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SOME INEQUALITIES RELATED TO THE STAM INEQUALITY

Abram Kagan, Tinghui Yu, College Park

(Invited)

Abstract. Zamir showed in 1998 that the Stam classical inequality for the Fisher infor-
mation (about a location parameter)

1/I(X + Y ) > 1/I(X) + 1/I(Y )

for independent random variables X, Y is a simple corollary of basic properties of the Fisher
information (monotonicity, additivity and a reparametrization formula). The idea of his
proof works for a special case of a general (not necessarily location) parameter. Stam type
inequalities are obtained for the Fisher information in a multivariate observation depending
on a univariate location parameter and for the variance of the Pitman estimator of the latter.
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1. Introduction

Here basic properties (monotonicity, additivity and a reparametrization formula)

of the Fisher information are presented and, following Zamir [10], the Stam inequality

is obtained as a direct corollary of these properties.

Let P = {Pθ, θ ∈ Θ} be a parametric family of probability distributions of a ran-
dom element X taking values in a measurable space (X ,A), the parameter space Θ

being an open set of R. For the purpose of this paper, the following simplified version

of the concept of a regular statistical experiment suffices. A triple E = (X ,A,P) is

called a regular statistical experiment (consisting in an observation of X) if

(a) all Pθ are given by densities p(x; θ) = dPθ/dµ with respect to a measure µ,

(b) p(x; θ) is continuously differentiable in θ ∈ Θ for µ-almost all x ∈ X and
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(c) the Fisher information on θ in X (or in E),

I(X ; θ) = IX(θ) =

∫

(∂p(x; θ)

∂θ

)2

/p(x; θ) dµ(x),

is finite (the integration is over the set {x : p(x; θ) > 0}). In Ibragimov and
Khas’minskij [2], the class of regular statistical experiments is larger than the

one we have defined. In particular, they need only mean square differentiability

in θ of the density p(x; θ).

The following well-known properties of the Fisher information hold for regular

experiments.

1) Monotonicity. If S : (X ,A) → (S,B) is a statistic, Qθ(B) = Pθ(S ∈ B) =

Pθ(S
−1B), B ∈ B (or, in other terms, ES = (S,B, Q = {Qθ, θ ∈ Θ}) is a subexperi-

ment of E), then
I(S; θ) 6 I(X ; θ), θ ∈ Θ.

2) Additivity. If Xi, i = 1, 2, are random elements taking values in (Xi,Ai) which

are independent for each θ, i.e., for all Ai ∈ Ai, i = 1, 2,

Pθ(X1 ∈ A1, X2 ∈ A2) = Pθ(X1 ∈ A1)Pθ(X2 ∈ A2), θ ∈ Θ,

and X = (X1, X2), then

I(X ; θ) = I(X1; θ) + I(X2; θ).

3) Reparametrization formula. If g is a differentiable function, then for ξ = g(θ)

I(X ; θ) = |g′(θ)|2I(X ; ξ)
∣

∣

ξ=g(θ)
.

Note in passing that if p(x; θ) > 0, then I(T ; θ) = I(X ; θ) implies sufficiency of a

statistic T ; without positivity of p(x; θ) this does not hold in general, as shown in

Kagan and Shepp [5].

Multivariate versions of 1)–3) are also well known.

1′) If θ is an m-variate parameter, θ ∈ Θ, an open set in R
m, and I(X ; θ) is the

m × m matrix of Fisher information on θ in X , then for any statistic S,

I(S; θ) 6 I(X ; θ),

i.e., I(X ; θ)− I(S; θ) is a positive semi-definite matrix.

2′) The additivity property has the same form as in the case of a univariate

parameter.
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3′) If ξ = g(θ) where g is a differentiable mapping of an open set Θ ⊂ R
m into an

open set ξ ⊂ R
k with Jacobian

H =
( ∂gi

∂θj

)

, i = 1, . . . , k; j = 1, . . . , m,

then

I(X ; θ) = HTI(X ; ξ)
∣

∣

ξ=g(θ)
H

where T stands for transposition.

Let us turn to the case when the distribution of X is absolutely continuous and θ a

location parameter so that the density p(x; θ) = p(x−θ). Now the Fisher information

does not depend on θ,

I(X ; θ) =

∫

x : p(x−θ)>0

{p′(x − θ)/p(x − θ)}2p(x − θ) dx(1)

=

∫

x : p(x)>0

{p′(x)/p(x)}2p(x) dx.

In what follows, I(X) will denote the Fisher information on θ in an observation with

density p(x − θ). For independent X1, X2 with densities p1(x), p2(x), respectively,

I(X1+X2) denotes the Fisher information on θ in an observation with density p(x−θ)

where p(x) = (p1 ∗ p2)(x).

As a direct corollary of 1), for independent X1, X2,

I(X1 + X2) 6 min{I(X1), I(X2)}.

In Stam [9] a much stronger inequality was proved,

(2)
1

I(X1 + X2)
>

1

I(X1)
+

1

I(X2)

that is closely linked to the Shannon classical inequality for the differential entropy

H(X): for independent X1, X2,

e2H(X1+X2) > e2H(X1) + e2H(X2).

Recently, Madiman and Barron [7] proved a much stronger version of (2): for inde-

pendent X1, . . . , Xn,

(3)
1

I(X1 + . . . + Xn)
>

1
(

n−1
m−1

)

∑

s

1

I(
∑

i∈s
Xi)

,
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where the summation is over all combinations s ofm elements chosen from {1, . . . , n}.
One of the corollaries of (3) is the monotone decreasing in n of the information

I((X1 + . . . + Xn)/
√

n) = nI(X1 + . . . + Xn) contained in the normalized sum of

independent identically distributed X1, X2, . . ..

Let us turn now to Zamir’s proof of (2) based on properties 1)–3) of the Fisher

information.

Let w1, w2 be positive numbers with w1 + w2 = 1 and let observations X ′

i be of

the form

X ′

i = wiθ + Xi, i = 1, 2

with θ ∈ R as a parameter and X1, X2 independent with Xi ∼ pi(x), i = 1, 2. By

virtue of 3),

I(X ′

i; θ) = w2
i I(Xi), i = 1, 2.

Consider now a statistic

S(X ′

1, X
′

2) = X ′

1 + X ′

2 = θ + X1 + X2.

Due to 1) and 2),

(4) I(X1 + X2) = I(X ′

1 + X ′

2) 6 I(X ′

1) + I(X ′

2) = w2
1I(X1) + w2

2I(X2).

Choosing

wi =
1/I(Xi)

1/I(X1) + 1/I(X2)
, i = 1, 2,

one immediately gets from (4) the Stam inequality

1

I(X1 + X2)
>

1

I(X1)
+

1

I(X2)
.

If X, XT = (X1, . . . , Xs) is an m-variate random vector with density p(x − θ) =

p(x1 − θ1, . . . , xm − θm) depending on an m-variate location parameter θ ∈ R
m, the

matrix I(X) of the Fisher information on θ in X does not depend on θ,

I(X) = (Iij)i,j=1,...,m, Iij =

∫

x : p(x)>0

1

p

( ∂p

∂xi

)( ∂p

∂xj

)

dx,

and is positive definite (the matrix I(X ; θ) of the Fisher information on a gen-

eral m-variate parameter, not necessarily location, is only non-negative definite).

Indeed, take a nonzero c ∈ R
m and consider a random vector X̃ with density

p(x1 − c1θ, . . . , xm − cmθ). Plainly, I(X̃; θ) = cTI(X)c and due to 1), I(X̃; θ) >
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I(X̃j ; θ). The density of the jth component X̃j ofX is pj(xj−cjθ) so that I(X̃j ; θ) >

0 if cj 6= 0. Hence I(X) is positive definite.

Now let W1, W2 be (m × m) matrices with W1 + W2 = Im, the (m × m) identity

matrix. Set

X′

i = Wiθ + Xi, i = 1, 2,

where X1, X2 are independent m-variate random vectors, Xi ∼ pi(x), i = 1, 2 and

θ ∈ R
m. By virtue of 1′)–3′),

I(X1 + X2) = I(X′

1 + X′

2) 6 I(X′

1; θ) + I(X′

2; θ)(5)

= WT
1 I(X1)W1 + WT

2 I(X2)W2.

Choosing in (5)

Wi = (I(Xi))
−1{(I(X1))

−1 + (I(X2))
−1}−1, i = 1, 2

one gets

I(X1 + X2) 6 {(I(X1))
−1 + (I(X2))

−1}−1

whence, by taking the inverse of both sides, the multivariate Stam inequality follows:

(6) (I(X1 + X2))
−1 > (I(X1))

−1 + (I(X2))
−1.

The matrices I(X1) and I(X2) are not assumed commutative. This proof of (6) is

due to Zamir [10]. The authors’ contribution is an observation that the matrix of

the Fisher information on a multivariate location parameter is positive definite so

that there is no need in assuming the information matrices nonsingular.

Note that in Kagan and Landsman [3] another inequality for the matrices of the

Fisher information first proved analytically in Carlen [1], was shown to be a direct

corollary of 1) and 2).

2. The case of a general parameter

Let X1, X2 be independent random variables with densities p1(x; θ1), p2(x; θ2)

depending on general (not necessarily location) parameters θ1, θ2 belonging to the

same parameter set Θ = (a, b), a 6 0, b > 0 such that αΘ ⊂ Θ for any α, 0 < α < 1.

To get a version of the Stam inequality for X1 ∼ p1(x; θ1), X2 ∼ p2(x; θ2), we

need a number of assumptions.

First, the Fisher information I(X1; θ1) on θ1 in X1 and I(X2; θ2) on θ2 in X2 is

assumed finite, positive and constant in the parameters,

(7) 0 < I(Xi; θi) = Ii < ∞, i = 1, 2.
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The condition (7) plainly holds in the case of location parameters θ1, θ2 but it is

much more general. If X has a density p(x; η) and a new parameter η is introduced

by η = g(θ) so that p̃(x; θ) = p(x; g(θ)), then I(X ; θ) = |g′(θ)|2I(X ; η)
∣

∣

η=g(θ)
whence

one can construct many families with a constant Fisher information. For example,

if X has a Pareto density

p(x; η) = (η − 1)/xη, x > 1

with η > 1 as a parameter, the reparametrization η = eθ+1 stabilizes the information

on θ.

Second, let S = S(X1, X2) be a statistic taking values in a measurable space (S,B).

It is assumed that the density p(s; θ1, θ2) of S depends on the parameters only

through θ1 + θ2,

(8) p(s; θ1, θ2) = p(s; θ1 + θ2), s ∈ S,

so that the distribution of S depends on a univariate parameter θ = θ1 + θ2. If

pi(x; θi) = pi(x − θi), i = 1, 2 and S(X1 + X2) = X1 + X2, (8) is plainly satisfied.

Theorem 1. Under the conditions (7), (8), the Fisher information I(S; θ) on θ

in S satisfies the inequality

(9)
1

I(S; θ)
>

1

I1
+

1

I2
.

P r o o f. Take positive w1, w2 with w1 + w2 = 1 and set θ1 = w1θ, θ2 = w2θ.

Then θ1 + θ2 = θ. By 3), I(Xi; θ) = w2
i Ii, i = 1, 2 and by 1) and 2),

I(S; θ) 6 I(X1; θ) + I(X2; θ) = w2
1I1 + w2

2I2.

Choosing

wi =
1/Ii

1/I1 + 1/I2
, i = 1, 2

leads to (9). �

R em a r k. Zamir’s idea works in some cases when versions of (7), (8) hold. Here

is an example in which the dependence of the distribution of S on θ1 + θ2 is replaced

with the dependence of its distribution on θ1θ2 where both θ1 and θ2 are positive.
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Let independent random variables X1, X2 have densities θ1p1(θ1x), θ2p2(θ2x)

depending on scale parameters θ1, θ2 ∈ R+. If the distributions of X1 and X2 are

concentrated on R+ or R−, the setup is reduced to that of location parameters. This

assumption is not made here.

Let T (X1, X2) = X1X2. It is easily seen that the distribution of T depends on θ1,

θ2 only through the scale parameter θ = θ1θ2,

p(t; θ) = θp(θx).

Simple calculations show that

I(Xi; θi) = θ−2
i I(Xi; 1), i = 1, 2; I(T ; θ) = θ−2I(T ; 1).

Now set θ1 = θγ1 , θ2 = θγ2 with γi > 0, γ1 + γ2 = 1. Then θ1θ2 = θ and

I(Xi; θ) = (γiθ
γi−1)2I(Xi; θi) = γ2

i θ−2I(Xi; 1), i = 1, 2.

One has

I(T ; θ) 6 I(X1; θ) + I(X2; θ)

whence

I(T ; 1) 6 γ2
1I(X1; 1) + γ2

2I(X2; 1).

Choosing

γi =
(I(Xi; 1))−1

(I(X1; 1))−1 + (I(X2; 1))−1

one gets a Stam type inequality for the Fisher information on a scale parameter: for

independent X1, X2 one has

1

I(X1X2; θ)
>

1

I(X1; θ)
+

1

I(X2; θ).

Unfortunately, the proof does not work when the distribution of S depends on an

arbitrary (univariate) function h(θ1, θ2).
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3. Relation to the Pitman estimators

LetXT = (X1, . . . , Xm) ∼ p(x1−θ, . . . , xm−θ) = p(x−θ ·1) where 1T = (1, . . . , 1)

is an m-variate vector with all the components 1, be an m-variate random vector

whose distribution depends on a univariate location parameter θ. If I is the matrix of

the Fisher information on θT = (θ1, . . . , θm) in an observation with density p(x−θ),

then the Fisher information I on θ in X is

I = 1TI1.

Let nowX1, X2 be independent random vectors,X1 ∼ p1(x−θ·1), X2 ∼ p2(x−θ·1),

p(x) = (p1 ∗ p2)(x) and let I1, I2, I denote the Fisher observation on the univariate

parameter θ contained in X1, X2, X, respectively. As an immediate corollary of

Theorem 1, one gets

(10)
1

I
>

1

I1
+

1

I2
.

This inequality is independent of the multivariate Stam inequality

(11) I−1 > I−1
1 + I−1

2

where I1, I2, I are the matrices of the Fisher information on the m-variate parame-

ter θ contained in X1 ∼ p1(x − θ), X2 ∼ p2(x − θ), X ∼ p(x − θ).

Inequality (10) has its analog in terms of Pitman estimators; no regularity type

conditions, even absolute continuity, are required from the distributions.

Let

x′T
1 = (x′

11, . . . , x
′

1m), . . . , x′T
n = (x′

n1, . . . , x
′

nm),

x′′T
1 = (x′′

11, . . . , x
′′

1m), . . . , x′′T
n = (x′′

n1, . . . , x
′′

nm)

be independent samples from distributions F1(x − θ · 1) and F2(x − θ · 1) and let

xT
1 = (x11, . . . , x1m), . . . , xT

n = (xn1, . . . , xnm)

be a sample from F (x − θ · 1) where F = F1 ∗ F2.

Set

x̄′

1 = (x′

11 + . . . + x′

n1)/n, . . . , x̄′

m = (x′

1m + . . . + x′

nm)/n

and

x̄′ = (x̄′

1 + . . . + x̄′

m)/m
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with

x̄′′

1 , . . . , x̄′′

m, x̄′′, x̄1, . . . , x̄m, x̄

defined similarly for the other two samples.

Let σ′, σ′′, σ be the σ-algebras generated by x′

11 − x̄′, . . ., x′

nm − x̄′; x′′

11 − x̄′′, . . .,

x′′

nm − x̄′′; x′

11 − x̄′ + x′′

11 − x̄′′, . . ., x′

nm − x̄′ + x′′

nm − x̄′′, respectively. Plainly, σ is

a subalgebra of the σ-algebra generated by

x′

11 − x̄′, . . . , x′

nm − x̄′, x′′

11 − x̄′′, . . . , x′′

nm − x̄′′.

The latter is usually denoted σ′ ∨ σ′′ so that σ ⊂ σ′ ∨ σ′′.

An estimator θ̃(y1, . . . ,yn) of θ from a sample from G(y−θ·1) is called equivariant

if for any c ∈ R

(12) θ̃(y1 + c · 1, . . . ,yn + c · 1) = θ̃(y1, . . . ,yn) + c.

Assuming
∫

|x|2 dFi(x) < ∞, i = 1, 2, the Pitman estimators t′n, t′′n of θ (with

respect to the quadratic loss function) from samples of size n from p1(x− θ · 1) and

p2(x − θ · 1), i.e., the minimum variance equivariant estimators, can be written as

t′n = x̄′ − E(x̄′ | σ′), t′′n = x̄′′ − E(x̄′′ | σ′′)

and their variances as

var(t′n) = var(x̄′) − var{E(x̄′ | σ′)}, var(t′′n) = var(x̄′′) − var{E(x̄′′ | σ′′)}.

(All the expectations are taken at θ = 0, though the variances do not depend on θ.)

Now

var(tn) = var(x̄) − var{E(x̄ | σ)}

and using the fact that (x1, . . . ,xn) is equidistributed with (x′

1 + x′′

1 , . . . ,x′

n + x′′

n),

one gets

var(tn) = var(x̄′ + x̄′′) − var{E(x̄′ + x̄′′ | σ)}.

Since σ ⊂ σ′ ∨ σ′′, one has

var{E(x̄′ + x̄′′ | σ)} 6 var{E(x̄′ + x̄′′ | σ′ ∨ σ′′)}.

Furthermore, x̄′, x′

11 − x̄′, . . . , x′

nm − x̄′ is independent of x′′

11 − x̄′′, . . . , x′′

nm − x̄′′

implying

E(x̄′ | σ′ ∨ σ′′) = E(x̄′ | σ′), E(x̄′′ | σ′ ∨ σ′′) = E(x̄′′ | σ′′)
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(see, e.g., Shao [8]). Thus,

var(tn) > var(t′n) + var(t′′n).

This inequality, holding for any n, may be considered a small sample version of (10).

In the case of m = 1 it was proved in Kagan [4]. For other connections between the

variance of Pitman estimators and the Fisher information see Kagan et al. [6].

As said above, (10) and (11) are independent in the sense that neither is a corollary

of the other. However, an inequality connecting I and I has a simple statistical

interpretation.

Let wT = (w1, . . . , wm) be a vector with wT1 = 1. Then, by virtue of the Cauchy

inequality,

1 = (wT1)2 = (wTI−1/2I1/21)2 6 (wTI−1w)(1TI1)

so that

(13) I >
1

wTI−1w
.

Let now tn be the Pitman estimator of an m-variate θ from a sample (x1, . . . ,xn)

from F (x − θ). If
∫

x2 dF (x) < ∞, tn can be written (componentwise) as

(14) tn = x̄− E(x̄ | x11 − x̄1, . . . , xn1 − x̄1, . . . , x1m − x̄m, . . . , xnm − x̄m).

Note that the σ-algebra generated by the residuals in (14) is smaller than the

σ-algebra generated by x11 − x̄, . . . , xnm − x̄ where x̄ = (x̄1 + . . .+ x̄m)/m (mind the

difference between x̄ and x̄). The latter occurs in the representation

(15) tn = x̄ − E(x̄ | x11 − x̄, . . . , xnm − x̄)

of the Pitman estimator of a univariate θ from a sample (x1, . . . ,xn) from F (x−θ ·1)

when wTtn is an equivariant estimator of θ and, thus,

(16) wT var(tn)w = var(wTtn) > var(tn).

This inequality is, in a sense, a small sample version of (13). Indeed, as n → ∞,

n var(tn) = I−1(1 + o(1)), n var(tn) =
1

1TI1
(1 + o(1)),

so that (16) becomes (13). The relation between these two equations is one more

illustration of that many results for the Fisher information/information matrix have

direct analogs in terms of the variances of the Pitman estimators in small samples.
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