of H. Minkowski,
G. Hajós [2] proved the following theorem.

Theorem 1. Let G be a finite abelian group and let G = A1 · · ·An be a fac-

torization of G, where each Ai is a cyclic subset of G. Then at least one of the

factors A1, . . . , An is a subgroup of G.

This note deals with possible extensions of this theorem. Let a, d be elements
of G and let i, r be positive integers. We form the list of elements

(3) e, a, a2, . . . , ai−1, aid, ai+1, . . . , ar−1.

We assume that |a| ≥ r and 1 ≤ i ≤ r − 1 and further we assume that

aid /∈ {e, a, a2, . . . , ai−1} ∪ {ai+1, . . . , ar−1}.

The set of elements on the list (3) is called a distorted cyclic subset of G. In this
note distorted cyclic subsets in the form

{e, a, a2, . . . , ar−2, ar−1d}

will mainly appear. The following result has been proved by Sands [3]. In fact he
proved a more general result but we cite only a special case.

Theorem 2. Let G be a finite abelian group and let G = A1 · · ·An be a factor-

ization of G, where each Ai is a distorted cyclic subset of G. Then at least one

of the factors A1, . . . , An is a subgroup of G.

As a cyclic subset is always a distorted cyclic subset, Theorem 2 can be con-
sidered to be an extension of Theorem 1.

Let g be an element of G and let [a, r], [a, s] be cyclic subsets of G. A subset
of G in the form

[a, r] ∪ g[a, s]

is called a lacunary cyclic subset of G. If [a, r]∩g[a, s] 6= ∅, then ai = gaj for some
i, j, 0 ≤ i ≤ r − 1, 0 ≤ j ≤ s − 1 and so g ∈ 〈a〉. In this case the lacunary cyclic
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subset [a, r] ∪ g[a, s] can be written in the form [a, r′] ∪ ak[a, s′] for some integers
r′, s′, k. In addition we may choose these integers such that [a, r′]∩ ak[a, s′] = ∅.
In the rest of this note we will choose the notation such that for the lacunary
cyclic subset [a, r]∪ g[a, s], [a, r]∩ g[a, s] = ∅ holds. As a consequence the number
of the elements of the lacunary cyclic subset [a, r] ∪ g[a, s] is r + s. If s = 0, then
[a, r]∪g[a, s] reduces to the cyclic subset [a, r]. If s = 1, then [a, r]∪g[a, s] reduces
to the distorted cyclic subset

{e, a, a2, . . . , ar−1, ard}.

Corrádi and Szabó [1] have proved the following theorem.

Theorem 3. Let G be a finite abelian group of odd order and let G = A1 · · ·An

be a factorization of G, where each Ai is a lacunary cyclic subset of G. Then at

least one of the factors A1, . . . , An is a subgroup of G.

From the remarks before Theorem 3 it follows that Theorem 3 is an extension
of Theorem 2 for finite abelian groups of odd order. However, examples exhibited
in [1] show that Theorem 3 cannot be extended for finite abelian groups of even
order.

A subset A of G is defined to be periodic if there is an element g of G such that
g 6= e and Ag = A. Sands [3] established the following about periodic distorted
cyclic subsets.

Theorem 4. Let G be a finite abelian group and let G = AB be a factorization

of G, where A is a distorted cyclic subset of G. If A is periodic, then A must be

a subgroup of G.

This result implies that the next theorem is an equivalent formulation of The-
orem 2.

Theorem 5. Let G be a finite abelian group and let G = A1 · · ·An be a factor-

ization of G, where each Ai is a distorted cyclic subset of G. Then at least one

of the factors A1, . . . , An is a periodic subset of G.

We will prove the following variant of Theorem 5.

Theorem 6. Let G be a finite abelian group and let G = A1 · · ·An be a factor-

ization of G, where each Ai is a lacunary cyclic subset of G. Then at least one

of the factors A1, . . . , An is a periodic subset of G.

2. The result

In this section we present a proof of Theorem 6.

Proof: Assume on the contrary that there is a finite abelian group G and a
factorization G = A1 · · ·An, where each Ai is a non-periodic lacunary cyclic
subset of G. Of course we assume that neither G nor any of the factor is equal
to {e}.
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Our goal is to prove that if there exists a counter-example G = A1 · · ·An,
then there exists a counter-example G = A′

1 · · ·A
′

m such that each A′

i is a dis-
torted cyclic subset of G that is not periodic. Such an example would contradict
Theorem 5, and hence there can be no counter-example at all.

We thus need to demonstrate that each Ai that is not a distorted cyclic subset
can be factored into a direct product of such subsets or can be replaced by such
a subset. The replacing subsets should not be periodic. To verify that it suffices,
by Theorem 4, to verify that they do not form a subgroup. When n ≥ 2 with no
loss of generality we can choose i = 1 and set A = A1 and B = A2 · · ·An.

Let us turn to the details. If n = 1, then G = A1. As G 6= {e}, A1 is periodic.
This contradiction gives that n ≥ 2.

The factorization G = A1 · · ·An can be written in the form G = AB, where
A = A1 and B = A2 · · ·An. We have assumed that |Ai| ≥ 2 and so |A| ≥ 2 and
|B| ≥ 2.

If |A| = 2, then A = A1 is a cyclic subset of G. In this case we do nothing with
A1. For the remaining part of the proof we assume that |A| ≥ 3.

Let A = [a, r] ∪ g[a, s]. Multiplying the factorization G = AB by g−1 we get
the factorization G = Gg−1 = (Ag−1)B. Note that Ag−1 = [a, s] ∪ g−1[a, r] is
also a lacunary cyclic subset of G. Clearly, if Ag−1 is periodic, then A is periodic
too. This shows that the roles of r and s can be reversed in a counter-example.
In the remaining part of the proof we assume that r ≥ s.

In the r = s case the computation

A = [a, r] ∪ g[a, s]

= [a, r] ∪ g[a, r]

= {e, g}[a, r]

= [g, 2][a, r]

shows that A is a direct product of two cyclic subsets. If [g, 2] is a subgroup of G,
then we get the contradiction that A = A1 is periodic. Similarly, if [a, r] is a
subgroup of G, then we get the contradiction that A = A1 is periodic. Therefore,
in the r = s special case the factor A = A1 is a direct product of two non-subgroup
cyclic subsets. Thus for the remaining part of the proof we assume that r > s.

Let us turn to the |A| = 3 case. Now r+s = 3, r > s ≥ 0 and so either s = 0 or
s = 1. If s = 0, then A = A1 is a non-periodic cyclic subset of G. By Theorem 4,
A = A1 is a non-subgroup cyclic subset of G. In this case we do nothing with
A1. If s = 1, then A = A1 is a non-periodic distorted cyclic subset of G. By
Theorem 4, A = A1 is a non-subgroup distorted cyclic subset of G. In this case
again we do nothing with A1.

The |A| = 4 case is similar. The factor A = A1 is either a non-subgroup cyclic
subset of G or a non-subgroup distorted cyclic subset of G and we do nothing
with A1. For the remaining part of the proof we assume that |A| ≥ 5.
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If s = 0 or s = 1, then A = A1 is a non-subgroup cyclic or distorted cyclic
subset of G and we do nothing with A1. Suppose s ≥ 2 and let

A′ = {e, a, a2, . . . , ar+s−2, as−1g}.

Define d ∈ G by g = ard. Then

A′ = {e, a, a2, . . . , ar+s−2, ar+s−1d}.

We claim that in the factorization G = AB the factor A can be replaced by A′ to
get the factorization G = A′B.

In order to prove the claim note that the factorization G = AB implies that
the sets

(4) eB, aB, . . . , ar−1B, gB, gaB, . . . , gas−1B

form a partition of G. Multiplying the factorization G = AB by a we get the
factorization G = Ga = (Aa)B. (Here Aa is not a normalized subset of G. This
is the only factorization in the paper which is not normalized.) Hence the sets

(5) aB, a2B, . . . , arB, gaB, ga2B, . . . , gasB

form a partition of G. Comparing partitions (4) and (5) provides that

(6) eB ∪ gB = arB ∪ gasB.

If gB ∩ gasB 6= ∅, then B ∩ asB 6= ∅. This violates (4) as 2 ≤ s < r. Thus
gB ∩ gasB = ∅. From (6) it follows that gB ⊂ arB. Both sets are of the same
size and so gB = arB. Replacing gB by arB in (4) in the following way

eB, aB, . . . , ar−1B, gB
︸︷︷︸

arB

, gaB
︸ ︷︷ ︸

ar+1B

, . . . , gas−2B
︸ ︷︷ ︸

ar+s−2B

, gas−1B

gives that the sets

eB, aB, . . . , ar−1B, arB, ar+1B, . . . , ar+s−2B, gas−1B

form a partition of G. This means that G = A′B is a factorization of G as we
claimed.

As G = A′B is a factorization of G, the elements

e, a, a2, . . . , ar+s−2, ar+s−1d

are distinct. In particular

ar+s−1d /∈ {e, a, a2, . . . , ar+s−2}

and so A′ is a distorted cyclic subset of G.
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Suppose s ≥ 2 and let

A′′ = [a, r + s] = {e, a, a2, . . . , ar+s−2, ar+s−1}.

We claim that in the factorization G = AB the factor A can be replaced by A′′

to get the factorization G = A′′B.
In order to prove the claim let us replace gB by arB in (4) in the following

way

eB, aB, . . . , ar−1B, gB
︸︷︷︸

arB

, gaB
︸ ︷︷ ︸

ar+1B

, . . . , gas−2B
︸ ︷︷ ︸

ar+s−2B

, gas−1B
︸ ︷︷ ︸

ar+s−1B

.

Therefore the sets

eB, aB, . . . , ar−1B, arB, ar+1B, . . . , ar+s−2B, ar+s−1B

form a partition of G. This means that G = A′′B is a factorization of G as we
claimed.

In order to simplify the notations we set t = r + s. Now

A′ = {e, a, a2, . . . , at−2, as−1g}

= {e, a, a2, . . . , at−2, at−1d}.

We claim that A′ is not a subgroup of G.
To verify the claim first note that from the factorization G = A′′B, it follows

that the elements e, a, a2, . . . , at−1 must be distinct. Next assume on the contrary
that A′ is a subgroup of G. Let us consider the product a · at−2. Either

a · at−2 ∈ {e, a, . . . , at−2}

or

a · at−2 ∈ {at−1d}.

In the first case we get at−1 = ai for some i, 0 ≤ i ≤ t− 2. Therefore at−1−i = e.
This is contradiction since the elements e, a, a2, . . . , at−1 are distinct.

In the second case at−1 = at−1d and so d = e. This means that A = A′. It
was assumed that A is not periodic. By Theorem 4, A is not a subgroup. Thus
A′ is a not a subgroup of G as we claimed.

We may summarize the above argument by saying that in the factorization
G = A1A2 · · ·An the factor A1 is either a direct product of non-subgroup cyclic
subsets of G or can be replaced by a non-subgroup distorted cyclic subset of G.
It may happen that the distorted cyclic subset is simply a cyclic subset. The
essential point is that it is not a subgroup.

We may repeat this replacement in connection with each Ai factor in the factor-
ization and we get a factorization G = A′

1 · · ·A
′

m, where each A′

i is a non-subgroup
distorted cyclic subset of G. (The index m is not a typographical error. When
we replace the factor Ai it may happen that Ai is replaced by a product of two
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cyclic subsets. Therefore the number of the factors may change after the replace-
ments.) The new factorization G = A′

1 · · ·A
′

m contradicts Theorem 2 and this
contradiction completes the proof. �

3. An example

In her or his report the anonymous referee writes the following. “For the sake
of completeness I suggest to equip the paper with examples of direct products
that do not fulfill the hypothesis of Theorem 6 but are close to the hypothesis.
For example, can all the factors be lacunary with the exception of one? Can this
be achieved for any n? Can the non-lacunary factor be of a simple structure, say
[a, r] ∪ g[a, s] ∪ h[a, t]?”

We present an example motivated by these questions. Let G be an abelian
group with basis elements x, y, z, where |x| = |y| = |z| = 4. Set

A1 = {e, x2y2z2} ∪ xz2{e, x2} ∪ x2y{e, y2} ∪ y2z{e, z2},

A2 = {e, x},

A3 = {e, y},

A4 = {e, z}.

We claim that the product A1A2A3A4 is direct and it is equal to G. Further none
of the factors is periodic. The sets A2, A3, A4 are cyclic and so they are lacunary
cyclic subsets too. The factor A1 can be written in the form

[x2y2z2, 2] ∪ xz2[x2, 2] ∪ x2y[y2, 2] ∪ y2z[z2, 2].

This is not exactly the example the referee asks for since the elements x2y2z2, x2,
y2, z2 are not equal.

We close this section with an open problem. The credit for this problem goes
to the referee.

Problem 1. Let G be a finite abelian group and let G = A1A2 · · ·An be a

factorization of G such that A1 is in the form [a, r]∪g[a, s]∪h[a, t] and A2, . . . , An

are lacunary cyclic subsets. Does it follow that at least one of the factors is

periodic?

The next problem is a simplified version of Problem 1 and it is motivated by the
example above. An answer in the affirmative still would provide a generalization
for Hajós’s theorem.

Problem 2. Let G be a finite abelian group and let G = A1A2 · · ·An be a

factorization of G such that A1 is in the form [a, r]∪g[a, s]∪h[a, t] and A2, . . . , An

are cyclic subsets. Does it follow that at least one of the factors is periodic?
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References
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