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EFFICIENT ROBUST ESTIMATION OF

TIME-SERIES REGRESSION MODELS
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Abstract. The paper studies a new class of robust regression estimators based on the
two-step least weighted squares (2S-LWS) estimator which employs data-adaptive weights
determined from the empirical distribution or quantile functions of regression residuals
obtained from an initial robust fit. Just like many existing two-step robust methods, the
proposed 2S-LWS estimator preserves robust properties of the initial robust estimate. How-
ever, contrary to the existing methods, the first-order asymptotic behavior of 2S-LWS is
fully independent of the initial estimate under mild conditions. We propose data-adaptive
weighting schemes that perform well both in the cross-section and time-series data and
prove the asymptotic normality and efficiency of the resulting procedure. A simulation
study documents these theoretical properties in finite samples.
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1. Introduction

In statistics and econometrics, more and more attention is paid to techniques that

can deal with data containing atypical observations, which can arise from outliers,

miscoding, or heterogeneity not captured or presumed in a model. In the context

of regression models, this is of high importance especially in time series as the least

squares (LS) and maximum likelihood (MLE) estimators are heavily influenced by

data contamination. For example, using real economic data, [1] documents presence

of outliers in macroeconomic time series and [11], [13] evidence data contamination

in financial time series and its adverse effects on estimators (e.g., quasi-maximum

likelihood) and tests, respectively. On the other hand, the use of methods robust

to atypical observations is infrequent (in econometrics) and usually limited to de-

tection of outliers even in recent applications [12], [16] although exceptions exist [8].

The reasons could range from missing particular results regarding robust inference,
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low relative efficiency of many robust methods, or the necessity to choose auxiliary

tuning parameters without rigorous guidance. In addition, even the straightforward

detection of outliers by a robust method or eye-balling and, after removing outliers,

a subsequent application of a standard method such as least squares (as suggested

in [10]) is not a theoretically justified inference method as the usual standard er-

rors (and statistics based on them) will be biased. This strategy was however en-

hanced and thoroughly studied in [6], whose authors proposed and employed a data-

dependent cut-off point for detecting outliers. Their robust and efficient weighted

least squares (REWLS) estimator is asymptotically efficient if errors are normally

distributed, but in a general case, the asymptotic distribution of REWLS depends on

the initial estimator (in a known or unknown way, depending on the initial estimator).

To address these issues, we proposed in [4] a new class of robust estimation meth-

ods, the two-step least weighted squares (2S-LWS), which rely on an initial robust

estimate and preserve its robust properties. Contrary to the existing methods, 2S-

LWS has an asymptotic distribution independent of the initial robust estimation,

is asymptotically efficient under normality, and can be free of auxiliary tuning pa-

rameters. Most importantly, the asymptotic distribution independent of the initial

robust estimate guarantees that correct inference is easily possible irrespective of the

properties of the initial estimator and that the quality of 2S-LWS estimation is not

affected by the initial estimator. Consequently, the initial estimator can be chosen to

be as robust as possible without concerns about its other qualities and fine-tuning its

parameters. On the other hand, the 2S-LWS procedure relies on a data-dependent

choice of weights such as those proposed in [6] for REWLS and in [4] for 2S-LWS.

Whereas the former weights exhibit a low bias in the presence of outliers, the latter

weights lead to a high relative efficiency in small and large samples, but suffer from

a sizeable bias in the presence of outliers, especially in time series.

In this paper, we propose new weighting schemes for the 2S-LWS method, which

should combine benefits of the weights used in [6] and [4]. Specifically, 2S-LWS with

the newly proposed weights should exhibit high finite-sample relative efficiency and

low bias in the presence of outliers both in the cross-sectional and time-series appli-

cations without rejecting observations. We derive here the robust and asymptotic

properties of the proposed methods and document their behavior by simulations.

The rest of this paper is organized as follows. The LWS and 2S-LWS estimators

are defined in Section 2. Next, the robust and asymptotic properties of 2S-LWS are

studied in Sections 3 and 4, respectively. The finite-sample properties of the proposed

method are evaluated and compared with the existing methods using Monte Carlo

experiments in Section 5.
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2. Least weighted squares and efficient robust estimation

Let us consider the linear regression model (i = 1, . . . , n)

(2.1) yi = x⊤
i β0 + εi,

where yi ∈ R and xi ∈ R
p represent the response and explanatory variables and

β0 ∈ R
p is underlying value of p unknown regression parameters. [9] proposed to

robustly estimate this model by the least trimmed squares (LTS) estimator,

(2.2) β̂(LTS)
n = argmin

β∈Rp

[λn]
∑

i=1

r2
[i](β),

where r2
[i](β) represents the ith order statistics of squared regression residuals

r2
1(β), . . . , r2

n(β) and ri(β) = yi − x⊤
i β. The trimming constant λ ∈ 〈1/2, 1〉 de-

termines the robust properties of LTS since definition (2.2) implies that n − [λn]

observations with the largest residuals do not directly affect the estimator.

To improve upon LTS, the author of [14] studied a weighted form of LTS, the least

weighted squares (LWS), which can be defined by

β̂(LWS)
n = argmin

β∈Rp

n
∑

i=1

w
(2i − 1

2n

)

r2
[i](β)(2.3)

= argmin
β∈Rp

n
∑

i=1

w
[

Gn{r2
i (β)} − 1

2n

]

r2
i (β),

where w : 〈0, 1〉 → R
+
0 is a weight function and Gn denotes the empirical distribution

function of squared residuals r2
i (β). Note that both LS and LTS are special cases

of (2.3) for w(t) = 1 and w(t) = I(t 6 c), respectively, for t ∈ 〈0, 1〉. The LWS esti-
mator in the cross-sectional linear regression was extensively studied in [7], where its

robust properties, asymptotic normality, and the optimal choice of weight function w

are derived provided that the distribution function of the error term εi in (2.1) is

known. However, to achieve the best robust properties (maximal breakdown point

defined later in Section 3), one has to trim almost half of observations and to set

w(t) = 0 for t > 0.5. This results in a low relative efficiency, which is as low as 7%

for Gaussian data, and therefore, LWS cannot combine a high breakdown point and

a good performance in terms of the estimators’ variance.

To combine robustness and high relative efficiency, in [4] we proposed to use data-

dependent weights within the LWS estimator. Let us now assume that β̂0
n and σ̂0

n

are the initial robust estimates of the regression parameters β0 and residual variance

269



σ2 = var(εi). Given model (2.1), the corresponding initial regression residuals are

e0
i = ri(β̂

0
n) = yi−x⊤β̂0

n, i = 1, . . . , n. For the ith order residual statistics r2
[i](β̂

0
n) we

can define a weight wi = ŵn{(2i− 1)/(2n)}, where ŵn is a weight function that can

generally depend on β̂0
n, σ̂

0
n and e0

i , but that is assumed to converge to a piecewise

continuous function w : 〈0, 1〉 → R
+
0 , ŵn(t) → w(t) as n → ∞ for all t ∈ 〈0, 1〉. The

two-step least weighted squares (2S-LWS) estimator is then defined as

(2.4) β̂(2S-LWS) = argmin
β∈Rp

n
∑

i=1

ŵn

[

Gn{r2
i (β)} − 1

2n

]

r2
i (β).

A specific feature of the proposed estimator is that the weights modify and apply to

the values of the empirical distribution function of the squared regression residuals.

Moreover, it might seem that there is asymptotically no difference between 2S-LWS

using weights ŵn → w and LWS using weights w. The crucial distinction however

lies in the fact that the 2S-LWS weight function ŵn can converge to an unknown

function w (e.g., depending on the unknown distribution or density functions of εi),

whereas LWS can be applied only if the weight function w is known.

Two important examples of data-dependent weight functions used in [4] are the

hard-rejection weights adapted from [6] and the everywhere positive quantile-based

weights. In both cases, weighting is based on comparison of the empirical distribution

function G0
n of squared residuals r2

i (β̂0
n) and the χ2

1 distribution function Fχ, which

describes the behavior of ε2
i under the assumption of normally distributed errors,

εi ∼ N(0, 1). The hard-rejection weights can be defined by the weight function

(2.5) ŵR
n (t) = I(t < 1 − dn),

where dn = sup
t>c

max{0, σ̂0
nFχ(t) − G0

n(t)}, the cut-off point c equals 2.5, and σ̂0
n =

[1.4826 · MADi=1,...,nri(β̂
0
n)]2. The corresponding procedure, which is equivalent to

LTS with a data-dependent choice of trimming hn = [dnn], is denoted 2S-LWS-R.

The everywhere-positive quantile-based weights, which aim to make weighted resid-

uals normally distributed at β̂0
n, can be defined by

(2.6) ŵQ
n (t) = σ̂0

n

F−1
χ (max{t, bn})

(G0
n)−1(max{t, bn})

,

where (G0
n)−1 is the empirical quantile function of r2

i (β̂0
n) and bn = min{m/n :

r2
[m](β̂

0
n) > 0} is used to avoid dividing by zero. The estimator is referred to as

2S-LWS-Q.

Using the hard-rejection weights, which are either zero or one, provides a robust

estimator which eliminates extreme inefficiency of LWS for Gaussian data, while fully
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preserving the robustness of LWS (if LWS is used as the initial estimator β̂0
n). On

the other hand, the quantile-based weights employ the information about the whole

distribution of regression residuals and thus achieve high relative efficiency even in

very small samples, see [4]. Our experiments however show that 2S-LWS-Q exhibits

a sizeable bias if there are many outliers in a leverage position, and even more so,

if the method is applied in time series containing outliers. To combine advantages

of both weighting schemes, we propose here several alternative weighting schemes.

Let us first mention that extending ŵQ
n by a simple downweighting of observations in

leverage position (i.e., observations far from the rest of data in the space of covariates)

is not possible without loss of efficiency and we thus do not pursue this strategy.

A straightforward combination of the benefits of the two weight functions ŵR
n and

ŵQ
n could be achieved by using the quantile-based weights for most data points and

by fully trimming only the observations with squared residuals highly improbable

under Gaussian errors, r2
i (β̂0

n)/σ̂0
n > F−1

χ (q), where 0.9999 6 q < 1 for instance. The

quantile q can be chosen very close to 1 because 2S-LWS-Q deals well with many

outliers, at least if they are not in an extreme or leverage position (cf. [4]). Such a

combination of hard-rejection and quantile-based weights can be defined as

(2.7) ŵRQ
n (t) = σ̂0

n

F−1
χ (max{t, bn})

(G0
n)−1(max{t, bn})

I(t < 1 − dn),

where dn = sup
t>c

max{0, σ̂0
nFχ(t) − G0

n(t)} and c = F−1
χ (q). The corresponding LWS

estimator with weights ŵRQ
n is denoted 2S-LWS-RQ(1− q).

This straightforward choice of weights however eliminates one of important ad-

vantages of the quantile-based weights. Because some observations have zero weight,

some regression coefficients could possibly not be identified if there are many categor-

ical explanatory variables. Therefore, it might be preferable to simply downweight

observations with extreme residuals more than by ŵQ
n . Specifically, we propose the

power transformation

(2.8) ŵPQ
n (t) =

F−1
χ (max{t, bn})

r[(G0
n)−1(max{t, bn})/σ̂0

n]
,

where r(t) = exp[ln t · max{1, 1 + Kdn[t/F−1
χ (q) − 1]}], K > 1 and 1 > q > 0.99. In

other words, the function r is linear in its argument (standardized residual) unless

the residual is unusually large. Additionally, the power 1 + Kdn[t/F−1
χ (q) − 1] is

proportional to the estimated amount of outlying observations dn. The corresponding

LWS estimator with weights ŵPQ
n is referred to as 2S-LWS-PQ(1− q). Note that the

cut-off quantile q can be smaller here than in (2.7) because residuals above the cut-off
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point do not get zero weights; actually their weights will be close to the original ŵQ
n

unless they are very large.

3. Fundamental properties of 2S-LWS

The four weight functions presented in Section 2 describe four weighted two-step

robust estimators based on an initial (high-breakdown point) estimator and LWS.

In this section we derive asymptotic equivalence of the objective functions of 2S-

LWS and LS for Gaussian data and the robust properties of the proposed 2S-LWS

methods. The asymptotic distribution of 2S-LWS is studied later in Section 4.

One of reasons motivating 2S-LWS was the lack of efficiency of many highly robust

estimators in models with Gaussian errors. To document how 2S-LWS improves

upon this, we show now that the proposed weight functions ŵR
n , ŵQ

n , ŵRQ
n and ŵPQ

n

uniformly converge to a constant function on (0, 1) as n → ∞ if εi ∼ N(0, σ2) in (2.1).

Hence for normal data, the objective function of 2S-LWS becomes asymptotically

identical to the LS criterion. (Note that the following theorem holds also under

more general Assumption A introduced later in Section 4.)

Theorem 3.1. Assume that (xi, εi)
n
i=1 in (2.1) forms a sequence of independent

and identically distributed random vectors, that εi ∼ N(0, σ2), and that the initial

estimators β̂0
n of regression parameters β0 and σ̂0

n of residual variance σ2 = var(εi)

are n1/4-consistent, ‖β̂0
n − β0‖ = Op(n

−1/4) and |σ̂0
n − σ2| = Op(n

−1/4) as n → ∞.
Then for any 0 < a < b < 1 and k ∈ {R, Q, RQ, PQ}, we have

sup
t∈〈a,b〉

|ŵk
n(t) − 1| = Op(n

−1/2).

P r o o f. The result is a direct consequence of the inequality |ŵ1
n(t)ŵ2

n(t) −
w1(t)w2(t)| 6 |ŵ1

n(t) − w1(t)||ŵ2
n(t)| + |w1(t)||ŵ2

n(t) − w2(t)| and Theorem 3.1 and
Lemma 4.3 in [4] because ŵ2(t) can be in all cases chosen so that ŵ2(t) 6 1 for

t ∈ 〈0, 1〉; for example, ŵ1
n = ŵQ

n and ŵ2
n = ŵR

n in the case of ŵ
RQ
n . �

Another feature of the proposed 2S-LWS estimators is that they either trim only a

(small) adaptively chosen proportion of observations (2S-LWS-R[Q]), or alternatively,

do not trim observations from its objective function at all, just downweight them (2S-

LWS-[P]Q). We prove now that this feature does not eliminate or diminish the robust

properties of an initial estimator. To formulate this result, we have to introduce a

formal definition of the breakdown point. For the sake of simplicity, we consider

independent and identically distributed observations (yi, xi)
n
i=1 (the breakdown point

under dependence is generally model-specific; see [5]). The finite-sample breakdown
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point of a linear-regression estimator β̂n = T (Zn) or variance estimator σ̂n = T (Zn),

Zn = (yi, xi)
n
i=1, can be then defined as

ε∗n(T ) =
1

n
min
m>0

{

m : max
Im={i1,...,im}

sup
Z̃n,Im

max{‖T (Z̃n,Im
‖, ‖T (Z̃n,Im

)‖−1} = ∞
}

,

where modified samples Z̃n,Im
are created from the original data Zn by replacing

observations with indices Im by arbitrary values, see [10].

Now, we derive the breakdown point of the proposed 2S-LWS variants.

Theorem 3.2. Let (yi, xi)
n
i=1 be a sequence of independent and identically dis-

tributed random vectors which are almost surely in a general position for n > p.

Further, let ε0∗
βn and ε0∗

σn be the finite-sample breakdown points of initial estimators,

β̂0
n and σ̂0

n of the regression parameters and residual variance, respectively. Then the

finite-sample breakdown points of the 2S-LWS-R, 2S-LWS-Q, 2S-LWS-RQ and 2S-

LWS-PQ estimators are larger than or equal tomin{ε0∗
βn, ε0∗

σn, {[(n+1)/2]−(p+1)}/n}.

P r o o f. The claim of the theorem is a consequence of Theorem 4.2 in [4] because

ŵk
n(t) 6 ŵQ

n (t) or ŵk
n(t) 6 ŵR

n (t) for all t ∈ 〈0, 1〉 and k ∈ {R, Q, RQ, PQ}. �

Theorem 3.2 implies that the breakdown point of the proposed 2S-LWS estimators

(asymptotically) equals the minimum of the breakdown points of the initial estima-

tors β̂0
n and σ̂0

n. It is thus advisable to use highly robust initial estimators in order

to obtain 2S-LWS estimates with a high breakdown point.

4. Asymptotics of 2S-LWS

In this section we first introduce necessary notation and assumptions and then

derive the asymptotic distribution of 2S-LWS.

The distribution functions of εi and ε2
i in model (2.1) are referred to as F and G,

respectively, their density functions are denoted f and g, provided that they exist,

and the corresponding quantile functions are F−1 and G−1, respectively. The as-

sumptions necessary to derive the asymptotic normality of LWS concern the random

variables xi and εi in model (2.1) and the weight function w. A detailed discussion

of the assumptions can be found in [2].

A s s um p t i o n 4.1. Random vectors (xi)i∈N form a weakly stationary absolutely

regular sequence with mixing coefficients βm satisfying

mr/(r−2)(log m)2(r−1)/(r−2)βm → 0 as m → ∞ for some r > 2
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and have finite rth moments. Moreover, let E(xix
⊤
i ) = Q be a nonsingular matrix

and n−1/4 max
i=1,...,n

‖xi‖ = Op(1).

Further, let {εi}i∈N be a sequence of symmetrically and identically distributed

random variables with finite second moments, E(εi) = 0 and var(εi) = σ2, and

additionally, let εi and xi be independent. The distribution function F of εi is

absolutely continuous and its probability density function f is assumed to be bounded

and continuously differentiable.

Finally, let w : 〈0, 1〉 → R
+
0 be a non-negative, bounded, and left-continuous func-

tion that has a bounded derivative everywhere except for a finite setD = {d1, . . . , dJ}
of points of discontinuity.

The asymptotic results concerning 2S-LWS are presented in the following theorem.

Theorem 4.2. Let Assumption 4.1 hold for a weight function w and let the two-

step least weighted squares estimator β̂
(2S-LWS)
n be defined by a bounded weighting

function ŵn based on initial estimates β̂0
n and σ̂0

n. Further, assume that, in probabil-

ity, ŵn(t) → w(t) on t ∈ 〈0, 1〉 and n−α|ŵn(t)−w(t)| → 0 uniformly on any compact

subset of (0, 1) for some α > 0 as n → ∞. Then the two-step least weighted squares
estimator β̂

(2S-LWS)
n is

√
n-consistent and asymptotically normal,

(4.1)
√

n(β̂(2S-LWS)
n − β0)

L→ N(0, Vw)

as n → ∞, where the asymptotic covariance matrix Vw equals

(4.2) Vw =
Q−1 var[x1ε1w{G(ε2

1)}]Q−1

[
∫

εw{G(ε2)}f ′(ε) dε]2

provided that the denominator is positive.

P r o o f. It follows from Theorem 1 and Corollary 5.2 in [4]. �

This theorem, together with Theorem 3.1, implies that the proposed 2S-LWS es-

timators are asymptotically equivalent to LS for Gaussian data, εi ∼ N(0, σ). For

other cases, note that an estimator of the covariance matrix Vw is proposed in [4].

274



5. Finite-sample properties

In this section we present a simulation study done to assess the finite-sample

behavior of the proposed 2S-LWS estimators and to compare it with existing meth-

ods. First, we study all estimators under various distributional assumptions for

cross-sectional data (Section 5.1). Later, all experiments are redone in the con-

text of time series (Section 5.2). In these simulation experiments, we compare all

four proposed variants of 2S-LWS with LS, the S-estimator set up for the maxi-

mum breakdown point (i.e., with Tukey’s biweight function and c = 1.547; see [10]),

and the data-adaptive robust REWLS with hard-rejection weights, see [6] for de-

tails. The adaptive estimators use for the initial robust fit the above described

S-estimator. The newly proposed 2S-LWS-RQ and 2S-LWS-PQ were computed for

q ∈ {10−4, . . . , 10−6} and q ∈ {10−2, . . . , 10−4}, respectively, but we present just
2S-LWS-RQ(10−5) and 2S-LWS-PQ(10−2) due to strong similarity of results across

various choices of q. All methods are compared by means of their mean squared

errors: MSE = S−1
S
∑

s=1
‖β̂(T,s)

n − β0‖, where β̂
(T,s)
n , s = 1, . . . , S, are the estimates

for S simulated samples.

5.1. Cross-section simulations

We evaluate the performance of all estimation methods for the regression model

(5.1) yi = 0.5 + x1i − 2x2i + εi,

where x1i, x2i ∼ N(0, 1) and (x1i, x2i, εi)
n
i=1 forms a sequence of independent random

vectors. Although we obtained results for sample sizes from n = 25 to 400, we present

representative results for n = 100 based on 1000 simulated samples.

The error distributions considered are: NORM—clean Gaussian data εi ∼ N(0, 1);

STD(d)—data with errors from the Student’s distribution with d degrees of freedom;

HET—data exhibiting heteroscedasticity of an unknown form, εi ∼ N(0, zi), where

zi ∼ U(0.25, 4) is independent of x1i and x2i; OUT(a)—data contaminated by [an]

(vertical) outliers, εi ∼ (1−a)N(0, 1)+aU(−50, 50); and LOUT(a, l)—data contam-

inated by outliers in a leverage position, where a fraction a of observations satisfies

x1i, x2i ∼ N(0, 1) and εi ∼ N(0, 1) and the complementary fraction 1 − a of obser-

vations follows x1i, x2i ∼ N(l, 1) and εi ∼ U(−50, 50).

Let us now discuss the simulation results for model (5.1) summarized in Tab. 1.

The results for models without outliers—NORM, STD, DEXP and HET—are qual-

itatively the same. Apart from model NORM, where LS is preferable, the classical

non-robust LS and high breakdown-point S-estimator are the worst performing meth-

ods and all adaptive robust methods outperform them. From the adaptive methods,
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the hard-rejecting REWLS and 2S-LWS-R exhibit higher MSEs than 2S-LWS-Q,

which only downweights observations with large residuals rather than reject them.

The proposed 2S-LWS-RQ and 2S-LWS-PQ are only slightly worse than 2S-LWS-Q

and preferable to REWLS in all cases.

Estimation method
Model LS S REWLS 2S-LWS

R Q RQ(10−5) PQ(10−2)
NORM 0.032 0.122 0.042 0.041 0.034 0.035 0.038
STD(5) 0.052 0.113 0.052 0.051 0.045 0.046 0.047
STD(3) 0.146 0.107 0.059 0.059 0.052 0.053 0.054
DEXP 0.064 0.075 0.049 0.049 0.042 0.042 0.043

HET 0.180 0.183 0.135 0.135 0.113 0.114 0.115

OUT(0.10) 2.463 0.099 0.039 0.038 0.039 0.040 0.040
OUT(0.25) 7.020 0.097 0.046 0.045 0.053 0.052 0.053
OUT(0.40) 9.986 0.101 0.061 0.061 0.067 0.067 0.065

LOUT(0.10,4) 2.711 0.111 0.045 0.044 0.048 0.046 0.045
LOUT(0.25,6) 3.345 0.108 0.068 0.068 0.088 0.081 0.077
LOUT(0.40,8) 4.263 0.151 0.115 0.115 0.222 0.131 0.119

Table 1. Mean squared errors of all methods in various cross-sectional regression models,
n = 100.

Next, for models containing outliers that are not in leverage positions—OUT(0.10),

OUT(0.25) and OUT(0.40)—one observes the complete failure of LS in comparison

to robust methods. Additionally, the robust S-estimator is stable, but outperformed

by all adaptive robust methods. Contrary to models without contamination, the

hard-rejecting REWLS and 2S-LWS-R are best because they can completely elimi-

nate outlying observations. The remaining 2S-LWS methods lead to results similar

to each other, which are slightly worse than those of REWLS in terms of MSE.

Finally, simulations with data contaminated by outliers in leverage positions—

models LOUT(0.10,4), LOUT(0.25,6) and LOUT(0.40,8)—document both the ro-

bustness of all estimators except for LS and the increased sensitivity (bias) of 2S-

LWS-Q to this type of contamination. The proposed 2S-LWS-RQ and 2S-LWS-PQ

are however much closer to the best performing REWLS in this case, especially 2S-

LWS-PQ, and they again outperform the S-estimator. Consequently, 2S-LWS-RQ

and 2S-LWS-PQ are able to preserve most of the efficiency of 2S-LWS-Q, and at the

same time, to reduce the influence of contamination on the estimator.
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5.2. Time-series simulations

Now we carry out the simulations done in Section 5.1 in the time-series setting.

For this purpose, a simple autoregressive process AR(1) of order one is used:

(5.2) yt = 0.5 + 0.8yt−1 + εt.

Except for the fact that there are no independent explanatory variables x1i, x2i,

the data generating processes concerning the error term εi correspond to those in

Section 5.1 with the exception of model OUT(a). In that case, an AR(1) process

{yt}n
t=1 with the errors from the standard normal distribution is generated, εi ∼

N(0, 1), and subsequently, a uniformly distributed noise ε∗i ∼ U(−25, 25) is added

to [an] randomly selected observations.

Estimation method
Model LS S REWLS 2S-LWS

R Q RQ(10−5) PQ(10−2)
NORM 0.056 0.153 0.068 0.067 0.060 0.061 0.065
STD(5) 0.067 0.107 0.059 0.059 0.055 0.055 0.056
STD(3) 0.060 0.101 0.054 0.053 0.051 0.050 0.051
DEXP 0.067 0.057 0.047 0.047 0.043 0.042 0.043

HET 0.124 0.090 0.091 0.090 0.076 0.075 0.074

OUT(0.05) 3.079 0.160 0.102 0.102 0.421 0.130 0.125
OUT(0.10) 3.569 0.214 0.172 0.174 1.498 0.304 0.271

Table 2. Mean squared errors in various autoregressive models, n = 100.

Tab. 2 contains all simulation results for model (5.2). Not surprisingly, the results

under different distributional models without contamination—NORM, STD, DEXP,

and HET—closely correspond to those in Section 5.1. Thus, LS is the best estimator

in model NORM, whereas all adaptive robust methods outperform both LS and the S-

estimator in all other models. The best performing methods are again those without

hard-rejection of observations, 2S-LWS-Q, 2S-LWS-RQ and 2S-LWS-PQ, which have

nearly identical MSEs in all models but NORM. In comparison to the cross-sectional

experiments, the proposed 2S-LWS-RQ and 2S-LWS-PQ are now sometimes slightly

better than the original 2S-LWS-Q.

Next, the results in the presence of outliers—models OUT(0.05) and OUT(0.10)—

highlight not only the non-robustness of LS, but also rather high sensitivity of 2S-

LWS-Q to outliers in time series. On the other hand, the proposed modifications 2S-

LWS-RQ and 2S-LWS-PQ exhibit much smaller MSEs and are closer to the best-

performing hard-rejecting REWLS and 2S-LWS-R methods. Hence, the proposed

adaptive 2S-LWS methods can combine high relative efficiency in finite samples and

low sensitivity to outliers also in time series models.
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6. Conclusion

In this paper new robust estimation methods are introduced, which offer not only

robustness in terms of a high breakdown point, but also asymptotic efficiency for

Gaussian data and high relative efficiency under many other distributional models in

finite samples. In particular, the 2S-LWS-PQmethod performs well both in the cross-

sectional and time-series setting without fully rejecting any observation, which makes

it universally applicable in models with or without many categorical variables, in data

with or without outliers, and in cross-section or time-series data. Additionally, let us

note that the processing time needed to compute 2S-LWS estimates is comparable

to the computation time of the initial high breakdown-point estimators such as LWS

or S-estimators and thus all mentioned advantages of 2S-LWS-PQ are achieved just

in twice the time needed for computing traditional highly robust estimators.

Finally, although the methods are proposed and discussed in the context of (ho-

moscedastic) linear regression, many extensions are straightforward. This does not

include only regression under heteroscedasticity, but also instrumental variable esti-

mation proposed for LWS by [15], nonlinear regression using results of [2], or maxi-

mum likelihood estimation [3] as long as the response variable is continuous.
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