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Abstract. The electromagnetic initial-boundary value problem for a cavity enclosed by
perfectly conducting walls is considered. The cavity medium is defined by its permittivity
and permeability which vary continuously in space. The electromagnetic field comes from
a source in the cavity. The field is described by a magnetic vector potential A satisfying a
wave equation with initial-boundary conditions. This description through A is rigorously
shown to give a unique solution of the problem and is the starting point for numerical
computations. A Chebyshev collocation solver has been implemented for a cubic cavity,
and it has been compared to a standard finite element solver. The results obtained are
consistent while the collocation solver performs substantially faster. Some time histories
and spectra are computed.
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Lorenz gauge, Chebyshev collocation
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1. Introduction

This paper is devoted to Maxwell’s equations from an analytical as well as a

computational viewpoint. We deal with the description of the electromagnetic field

in terms of the scalar and vector potentials ϕ and A of the Lorenz gauge. We show

rigorously that the electromagnetic field can be described by A alone and that A is

the unique solution to an initial-boundary value problem for a certain wave equation.

The purpose of the research reported here is on the one hand to establish rigorous

results about A and, on the other hand, to devise a feasible numerical method for

the computation of A and hence of the electromagnetic field. We emphasize that

the method developed in this paper is suitable for rather smooth fields in space x
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and time t. For regular data and a cubic cavity, we give numerical evidence that the

proposed method is fast and efficient.

1.1. Maxwell’s equations and the Lorenz gauge

The mathematical formulation of the electromagnetic phenomena considered in

this paper starts from Faraday’s and Ampere’s laws, i.e.,

∂B

∂t
+ ∇× (ε−1

D) = 0 in (0, T ) × Ω,(1)

∂D

∂t
−∇× (µ−1

B) = −J in (0, T ) × Ω,(2)

supplemented with the boundary and initial conditions

n× D = 0 on (0, T )× ∂Ω,(3)

B|t=0 = B0 and D|t=0 = D0 in Ω.(4)

Here T is the length of the considered time interval, and initially t = 0. Equa-

tions (1)–(2) are to be understood in the setting of Sobolev space-valued functions

of time t in the sense made precise in Section 2.

The problem is set in a bounded, simply connected, open subset Ω of R3 with a

Lipschitz boundary ∂Ω, whose unit outward normal vector is denoted by n. More-

over, the complement of Ω is connected. To rule out singular phenomena, we also

assume

(5) either Ω is a convex polyhedron or ∂Ω is of class C1,1.

These conditions on the region ensure, in particular, the following regularity prop-

erty: If f ∈ L2(Ω) and u ∈ H1
0 (Ω) is the solution of Poisson’s equation −∆u = f

vanishing on ∂Ω, then u ∈ H2(Ω); see e.g. [3]. They are also vital for the existence

and uniqueness of potentials [3].

The region Ω is occupied by a medium with variable permittivity ε and perme-

ability µ. Thus D(t, x) = ε(x)E(t, x) and B(t, x) = µ(x)H(t, x) are the constitutive

relations between the fields. We assume that ε(x) and µ(x) are from C3(Ω) and such

that

(6) ε(x), µ(x) > c0 > 0 for all x ∈ Ω,

for some constant c0.
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Moreover, the given charge density ̺ and current density J are subject to the

conservation law

(7)
∂̺

∂t
+ ∇ · J = 0.

The initial fields B0 and D0 are prescribed and fulfil the conditions

(8) ∇ ·D0 = ̺0 in Ω, where ̺0(x) = ̺(0, x), and n × D0 = 0 on ∂Ω,

as well as

(9) ∇ · B0 = 0 in Ω and n ·B0 = 0 on ∂Ω.

The electromagnetic cavity field is described analytically and computed numeri-

cally using the electromagnetic potentials A and ϕ of the Lorenz gauge, i.e.,

B = ∇× A,(10)

E = −∇ϕ− At,(11)

εµϕt + ∇ · A = 0.(12)

The paper revolves around the fact that the vector potential satisfies the wave

equation

(13) ε(∇((εµ)−1∇ · A) − Att) −∇× (µ−1∇× A) = −J.

In order to supplement (13) with correct initial conditions we chooseA0 so thatB0 =

∇×A0 and∇·A0 = 0 in Ω as well as n×A0 = 0 on ∂Ω (under certain conditions, this

can be done in a unique way). We requireA(0) = A0 and note thatAt(0) = −E(0) =

−ε−1
D0 since ϕ(0) = 0 is assumed. Moreover, n×A(t) and ∇·A(t) are required to

vanish on the boundary ∂Ω at every instant t. It turns out that the resulting initial-

boundary value problem is well-posed. Consequently, the electromagnetic field can be

obtained from the unique solutionA alone through (10)–(12). As already mentioned,

the mathematical justification of this program constitutes one part of this paper.

1.2. Outline

The contribution of this paper is twofold. The first half of the paper deals with

the analytical problems. In Lemma 1 the well-posedness of the electromagnetic

Cauchy problem is recalled. Conditions are given which guarantee a suitable degree

of regularity of the field for the success of our approach. The main analytical results

are presented in Theorems 1–4. Theorem 1 furnishes the existence of the potentialsA
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and ϕ in the Lorenz gauge, with respect to which (10)–(12) hold. Theorems 2 and 3

characterizeA as the unique solution of the initial-boundary value problem sketched

above. The main analytical results are summarized in Theorem 4.

Secondly, for a cubic cavity, A is computed numerically by a Chebyshev colloca-

tion approximation of (13); the trapezoidal rule is used for time integration. It is

shown that the collocation solver is consistent with and much faster than a standard

FEM solver and that Maxwell’s equations are fulfilled. In addition, the computed

time histories of (13) confirm that the method is time stable and yields reasonable

eigenfrequencies.

2. Mathematical analysis

We start now with mathematical justification of our approach. It is based on

semigroup theory for evolution equations, Sobolev spaces, and the vector analysis

of [3].

2.1. Prerequisites

In view of the lower bound (6), instead of the standard scalar product in the

Hilbert space H = L2(Ω)3 × L2(Ω)3 one may use the following equivalent one:

(M,M∗)H =

∫

Ω

(µ(x)−1
B(x) · B∗(x) + ε(x)−1

D(x) ·D∗(x)) dx

for M = (B,D) and M∗ = (B∗,D∗) in H. We proceed to the operator A defined by

AU = A(B,D) = (∇× (ε−1
D),−∇× (µ−1

B)),

its domain being

dom(A) = {(B,D) ∈ H : (∇× (ε−1
D),−∇× (µ−1

B)) ∈ H ; n× D = 0 on ∂Ω}.

The operatorA is naturally associated with (1)–(2). The curl operator∇× appearing
in the definition ofA is understood in the sense of distributions (see e.g. [3, Chap. IX])
and is therefore well-defined. In generic terms, if u ∈ D′(Ω)3 is a distribution, then

the partial derivative Dju = ∂u/∂xj is the distribution defined by

〈Dju,Φ〉 = −〈u, DjΦ〉, ∀Φ ∈ D(Ω),

while the curl ∇× u is the distribution given by

〈∇ × u,Φ〉 = 〈u,∇× Φ〉, ∀Φ ∈ D(Ω)3.
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Likewise, the gradient, divergence, Laplacian, etc., appearing in this paper, are de-

fined in the sense of distributions.

Assuming B,D ∈ L2(Ω)3, we note that (∇× (ε−1
D),−∇× (µ−1

B)) ∈ H exactly
when ∇ × B and ∇ × D are in L2(Ω)3, since ε, µ as well as ε−1, µ−1 are smooth

and positive on Ω. Recall that D ∈ L2(Ω)3 together with ∇× D ∈ L2(Ω)3 ensures

that n×D on ∂Ω is defined in the trace sense [3, Chap. IX, Thm. 2]. Similarly, if B

and its divergence ∇ ·B both belong to L2(Ω), then n ·B|∂Ω is defined in the sense

of traces [3, Chap. IX, Thm. 1].

R em a r k 1. We refrain from systematically using the spaces H(curl,Ω) and

H(div,Ω) extensively investigated in [3, Chap. IX]:

H(curl,Ω) = {u ∈ L2(Ω)3 : ∇× u ∈ L2(Ω)3},
H(div,Ω) = {u ∈ L2(Ω)3 : ∇ · u ∈ L2(Ω)}.

These are Hilbert spaces for the norms

‖u‖H(curl,Ω) = (‖u‖2
L2(Ω)3 + ‖∇× u‖2

L2(Ω)3)
1/2
,

‖u‖H(div,Ω) = (‖u‖2
L2(Ω)3 + ‖∇ · u‖2

L2(Ω))
1/2
,

respectively. The trace theorem for H(curl,Ω) [3, Chap. IX, Thm. 2] states that

the trace mapping u 7→ n × u|∂Ω defined on D(Ω)3 extends by continuity to a

continuous linear mapping γτ from H(curl,Ω) into H−1/2(∂Ω)3. The accompanying

trace theorem forH(div,Ω) [3, Chap. IX, Thm. 1] yields the existence of an extension

of u 7→ n ·u|∂Ω to a continuous linear mapping γn from H(div,Ω) into H−1/2(∂Ω)3.

The fields B, D, E, H are understood as functions mapping time t into Banach

spaces (Sobolev spaces). For instance, B is the mapping t 7→ B(t) whereB(t) belongs

to a Sobolev space for each t and enjoys certain regularity as a function of t. We

frequently apply the divergence and curl operators in the sense of distributions, e.g.,

the divergence ∇ ·B(t) is defined in D′(Ω) for each fixed t.

Integrals with respect to time, of Banach space-valued integrands, are understood

in the Bochner sense. We use interchangeably u
′, du/dt and ut to denote the time

derivative in the Banach-valued weak sense of u where u can be B, D, E or H.

In generic terms, let X be a Banach space and u ∈ L1(0, T ;X). We say that

v ∈ L1(0, T ;X) is the weak derivative of u, written v = u
′ ≡ du/dt ≡ ut, provided

∫ T

0

Φ′(t)u(t) dt = −
∫ T

0

Φ(t)v(t) dt
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for all scalar test functions Φ ∈ D(0, T ). The weak derivative of u ∈ L1
loc(R;X) is

defined analogously. Of course, if u happens to be smooth, say u ∈ C1(R;X), then

lim
h→0

∥

∥

∥

u(t+ h) − u(t)

h
− u

′(t)
∥

∥

∥

X
= 0

for every t ∈ R, and t 7→ u
′(t) is a continuous mapping from R into X . In our

applications,X is a Sobolev space. Let us derive a familiar calculus rule, which will be

tacitly used in the sequel. To be definite, let X = H1(Ω) and u ∈ C1(R;H1(Ω)3) for

the moment. Then the order of time and space differentiation may be interchanged,

i.e., Dj(u
′(t)) = (Dju)′(t) where Dj = ∂/∂xj in the sense of D′(Ω). Indeed, from

lim
h→0

∥

∥

∥

u(t+ h) − u(t)

h
− u

′(t)
∥

∥

∥

H1(Ω)3
= 0

it follows that

lim
h→0

∥

∥

∥

Dju(t+ h) −Dju(t)

h
−Dju

′(t)
∥

∥

∥

L2(Ω)3
= 0,

or in other words that (Dju)′(t) = Dj(u
′(t)) where Dju ∈ C1(R;L2(Ω)3).

See e.g. [6], [13] for the use of Banach space-valued functions of time in the context

of partial differential equations.

2.2. Classical solutions

As was proved in [5], dom(A) is dense in H and A is skew-adjoint, i.e., dom(A∗) =

dom(A) and A is a graph closed operator with A∗ = −A. Since A is skew-adjoint,
iA is self-adjoint. By Stone’s theorem, A is therefore the infinitesimal generator of
a unique one-parameter group of unitary operators G(t) (see e.g. [12, Thm. 10.8]).

The Cauchy problem (1)–(4) may, under very weak assumptions on the data, be

formulated as follows: Given J ∈ L1(0, T ;L2(Ω)3) and U0 = (B0,D0) ∈ dom(A),

find U(t) = (B(t),D(t)) ∈ dom(A) satisfying (in a sense to be specified) the initial

value problem

(14) dU(t)/dt+ AU(t) = F(t), t ∈ (0, T ); U(0) = U0

where F(t) = (0,−J(t)). By definition, the mild solution of (14) is

(15) U(t) = G(t)U0 +

∫ t

0

G(t− τ)F(τ) dτ.

By a classical solution U(t) of (14) we mean a function U belonging to C([0, T ];H)∩
C1((0, T );H), satisfying U(t) ∈ dom(A) and equation (14) for every t ∈ (0, T ), as
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well as the initial condition U(0) = U0. If U is a classical solution, then U is

necessarily the mild solution (15), but the converse fails in general since the mild so-

lution (15) may lack the required regularity (see e.g. [12, Chap. 4] or [4, Chap. XVII]).

In particular, if it exists, the classical solution is unique.

It is well known [12, Cor. 4.2.5] that if J ∈ C1([0, T ];L2(Ω)3) and U0 ∈ dom(A),

then the mild solution is a classical solution. Below we assume at least J ∈
C1(R;L2(Ω)3), which implies that the classical solution U(t) exists and can be

extended to t ∈ R, hence U ∈ C1(R;L2(Ω)6). Recall that the classical solution,

in particular, is such that U(t) = (B(t),D(t)) ∈ dom(A) for each t ∈ R, which

boils down to the conditions that, firstly, D(t) and B(t) along with their curls,

understood in the distribution sense (i.e., in the sense of D′(Ω)), belong to L2(Ω)3

and, secondly, n × D(t) = 0 on ∂Ω. Notice again that ∇× D(t) ∈ L2(Ω)3 ensures

that n×D(t) makes sense in the trace sense, as pointed out in Remark 1. Below we

shall strengthen the regularity assumptions on the data to ensure the well-posedness

of the initial-boundary value problem for (13); see in particular Lemma 1 (iii) below.

As we are primarily interested in regular solutions, which are reasonably smooth

in t, we shall assume enough regularity of the data to this end. Parts (i) and (ii) of the

following basic lemma contain general and known results about the well-posedness of

the Cauchy problem of this paper. The conditions on the data can be relaxed [5], [4].

In part (iii) stronger conditions are assumed to ensure a higher degree of regularity

in time t, which will be of importance in the sequel.

Lemma 1. Let Ω be a bounded, simply connected, open subset Ω of R3 with a

Lipschitz boundary ∂Ω and with ∁Ω connected. Let Ω meet condition (5). Assume

ε, µ ∈ C3(Ω) satisfy (6). Let J belong to C1(R;L2(Ω)3) and U0 ∈ dom(A). More-

over, assume that ̺ ∈ C(R;L2(Ω)) and that (7) holds in D′(R× Ω). Let also (8) be

fulfilled. Then the following statements hold:

(i) The problem (14), i.e., the initial-boundary problem for Maxwell’s equa-

tions (1)–(4), has a unique classical solution U ∈ C1(R;L2(Ω)6) with U(t) =

(B(t),D(t)) ∈ dom(A) for all t ∈ R. The solution is given by (15). Moreover,

the classical solution U = (B,D) satisfies (1)–(2) in the sense of D′(R× Ω).

(ii) We have ∇ · D = ̺ in D′(R × Ω) and n × D(t) = 0 on the boundary for each

t ∈ R. Furthermore, if (9) is met, then ∇·B(t) = 0 in Ω and n ·B(t) = 0 on ∂Ω

for each t ∈ R and, moreover, U ∈ C(R;H1(Ω)6).

(iii) Assuming condition (9) and the regularity J ∈ C3(R;L2(Ω)3), ̺ ∈ C2(R;

L2(Ω)), F(0) = (0,−J(0)) ∈ dom(A2), and U0 ∈ dom(A3), we have U ∈
C3(R;L2(Ω)6) ∩C2(R;H1(Ω)6)

P r o o f. A proof of part (i) can be found in [5] and [4, Chap. XVII]. Note,

e.g., that n × D0 is well-defined on the boundary in the trace sense since by our
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assumptions D0 and ∇ × D0 are in L
2(Ω)3. Similarly, n · B0|∂Ω is defined in the

trace sense for B0 ∈ L2(Ω)3 when ∇ · B0 ∈ L2(Ω), in particular, when ∇ · B0 = 0.

See Remark 1 and Theorems 1 and 2 of [3, Chap. IX].

It was proved in [5, Thm. 5.1] that the classical solution is also a solution in the

sense of distributions.

(ii) Taking the divergence of (2) and using (7) in the sense of distributions yields

∂

∂t
∇ · D =

∂̺

∂t
.

The equality ∇·D(t) = ̺(t) ensues for any t ∈ R, since it is assumed that ∇·D(0) =

̺(0). Analogously, by taking the divergence of (1), it is proved that the divergence

∇ ·B(t) = 0 for all times t provided ∇ ·B(0) = 0. For proofs of the remaining parts

of (ii) see Theorems 5.1–5.3 of [5] and [4, Chap. XVII].

We consider in detail the regularity assertions of (ii) and (iii).

The regularity proposition of (ii) can be proved as follows. Since µ ∈ C3(Ω)

and ∇ × (µ−1
B) ∈ C(R;L2(Ω)3), we have ∇ × B ∈ C(R;L2(Ω)3) and ∇ · B = 0,

whence B ∈ C(R;H1(Ω)3). Similarly, it follows from ∇× E = −Bt ∈ C(R, L2(Ω)3)

and ∇ · D = ̺ ∈ C(R;L2(Ω)) that D,E ∈ C(R;H1(Ω)3). The assumptions on Ω,

including (5), guarantee this degree of regularity of the fields, see Theorem 3 and

Remark 2 of [3, Chap. IX].

(iii) By the extra assumptions, F = (0,−J) belongs to C3(R;L2(Ω)6). Writing

U(t) = G(t)U0 + V(t) where

V(t) =

∫ t

0

G(t− τ)F(τ) dτ

and examining the terms separately, we first find that d(G(t)U0)/dt = G(t)AU0.

Proceeding to higher derivatives, using AU0 ∈ dom(A) and A2
U0 ∈ dom(A), we

find that d(G(t)U0)/dt = G(t)AU0 is again differentiable and d2(G(t)U0)/dt
2 =

G(t)A2
U0 and d3(G(t)U0)/dt

3 = G(t)A3
U0 are continuous functions of t. As re-

gards V, writing V(t) =
∫ t

0
G(s)F(t− s) ds and using the differentiability of F(t) we

obtain that V(t) is differentiable with

(16) V
′(t) = G(t)F(0) +

∫ t

0

G(s)F′(t− s) ds.

As F ∈ C3(R;L2(Ω)6) and F(0) ∈ dom(A2), V
′′(t) as well as V

′′′(t) exist and

constitute continuous functions of t. We have thus proved U ∈ C3(R;L2(Ω)6).

In view of ∇ × (µ−1
B) = Dt + J ∈ C2(R;L2(Ω)3) and the smoothness and

positivity of µ, we have ∇ × B ∈ C2(R;L2(Ω)3) and ∇ · B = 0 and thus B ∈
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C2(R;H1(Ω)3). Similarly, it follows from∇×E = −Bt ∈ C2(R, L2(Ω)3) and ∇·D =

̺ ∈ C2(R;L2(Ω)) that E ∈ C2(R;H1(Ω)3). We conclude that U ∈ C2(R;H1(Ω)6).

�

3. Potential formalism

We now introduce vector and scalar potentials representing the field. Let us first

do this formally. Below precise statements are given.

Assuming that the divergence of B(t) vanishes for all t ∈ R, B = ∇×A for some

vector field A by Poincaré’s theorem. Further, as Bt + ∇× E = 0 and B = ∇× A,

we find that ∇× (At +E) = 0 and so, by another application of Poincaré’s theorem,

At + E = −∇ϕ for some potential ϕ.
Here A and ϕ are the magnetic vector potential and the electric scalar poten-

tial, respectively. They are not defined in a unique manner because any specific

choice (A0, ϕ0) can be replaced by

A = A
0 + ∇ψ,(17)

ϕ = ϕ0 − ψt(18)

for “any” scalar function ψ. A particular choice of (A, ϕ) representing the electro-

magnetic field (E,B) is called a gauge; the transformation (A0, ϕ0) 7→ (A, ϕ) given

by (17)–(18) is termed a gauge transformation; the electromagnetic field (E,B) is

invariant under gauge transformations.

We recall that the Coulomb gauge (A, ϕ) (denoted by (Ã, ϕ̃) below) is charac-

terized by ∇ · A = 0 and suitable boundary conditions. Starting from a vector

potential A0, it is obtained as (17) by setting the divergence of (17) to zero, i.e., by

solving Poisson’s equation −∆ψ = ∇ · A0. However, the main role is played by the

Lorenz gauge in this article. The Lorenz gauge is constructed from the Coulomb

gauge in Section 3.2.

In the forthcoming sections we proceed to rigorous statements about the potentials.

In doing so we rely on [3, Chap. IX] and [4, Chap. XVII]. In the sequel we assume

the conditions of Lemma 1 (iii), under which each of the fields B, E, D = εE and

H = µ−1
B belongs to the space

C3(R;L2(Ω)3) ∩ C2(R;H1(Ω)3),

and

(19) ∇ · B(t) = 0 in Ω and n ·B(t) = 0 on ∂Ω

for all t ∈ R.
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3.1. The Coulomb gauge

Let us first make the following specific choice of potentials according to the

Coulomb gauge. Fix

(20) Ã ∈ C3(R;H1(Ω)3)

with B(t) = ∇ × Ã(t) and ∇ · Ã(t) = 0 in Ω and n × Ã(t) = 0 on ∂Ω, at each

time instant t ∈ R. The existence and uniqueness of Ã follows from the results

of [3, Chap. IX] (see also Remark 7, §4, Chap. XVII of [4]). Indeed, by Theorem 3,

Remark 2, and Theorem 2 of [3, Chap. IX], B(t) ∈ H1(Ω)3 and (19) together ensure

the existence and uniqueness of Ã(t) ∈ H1(Ω)3 with∇×Ã(t) = B(t) and∇·Ã(t) = 0

in Ω and n × A(t)|∂Ω = 0. In fact, the curl operator, curl: X → Y , acts as an

isomorphism of the space

X = {v ∈ H1(Ω)3 : ∇ · v = 0 in Ω and n × v|∂Ω = 0}, with the H1-norm

onto the subspace Y = curlH1(Ω)3 of L2(Ω)3. Indeed, by Corollary 6 and Remark 6

of [3, Chap. IX], using in particular the assumptions on Ω, for each v0 ∈ H1(Ω) there

exists a unique v ∈ H1(Ω)3 satisfying ∇ × v = ∇ × v0 and ∇ · v = 0 in Ω as well

as n× v|∂Ω = 0. Hence curl : X → Y is a continuous linear bijection. Furthermore,

X and Y are closed subspaces of H1(Ω)3 and L2(Ω)3, respectively; see [3, Chap. IX,

p. 223]. Therefore, the inverse operator, here simply denoted by L : Y → X , is

continuous by Banach’s open mapping theorem.

Returning to the relation B(t) = ∇× Ã(t) where Ã(t) ∈ X , we shall verify that

Ã(t) = L(B(t)) is a differentiable function of t. We have

h−1(Ã(t+ h) − Ã(t)) = L(h−1(B(t+ h) − B(t))) → L(B′(t)) as h→ 0,

with convergence in H1(Ω)3 thanks to B ∈ C3(R;L2(Ω)3) and the recently discussed

continuity of L. Thus Ã
′(t) exists and Ã

′(t) = L(B′(t)). This procedure can be

repeated twice to yield Ã ∈ C3(R;H1(Ω)3).

We proceed to the accompanying scalar potential. Since Bt + ∇ × E = 0 and

B = ∇ × Ã, we find that ∇ × (Ãt + E) = 0 and so, by another application of

Poincaré’s theorem, Ãt + E = −∇ϕ̃ for some ϕ̃(t) ∈ H1
0 (Ω) [3, Chap. IX]. Taking

the divergence of Ãt + E = −∇ϕ̃ and using ∇ · Ã = 0, the equation

(21) −∆ϕ̃ = ∇ · E ∈ C3(R;H−1(Ω)) ∩ C2(R;L2(Ω))

ensues. Invoking the regularity theory for Poisson’s equation we conclude that

(22) ϕ̃ ∈ C3(R;H1
0 (Ω)) ∩ C2(R;H2(Ω)),

since (5) is assumed.
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In other words, Ã and ϕ̃ are the vector and scalar potentials of the Coulomb gauge

satisfying ∇ · Ã(t) = 0 in Ω as well as the boundary conditions n × Ã(t) = 0 and

ϕ̃(t) = 0 on ∂Ω for every t ∈ R.

3.2. The Lorenz gauge

We shall convert the Coulomb gauge into the Lorenz gauge. To this end, set

(23) A = Ã + ∇ψ, ϕ = ϕ̃− ψt,

where ψ is the solution of the following wave equation with variable coefficients:

εµψtt − ∆ψ = εµϕ̃t, t ∈ R,(24)

ψ(0) = 0,

ψt(0) = ϕ̃(0),

ψ(t) = 0 on ∂Ω for t ∈ R,

ϕ̃ being known. The exact problem formulation is found below in Lemma 2.

Then the characteristic properties of the Lorenz gauge are fulfilled. To check the

Lorenz condition (12) we calculate

(25) εµϕt + ∇ · A = εµ(ϕ̃t − ψtt) + ∇ · Ã + ∆ψ = εµ(ϕ̃t − ψtt) + ∆ψ = 0

by (24). This construction requires the existence of a solution of the initial-boundary

value problem (24), as is shown below. The imposed initial and boundary conditions

on ψ give rise to a vector potential A and scalar potential ϕ enjoying favorable

properties.

Lemma 2. Assume (22). Then the following three assertions are true:

(i) The wave equation (24) has a unique variational solution ψ with ψ ∈ C(R;

H1
0 (Ω)) and ψt ∈ C(R;L2(Ω)) satisfying the initial conditions ψ(0) = 0 and

ψt(0) = ϕ̃(0). To be exact, ψ is uniquely determined by these regularity and

initial conditions and the requirement that

d

dt

∫

Ω

ε(x)µ(x)ψt(t, x)v(x) dx+

∫

Ω

∇ψ(t, x) · ∇v(x) dx =

∫

Ω

f(t, x)v(x) dx

holds in the sense of D′(R) for any v ∈ H1
0 (Ω), where f = εµϕ̃t. The variational

solution ψ is also a solution of (24) in the sense of D′(R× Ω).

(ii) The variational solution ψ enjoys the following regularity: ψ ∈ C2(R;H1
0 (Ω))∩

C1(R;H2(Ω)), ψttt ∈ C(R;L2(Ω)). Moreover, ∆ψ ∈ C(R;H1
0 (Ω)).
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(iii) The solution ψ satisfies ψ(0) = 0, ψt(0) = ϕ̃(0), ψtt(0) = ϕ̃t(0) and ψttt(0) =

ϕ̃tt(0) − (εµ)−1∇ ·E(0).

Notice that it implicitly follows from ψ(t) ∈ H1
0 (Ω) that ψ(t) vanishes in the trace

sense on the boundary ∂Ω.

P r o o f. First, by (22),

f = εµϕ̃t ∈ C2(R;H1
0 (Ω)) ∩ C1(R;H2(Ω)).

In particular, f ∈ L2
loc(R;L2(Ω)).

(i) This assertion follows as a special case of “Mathematical Example 3” in Chap-

ter XVIII of [4]; see also [13, Chap. V] or [6, Chap. 7]. These results guaran-

tee the existence and uniqueness of a variational solution u ∈ C(R;H1
0 (Ω)) with

ut ∈ C(R;L2(Ω)) of the wave equation εµutt − ∆u = g with initial conditions

u(0) = u0 and ut(0) = v0 provided g ∈ L2
loc(R;L2(Ω)), u0 ∈ H1

0 (Ω) and v0 ∈ L2(Ω).

This more general proposition is invoked not only here but below in the proof of

part (ii).

(ii) Differentiating (24) with respect to t we see that y = ψt formally solves

εµytt − ∆y = εµϕ̃tt,(26)

y(0) = ϕ̃(0),

yt(0) = ϕ̃t(0),

y(t) = 0 on ∂Ω for t ∈ R.

The third equality follows from yt(0) = ψtt(0) = ϕ̃t(0) + (εµ)−1∆ψ(0) = ϕ̃t(0).

Since the initial data ϕ̃(0) and ϕ̃t(0) both belong to H1
0 (Ω) and the right-hand

side εµϕ̃tt belongs to L
2
loc(R;L2(Ω)), the initial-value problem (26) is well-posed; it

has a unique variational solution y ∈ C(R;H1
0 (Ω)) with yt ∈ C(R;L2(Ω)). Again

this follows from “Mathematical Example 3” in Chapter XVIII of [4]; see also the

proof of (i). Just as in the proof of Theorems 30.1–30.2 of [13] one then shows that

the formal equation ψt = y is in fact rigorous. This is done by demonstrating that
∫ t

0 y(s) ds is a variational solution of (24) and hence is equal to ψ(t).

Equation (26) permits one more time differentiation. Setting formally z = yt, we

have

εµztt − ∆z = εµϕ̃ttt,(27)

z(0) = ϕ̃t(0) ∈ H1
0 (Ω),

zt(0) = ϕ̃tt(0) + (εµ)−1∆ϕ̃(0) ∈ L2(Ω),

z(t) = 0 on ∂Ω for t ∈ R.
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We have here made use of (22). As for (26), the initial-value problem (27) has a

unique variational solution z ∈ C(R;H1
0 (Ω)) with zt ∈ C(R;L2(Ω)). Again and for

the same reasons the formal identity is rigorous: z = yt = ψtt are true identities.

So far we have proved that

ψ ∈ C2(R;H1
0 (Ω)), ψttt ∈ C(R;L2(Ω)); ψ(0) = 0, ψt(0) = ϕ̃(0),(28)

ψtt(0) = ϕ̃t(0), ψttt(0) = ϕ̃tt(0) + (εµ)−1∆ϕ̃(0).

To investigate the regularity with respect to the space variables, we observe that

−∆ψ = εµ(ϕ̃t − ψtt) ∈ C(R;H1
0 (Ω)),

which implies ψ ∈ C(R;H2(Ω)) thanks to the hypotheses on the domain. Similarly,

since y = ψt is the solution of (26) we have −∆ψt ∈ C(R;L2(Ω)), which ensures

ψt ∈ C(R;H2(Ω)).

(iii) Use (28) in combination with −∆ϕ̃(0) = ∇ · E(0), which holds by (21). �

We summarize what we have achieved so far.

Theorem 1. Let Ω be a bounded, simply connected, open subset Ω of R3 with

a Lipschitz boundary ∂Ω. Let ∁Ω be connected and assume Ω meets condition (5).

Assume ε, µ ∈ C3(Ω) are positive on Ω. Let J ∈ C3(R;L2(Ω)3), ̺ ∈ C2(R;L2(Ω)),

F(0) = (0,−J(0)) ∈ dom(A2) and U0 = (B0,D0) ∈ dom(A3). Moreover, assume

conditions (7)–(9). Let U = (B,D) be the classical solution of (1)–(4) furnished by

Lemma 1.

Then each of the fields B, D, E, H belongs to C3(R;L2(Ω)3) ∩ C2(R;H1(Ω)3).

Moreover, there exist a vector potentialA and a scalar potential ϕ, the Lorenz gauge,

representing the electromagnetic field as (10), (11), (12). These potentials can be

chosen so as to have the following properties:

(i) Regularity: ϕ ∈ C(R;H2(Ω)) ∩ C1(R;H1
0 (Ω)) and ϕtt ∈ C(R;L2(Ω)) while

A ∈ C1(R;H1(Ω)3) and Att ∈ C(R;L2(Ω)3). The Lorenz condition is fulfilled

in C(R;H1
0 (Ω)), i.e., ϕt and ∇ · A belong to C(R;H1

0 (Ω)) and (12) is met.

Moreover, ∇× A ∈ C3(R;L2(Ω)3) ∩ C2(R;H1(Ω)3).

(ii) A satisfies the initial conditions ∇ · A(0) = 0, At(0) = −E(0) = −ε−1
D0 and

Att(0) = −Et(0) = ε−1(J(0)−∇×(µ−1
B0)) as well as the boundary conditions

n×A(t) = 0 and ∇ ·A(t) = 0 on ∂Ω for every t; in fact, ∇ ·A ∈ C(R;H1
0 (Ω)).

The scalar potential satisfies the initial conditions ϕ(0) = 0, ϕt(0) = 0, ϕtt(0) =

(εµ)−1∇ · E(0) as well as the homogeneous boundary condition encoded in

ϕ ∈ C1(R;H1
0 (Ω)).
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P r o o f. First, by Lemma 1 (iii), the fields B and E belong to the space

C3(R;L2(Ω)3) ∩ C2(R;H1(Ω)3). As we have seen, this degree of regularity guar-

antees that the potentials of the Coulomb gauge satisfy, in particular, (20) and (22).

The assertions of the theorem on the Lorenz gauge follow from relation (23) between

the Coulomb and Lorenz gauges, where ψ has the properties discovered in Lemma 2.

For instance,

n× A(t) = n× Ã(t) + n×∇ψ(t) = 0 + 0,

the term n×∇ψ(t) being the vanishing tangential derivative (since ψ(t) = 0 on ∂Ω).

The calculation (25) verifying the Lorenz condition is justified in the sense of distri-

butions. �

R em a r k 2. It follows from Theorems 2–4 below that A and ϕ are uniquely

determined by the stated conditions.

3.3. The wave equation

Substituting (10) and (11) into Ampere’s law, (A, ϕ) (still in the Lorenz gauge)

satisfies in C(R;L2(Ω)3) the equation

(29) ε(∇ϕt + Att) + ∇× (µ−1∇× A) = J.

It follows from (12) that −∇ϕt = ∇((εµ)−1∇·A). Using this relation to eliminate ϕ

in (29) one finds that A is a solution of the wave equation (13), i.e.,

ε(Att −∇((εµ)−1∇ · A)) + ∇× (µ−1∇× A) = J.

We have hence derived the following theorem.

Theorem 2. Under the conditions of Theorem 1, the vector potential A of the

Lorenz gauge satisfies in C(R;L2(Ω)3) the wave equation (13).

We proceed to the uniqueness problem for (13).

Theorem 3. Let Ω be a bounded, simply connected, open subset Ω of R3 with

a Lipschitz boundary ∂Ω. Let ∁Ω be connected and assume Ω meets condition (5).

Assume ε, µ ∈ C3(Ω). Let A ∈ C1(R;H1(Ω)3) fulfil Att ∈ C(R;L2(Ω)3), ∇ · A ∈
C(R;H1

0 (Ω)) and ∇×A ∈ C(R;H1(Ω)3), and the boundary condition n×A(t) = 0

on ∂Ω for all t ∈ R, as well as the initial conditions A(0) = 0 and At(0) = 0. Assume

A satisfies in C(R;L2(Ω)3) the homogeneous wave equation

(30) ε(∇((εµ)−1∇ · A) − Att) −∇× (µ−1∇× A) = 0.

Then A vanishes identically.
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P r o o f. We define ϕ by

ϕ(t) = − 1

εµ

∫ t

0

∇ ·A(τ) dτ, t ∈ R.

Then ϕ ∈ C1(R;H1
0 (Ω)) and, by (30), in the sense of C(R;L2(Ω)3),

(31) ε(−∇ϕ− At)t −∇× (µ−1∇× A) = 0.

Next we set

E = −∇ϕ− At and B = ∇× A,

which have by our assumptions the following regularity: E ∈ C(R;L2(Ω)3) and

B ∈ C(R;H1(Ω)3). In view of (31), Ampere’s law is fulfilled, i.e.,

εEt −∇× (µ−1
B) = 0 in C(R;L2(Ω)3).

In particular, Et ∈ C(R;L2(Ω)3) and so E ∈ C1(R;L2(Ω)3). Also B ∈ C1(R;

L2(Ω)3) since Bt = ∇× At ∈ C(R;L2(Ω)3).

Clearly, Faraday’s law is fulfilled, i.e.,

Bt + ∇× E = 0.

In particular, ∇× E ∈ C(R;L2(Ω)3) and by hypothesis B ∈ C(R;H1(Ω)3), and so

(B(t),D(t)) = (B(t), εE(t)) ∈ dom(A). The constructed fields satisfy homogeneous

initial conditions: E(0) = −∇ϕ(0)−At(0) = 0 and B(0) = ∇×A(0) = 0. We check

that n×E(t) = 0 on the boundary for all t. Since ϕ(t) ∈ H1
0 (Ω) and n×A(t)|∂Ω = 0

in the trace sense, we have n × E(t) = −n × ∇ϕ(t) − n × A
′(t) = 0 + 0 on ∂Ω.

To justify that n × A
′(t) = 0 on the boundary, we recall the trace theorem for

H(curl,Ω), see Remark 1. First, the hypothesis A ∈ C1(R;H1(Ω)3) ensures that

γτ (A(t)) and γτ (A′(t)) make sense in H−1/2(Ω) for each t ∈ R. By assumption,

the trace γτ (A(t)) = 0. Therefore, γτ (h−1(A(t + h) − A(t))) = 0 and since, as

h→ 0, h−1(A(t+ h) −A(t)) → A
′(t) in H1(Ω), hence in H(curl,Ω), it follows that

γτ (A′(t)) = 0, as was to be verified.

Hence B(t) = 0 and E(t) = 0 for all t ∈ R owing to the uniqueness of classical

solutions [5], [3]. Finally, since B and E vanish, A vanishes as well. Indeed, we have

shown that

∇× A = 0,(32)

−∇ϕ− At = 0,(33)

εµϕt + ∇ · A = 0.(34)
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Eliminating A from (33)–(34), we formally find the wave equation εµϕtt − ∆ϕ = 0

with the homogeneous initial conditions ϕ(0) = 0 and ϕt(0) = 0 and with homoge-

neous boundary conditions. By uniqueness, ϕ = 0 everywhere and so (33) reduces to

At = 0. Since A(0) = 0 by assumption we must have A(t) = 0 for all t ∈ R, which

was to be proved.

However, to rigorously complete the proof we need to justify that ϕ is the unique

solution of the wave equation in a proper sense. According to the uniqueness proof

of Lemma 2 (i), because ϕ ∈ C1(R;H1
0 (Ω)), it suffices to demonstrate that it follows

from (32)–(34) that ϕ (satisfying the homogeneous initial and boundary conditions)

is the variational solution of εµϕtt − ∆ϕ = 0, i.e., that

(35)
d

dt

∫

Ω

ε(x)µ(x)ϕt(t, x)v(x) dx+

∫

Ω

∇ϕ(t, x) · ∇v(x) dx = 0

is fulfilled in the sense of D′(R) for any v ∈ H1
0 (Ω).

Making use of (33) and (34), it is evident that (35) boils down to

(36) − d

dt

∫

Ω

(∇ · A)v dx−
∫

Ω

At · ∇v dx = 0.

Since ∇ · A ∈ C(R;H1
0 (Ω)), (36) is proved in two steps:

− d

dt

∫

Ω

(∇ ·A)v dx =
d

dt

∫

Ω

A · ∇v dx =

∫

Ω

At · ∇v dx.

The first equality holds by the definition of the divergence in the sense of distributions

and the density of D(Ω) in H1
0 (Ω). For the second equality we have used A ∈

C1(R;H1(Ω)3) and ∇v ∈ L2(Ω)3 which ensure that F (A(t)) =
∫

Ω
A · ∇v dx is a

C1 real function of t whose derivative is F (A′(t)) =
∫

Ω At · ∇v dx. Indeed, the

functional

F (u) =

∫

Ω

u · ∇v dx, u ∈ L2(Ω)3,

is linear and continuous on L2(Ω)3. Therefore, because A ∈ C1(R;H1(Ω)3), we have

h−1(F (A(t+ h)) − F (A(t))) = F (h−1(A(t+ h) − A(t))) → F (A′(t)), h→ 0,

and F (A′(t)) is a continuous function of t.

Thus the key equation (36) is satisfied, and so ϕ as well as A must vanish. �
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4. The main theorem for the vector potential

We have obtained in Theorem 1 the existence of the potentials A and ϕ of the

Lorenz gauge, with respect to which (10)–(12) hold. It follows from Theorems 2 and

3 that A is the unique solution of a wave problem. We are now in a position to state

and prove the theorem that constitutes the analytical backbone of this paper.

Theorem 4. Let Ω be a bounded, simply connected, open subset Ω of R3 with

a Lipschitz boundary ∂Ω. Let ∁Ω be connected and assume Ω meets condition (5).

Assume ε, µ ∈ C3(Ω) are positive. Let J ∈ C3(R;L2(Ω)3), ̺ ∈ C2(R;L2(Ω)),

F(0) = (0,−J(0)) ∈ dom(A2) and U0 = (B0,D0) ∈ dom(A3). Then there exists

exactly one A0 ∈ H1(Ω)3 such that B0 = ∇ × A0 and ∇ · A0 = 0 in Ω and

n × A0 = 0 on ∂Ω. Furthermore, the vector potential A of the Lorenz gauge is

uniquely determined as the solution of the following initial-boundary value problem:

find the solution A of the wave equation (13) in the sense of C(R;L2(Ω)3) fulfilling

the initial conditions A(0) = A0 and At(0) = −E(0) = −ε−1
D0 as well as the

regularity and boundary conditions

A ∈ C1(R;H1(Ω)3), Att ∈ C(R;L2(Ω)3),

∇× A ∈ C(R;H1(Ω)3), ∇ ·A ∈ C(R;H1
0 (Ω)), n × A = 0 on R× ∂Ω.

P r o o f. We have seen, in Subsection 3.1 above, that there is a unique A0 pos-

sessing the stated properties. As regards the wave equation, according to Theorem 1

and Theorem 2 there exists a solution A possessing the claimed regularity. By Theo-

rem 3, this solution is unique. Indeed, if A1 and A2 are solutions, set Â = A1 −A2.

Then Â is a solution of the homogeneous wave equation considered in Theorem 3;

hence Â = 0, and the proof is complete. �

Let us summarize how we compute the vector potential A as a solution of a wave

equation and how we construct the field (E,B) from this potential. First, notice

that the wave equation (13) can be written as

(37) Att + L(A) = ε−1
J in R× Ω,

with

L(A) = − 1

εµ

[

∆A +
∇µ
µ

× (∇× A) − ∇(εµ)

εµ
(∇ · A)

]

and the boundary conditions

(38) ∇ ·A = 0, n× A = 0 on R× ∂Ω.
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The boundary and initial conditions, supplemented with which the wave equa-

tion (37) is well-posed, are specified in Theorem 4. Having the solution A, we

determine ϕt by the Lorenz condition (12). Since ϕ(0) = 0, the time integral of ϕt

from 0 to t then gives ϕ(t) as

ϕ(t) = − 1

εµ

∫ t

0

∇ ·A(τ) dτ, t ∈ R.

Finally, given the field (A, ϕ), the field (E,B) can be computed as well by (10) and

(11).

5. Numerical method

Numerically, this description of the field through A laid down in the first part of

the paper has its pros and cons.

(a) The operator L does not have zero for an eigenvalue, i.e., the system of equations

L(A) = ω2
A in Ω,

∇ ·A = 0, n × A = 0 on ∂Ω

has no nontrivial (time-independent) solutionA if ω2 = 0. This fact can be seen

from the Gauss divergence theorem. Hence no spurious modes, corresponding to

ω = 0, can contaminate the numerical solution to the time-domain problem (37),

(38). When starting from the equations for the primitive field (E,B), or the

electric field E, or the magnetic induction field B, and neglecting the divergence

equations for B or E, one may meet with erroneous results. Spurious modes

may appear unless they are precautioned [8], [10], [2], [1].

(b) The electric Gauss law ∇ · D = ̺ is not required for the calculation of A, ϕ

or (E,B). (It is, however, enforced at t = 0 by condition (8).) Instead, in our

method, the computed values of ∇ · D − ̺ provide a measure of accuracy.

(c) Numerical differentiations are needed to reach (E,B) from the computed A.

This fact is the main disadvantage of the description through A.

The initial-boundary value problem for (37) as specified in Theorem 4 can be

handled by standard numerical methods. We employ the trapezoidal rule for time-

integration and a Chebychev collocation method for approximations of partial deriva-

tives. This spectral method is suitable since the material properties vary continu-

ously, and smooth solutions A to (37) and (38) are anticipated. The computed

field A then becomes continuous, as well as the computed fields E and B, while the

electric Gauss law turns out to be satisfied asymptotically.
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The numerical method and the geometry are presented in this section. Medium

and antenna models are laid down in Section 6, and the outcomes of the method

are compared with the ones for a standard finite element method. In addition,

convergence properties are studied, and time histories of the field A are given.

5.1. Time discretization

The initial conditions for A and J, as specified by Theorem 4, are fulfilled if the

field and its source vanish identically at the outset. The numerical implementation

of this assumption reads

(39) A = At = 0, and J = 0 on Ω̄ at t = 0.

It can be seen that these initial conditions are consistent with wave equation (37)

and boundary conditions (38).

Equation (37) is time-discretized by the trapezoidal rule, which is implemented in

a way described in a textbook by Hughes [7, Chap. 9]. Below the implementation

for the vector potential A is given.

Let the time-step be ∆t, and let tk = k∆t, where k is a nonnegative integer.

The approximations of the vector potential A and its time derivative At at time t
k

are denoted by A
k and A

k
t , respectively. Similarly, J

k = J(tk). According to the

trapezoidal rule

(40) A
k+1 − A

k =
∆t

2
(Ak+1

t + A
k
t )

and

(41) A
k+1
t − A

k
t =

∆t

2
(Ak+1

tt + A
k
tt),

where terms quadratic in ∆t have been neglected. Combining these equations one

finds

(42) A
k+1
tt =

4

∆t2
(Ak+1 − A

k) − 4

∆t
A

k
t − A

k
tt.

Inserting (42) in (37) gives

(43) A
k+1 +

∆t2

4
L(Ak+1) =

∆t2

4ε
J

k+1 + A
k + ∆tAk

t +
∆t2

4
A

k
tt.

This equation applies to Ω. No time derivatives are involved on ∂Ω.

To proceed from step k to step k+1, equations (43) and (38) are solved for Ak+1.

The derivatives A
k+1
t and A

k+1
tt are then calculated by (40) and (41). The initial

35



values A
0, A

0
t are given by (39), and the current J

k is known (cf. Section 6.1).

Therefore, A0 = 0, A0
t = 0, and it is consistent to add A

0
tt = 0.

5.2. Space discretization

We study a cubic cavity Ω = (−1, 1)3. The faces of the cube are orthogonal to the

coordinate axes; the unit outward normal vector is n = (0, 0, 1) on the side where

x3 = 1. The edges and the corners are looked upon as rounded in a symmetric way.

Therefore, e.g., on the edge where x1 = x2 = 1 and −1 < x3 < 1, n =
√

2
−1

(0, 1, 1)

and at the corner (1, 1, 1), n =
√

3
−1

(1, 1, 1).

The cube is discretized using the Gauss-Lobatto-Chebyshev collocation points

(x1i, x2j , x3k) where x1i = cos(πi/m1), i = 0, . . . ,m1, x2j = cos(πj/m2), j = 0, . . . ,

m2, and x3k = cos(πk/m3), k = 0, . . . ,m3. Thus, there are altogether (m1 + 1)×
(m2 + 1)(m3 + 1) collocation points. These are classified as interior (b), side (s),

edge (e), or corner points (c); b stands for bulk. They are ordered b, s, e, c and the

points of each class in the partition {b, s, e, c} are numbered by one index. Below is
the pseudocode for the class b, where each collocation point xb = (x1i, x2j , x3k) in b

is assigned an index mb:

for k = 1 to m3 − 1; for j = 1 to m2 − 1; for i = 1 to m1 − 1;

mb = i+ (j − 1)(m1 − 1) + (k − 1)(m1 − 1)(m2 − 1),

xbmb = (x1i, x2j , x3k).

Obviously, mb = 1, . . . , (m1 − 1)(m2 − 1)(m3 − 1). Similar pseudocodes describe the

numbering of the points of the classes s, e and c.

Above, bold face vectors have three components, e.g., A = (A1, A2, A3). For

convenience, let the column vector a represent the values of A at all collocation

points, and let us distinguish between the interior (b), side (s), edge (e), and corner (c)

values of a. Thus, aT = (abT , asT , aeT , acT ), where abT = (ab1T , ab2T , ab3T ) with

the column vectors ab1, ab2 and ab3 each ordered in the same way as the interior

collocation points xb, and abq, q = 1, 2, 3, representing Aq in class q.

Similarly, for γ = s, e or c, aγT = (aγ1T , aγ2T , aγ3T ) with the column vectors aγ1,

aγ2 and aγ3 each ordered in the same way as the collocation points xγ in class γ,

and aγq, q = 1, 2, 3, representing Aq in class γ.

5.3. Differentiating matrices

A standard Chebyshev method is adopted, where a scalar function f , defined on

the cube Ω, is represented by the sum

m1
∑

i=0

m2
∑

j=0

m3
∑

k=0

f̂(i, j, k)Ti(x1)Tj(x2)Tk(x3).
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Here f̂(i, j, k) are the expansion coefficients and Ti(xq) = cos(i arccosxq). The values

of f at all collocation points yield the values of all expansion coefficients, and the sum

approximates f on the cube and equals f at all collocation points. Below, simplified

notation is used for the collocation points. We introduce (i, j, k) = (x1i, x2j , x3k)

whence f(i, j, k) = f(x1i, x2j , x3k).

The basic differentiating matrix with respect to the space variables is der. It

gives the partial derivatives of f at a collocation point in terms of the values of f at

this and other collocation points. The Chebyshev collocation partial derivative with

respect to x1 is

fx1
(l, j, k) =

m1
∑

i=0

der(l, i)f(i, j, k),

where the expression for the matrix der is well-known [9]. The Chebyshev colloca-

tion partial derivatives fx2
and fx3

are defined analogously using the matrix der.

This matrix derivative procedure is translated to apply to the partitioning of the

collocation points. We now let the domain of f be all collocation points. Using the

enumeration that has been decided upon, the three-dimensional matrix f(i, j, k) is

represented by (fbT , fsT , feT , fcT )T , where fb, fs, fe and fc are column vectors.

The vector fxq
, q = 1, 2, 3, giving the xq-derivative at the collocation points, can

then be calculated by the matrix product









fbxq

fsxq

fexq

fcxq









=









dbbdxq dbsdxq dbedxq dbcdxq

dsbdxq dssdxq dsedxq dscdxq

debdxq desdxq deedxq decdxq

dcbdxq dcsdxq dcedxq dccdxq

















fb

fs

fe

fc









.

The d-matrices, dbbdx1, . . . , dccdx3, are renumbered and expanded versions of parts

of der. Some of these matrices are blocks of zeros. For instance, dbedx1 and

dbcdx1 are zero matrices, since a line in the x1-direction passing through an interior

point never ends at an edge point or a corner point.

Also the operators ∇, ∇· and ∇× are approximated by matrices built by the
matrices dbbdx1, . . . , dccdx3. Second-order derivatives are built by first-order differ-

entiating matrices.

A study of the domain and range of the d-matrices yields, in generic terms, that

if the discretized version of the equation W = ∇ × V is defined on both b and s

then the discretized version of ∇ · W vanishes in b. However, if W = ∇ × V is

defined only in b, then ∇ ·W = 0 is not enforced in b. These facts are significant for

the fulfilment of the electric Gauss law. See Section 6.3, equation (47), where the

substitution V = µ−1(∇× A) gives an equation forW = ∇× V in b alone.
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5.4. Governing matrix equation

Approximating the space derivatives by matrices, equation (43) with boundary

conditions yields a matrix equation of the form

(44) mat ∗ a = r,

where the asterisk ∗ denotes matrix product. Here the unknown vector a and the
input vector r are arranged as explained in Section 5.2. The square matrix mat is of

size [3(m1 + 1)(m2 + 1)(m3 + 1)]2, and is partitioned as follows:

mat =





























mbb11 mbb12 mbb13 mbs11 mbs12 mbs13 0 0

mbb21 mbb22 mbb23 mbs21 mbs22 mbs23 0 0

mbb31 mbb32 mbb33 mbs31 mbs32 mbs33 0 0

msb11 msb12 msb13 mss11 mss12 mss13 mse1 0

msb21 msb22 msb23 mss21 mss22 mss23 mse2 0

msb31 msb32 msb33 mss31 mss32 mss33 mse3 0

0 0 0 mes1 mes2 mes3 mee mec

0 0 0 0 0 0 mce mcc





























.

The vectors a and r have the structure

(45) a = [ab1T , ab2T , ab3T , as1T , as2T , as3T , aeT , acT ]T

and

(46) r = [rb1T , rb2T , rb3T , 0, 0, 0, 0, 0]T .

The matrix mat is built by block matrices, which are formed by the derivative

matrices dbbdx1, . . . , dccdx3. Some of the blocks are zero matrices. In addition, rs1,

rs2, rs3, re, rc are all zero vectors, since the boundary conditions are homogeneous.

All diagonal block matrices, mbb11, . . . ,mcc, are well-conditioned, and it is possible

to reduce the matrix equation (44) to a matrix equation for only the corner values,

ac, by repeated block Gauss elimination. In the first step ab1 is eliminated. The first

block row and first block column of mat become superfluous and some matrices are

changed to account for the influence of ab1. Then ab2 is eliminated. The procedure

is repeated, and after seven steps one obtains a matrix equation which gives ac:

m7cc ∗ ac = r7c.

Here we use the Gauss transform (Schur complement)

m7cc = mcc−mce ∗ (m6ee)−1 ∗me
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and r7c = rc−mce ∗ (m6ee)−1 ∗ r6e, where m6ee is known from the previous step.

Back-substitution then gives the other parts of a.

The matrix mbb11 on the diagonal of mat and the diagonal Gauss transforms

m1bb22, m2bb33, m3ss11, m4ss22, m5ss33, m6ee and m7cc are calculated in a

preparatory step and then stored. They are well-conditioned. Totally, at each time

level, 27 matrices are stored for the calculation of the reduced vectors r7c, r6e, r5s3,

r4s2, r3s1, r2b3, r1b2, rb1 and the solution vector a.

6. Numerical results

6.1. Material and antenna models

The permittivity ε and permeability µ are prescribed on the cube [−1, 1]3. In our

numerical experiments,

ε(x) = C

3
∏

i=1

(

2 + sin
(

αi
π

2
xi + βi

))

where αi are specified below and βi = 0.1, i = 1, 2, 3. The constant factor C is

chosen such that the minimum value of ε equals 1. We let µ = 1, i.e., dielectrics will

be considered in the sequel.

Three different dielectrics will be used for numerical computations:

(i) ε = 1, αi = 0 for i = 1, 2, 3, i.e., vacuum;

(ii) ε = ε(x1, x2) is independent of x3, (α1, α2, α3) = (0.2, 0.2, 0.0);

(iii) ε = ε(x1, x3) is independent of x2, (α1, α2, α3) = (0.2, 0.0, 0.2).

In (ii) and (iii), ε varies between 1 and 1.8 in the cube. Of course, the dielectric

in (ii) is the same as that in (iii), but the current J is chosen such that J · ∇ε = 0

in (ii) whereas J · ∇ε does not vanish in (iii).
The prescribed current J is similar to that of a linear antenna placed in the middle

of the cavity. We let J be directed along the x3-axis, vanish on ∂Ω, and be given

in Ω as a product of four regular functions of x1, x2, x3 and t, respectively. These

are chosen such that J vanishes initially and that the time integral of J from 0 to Tp

is zero. The time-dependent factor of J, J t, is plotted in Fig. 1.

6.2. Comparison with FEM software results

All programs are run on the same platform, a sunu sparc SUNW, Sun-Fire-V210

with real memory 2048M, half of which is available for one user. The spectral code

is implemented in the programming language MATLABr 7 [15].

To check the spectral results, the governing equations are also implemented in a

finite element software FEMLAB 2.2, using Lagrange-quadratic elements. (FEM-

LAB 2.2 is an old version of COMSOLr 3.2 [14].) The wave equation is written as
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Figure 1. Time-dependent factor of imposed current J and field components A1, A3 at a
point with Eucledian coordinates (−0.71, 0.38, 0.38), at time levels 1–4000. Dis-
cretization: (m1, m2, m3) = (8, 8, 16), ∆t = p/400. Top left: Jt. Top right: A3
for ε = 1, vacuum, case (i). Middle: left, A1, and right, A3, for ε = ε(x1, x2),
case (ii). Bottom: left, A1, and right, A3, for ε = ε(x1, x3), case (iii).

a system containing first order time-derivatives of (A,At). To get a tractable prob-

lem, we use for time integration a backward Euler method of second order, and solve

the linear system by an iterative method GMRES with incomplete LU-factorization

with drop tolerance 0.01. The relative tolerance is set to 0.01 and the absolute tol-

erance is 0.001. Using these adjustments, we compute (A,At) at time t = 0.01π

and t = 0.02π for the dielectrics (i) ε = 1, (ii) ε = ε(x1, x2) and (iii) ε = ε(x1, x3);

see Section 6.1. The results are presented in Tab. 1, where S stands for size and Tc

for computation time. By definition, S is the maximal amount of memory needed

during the computation. The corresponding results by the spectral code are given

in Tab. 2. In Tabs. 1 and 2, max(A) = max(max(A1),max(A2),max(A3)) and the

other extreme values are defined analogously. (Below we use the shorthand notation

1.686−7 for 1.686× 10−7.)

The finite element code has about 150 000 degrees of freedom, which is the minimal

number of degrees of freedom to meet comparable precision with the collocation
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medium t max(A) min(A) max(At) min(At) S and Tc

.01π 1.686−7 −.007−7 2.081−5 −.008−5 962 Mb
ε = 1

.02π 2.581−6 −.008−6 1.644−4 −.004−4 9.9 h

.01π 1.227−7 −.007−7 1.516−5 −.008−5 964 MB
ε = ε(x1, x2) .02π 1.879−6 −.008−6 1.197−4 −.004−4 13.9 h

.01π 1.229−7 −.006−7 1.518−5 −.007−5 964 Mb
ε = ε(x1, x3) .02π 1.882−6 −.007−6 1.199−4 −.004−4 12.3 h

Table 1. Maximum and minimum of A and At, finite element method.

medium t max(A) min(A) max(At) min(At) S and Tc

.01π 1.655−7 −.000−7 2.076−5 −.000−5 222 Mb
ε = 1

.02π 2.605−6 −.000−6 1.651−4 −.000−4 13.4 s

.01π 1.200−7 −.001−7 1.504−5 −.000−5 225 Mb
ε = ε(x1, x2) .02π 1.888−6 −.000−6 1.197−4 −.000−4 16.3 s

.01π 1.199−7 −.001−7 1.504−5 −.000−5 234 Mb
ε = ε(x1, x3) .02π 1.888−6 −.000−6 1.197−4 −.000−4 14.2 s

Table 2. Maximum and minimum of A and At, spectral method, (m1, m2, m3) = (4, 4, 12),
∆t = p/1000.

solver. The spectral code uses polynomials of order 4, 4 and 12 in x1-, x2-, and

x3-direction, respectively. Maximum and minimum values of A and At in Tab. 2 do

not change if these orders are increased.

The time integration procedure influences the outcome. As for the finite ele-

ment code, we use a backward Euler method of order three for ε = ε(x1, x3), and

(max(A),max(At)) takes the values (1.175−7, 1.505−5) and (1.883−6, 1.202−4)

at t = 0.01π and t = 0.02π, respectively. As for the spectral code, the time

step is ∆t = π/1000 in Tab. 2. The trapezoidal rule suffers from relative pe-

riod errors [7, Chap. 11], and underestimates values that increase with time.

If we use ∆t = π/8000 instead, then (max(A),max(At)) assumes the values

(1.176−7, 1.497−5) and (1.879−6, 1.195−4) at t = 0.01π and t = 0.02π, respec-

tively, for ε = ε(x1, x3). Further decrease of the time step does not change these

figures. In conclusion, the results of the two different implementations seem to be

consistent.

Tabs. 1 and 2 indicate that the FEM solver is slow as compared with the spectral

solver. We will comment on this fact.

(i) The governing system of the FEM solver comprises six dependent scalar vari-

ables, while the governing system of the spectral solver comprises three depen-

dent scalar variables.

(ii) At every time step the FEM solver performs substantial numerical integration,

but reassembles only the time-dependent quantities. The spectral solver is based
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upon a partitioning and storing method constructed so that the computational

cost per time step is low.

(iii) The solution field is smooth. Hence, the spectral solver computes the field with

sufficient accuracy when using polynomials limited to low order.

To sum up, the FEM solver is slow because of its generality, and the spectral solver

is fast since it takes advantage of the cubic geometry and the smooth solution field.

6.3. Fulfilment of Maxwell’s equations

Faraday’s law and the magnetic Gauss law are satisfied automatically by the field

represented by (A, ϕ), since analytically

Bt + ∇× E = (∇× A)t −∇× At −∇×∇ϕ = 0,

∇ ·B = ∇ · (∇× A) = 0.

These relations are valid also for the discretized field as mentioned in Section 5.3.

Ampere’s law and the electric Gauss law remain to be considered. Ampere’s law

is enforced in Ω, at the collocation points of b, through equation (37), so it is fulfilled

there, while Ampere’s law is not enforced at the collocation in ∂Ω (on s, e or c),

where boundary conditions (38) apply. Analytically, the electric Gauss law is an

implication of Ampere’s law and the continuity equation. Numerically, if Ampere’s

law is enforced in Ω, at the collocation points b and s, the electric Gauss law is valid

on b, but the former law is only enforced on b. It is therefore of interest to study the

latter law further.

Introduce two quantities which measure how well Ampere’s law and the electric

Gauss law are fulfilled:

(47) amp = ∇× (µ−1(∇× A)) + ε(∇ϕt + Att)

with ϕt = −(εµ)−1∇ · A, and

(48) rho = −∇ · (ε(∇ϕ+ At)),

where ϕ is obtained by time integration of ϕt and ϕ(0) = 0.

After the pulse (t > Tp) the source vanishes and amp and rho each equals zero if

Ampere’s law and the electric Gauss law hold exactly. We have computed amp and

rho on b and s for t ∈ [Tp, 10Tp]. The corresponding relative errors on b are defined

by

amprb = ‖amp‖b/‖B‖b, rhorb = ‖rho‖b/‖D‖b,

where ‖B‖b = max(max |B1|,max |B2|,max |B3|) is the maximum value of the nu-
merically computed vector B on b. The relative errors on s are amprs and rhors.
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The errors decrease as the space discretization increases and they depend slightly on

the time discretization. The errors also depend on permittivity ε and current J. The

current J varies faster in the x3-direction than in the x1- or x2-direction. Hence, in

order to get small errors, it is suitable to let m3 be larger than m1 and m2.

medium m3 amprb amprs rhorb rhors
8 .18−10 .17−1 .29−1 .12−0

ε = 1,
16 .25−10 .98−3 .35−1 .14−0

case (i)
24 .26−10 .10−3 .33−2 .13−1
8 .61−4 .46−1 .30−1 .10−0

ε = ε(x1, x2), 16 .67−4 .87−2 .30−1 .99−1
case (ii)

24 .67−4 .69−2 .42−2 .14−1
8 .21−3 .31−1 .25−0 .76−0

ε = ε(x1, x3), 16 .81−4 .68−2 .25−1 .83−1
case (iii)

24 .81−4 .68−2 .24−2 .78−2

Table 3. Relative errors at t = Tp vs. space discretization (m1, m2, m3) and permittivity ε.
∆t = p/400, m1 = m2 = 8.

It can be seen from Tab. 3 that the error ampb comes from round-off if ε = 1. If

ε varies in space there appear discretization errors of ampb in spite of the fact that

Ampere’s law is enforced on b. The explanation is as follows: We implement (37)

employing the exact expressions for µ, εµ, ∇ε and ∇(εµ), while we compute amp

by inserting ε and µ−1 into (47). Then we replace the gradient, divergence and curl

operators by our matrix operators and compute ampb/ε. In conclusion, the left-hand

side of (37) differs numerically from ampb/ε given by (47).

The data in Tab. 3 refer to a time t just after the current pulse, t = Tp. During

the following nine time periods (t ∈ [Tp, 10Tp]) the errors vary strongly with no

trend of increase or decrease. The minimum, mean and maximum values of amprb,

amprs, rhorb and rhors are (.87−5, .93−4, .39−3), (.44−2, .15−1, .55−1), (.13−2,

.15−1, .20−0) and (.41−2, .53−1, .68−0), respectively, provided ε = ε(x1, x3) and

∆t = π/400 and (m1,m2,m3) = (8, 8, 16).

The values of Tab. 3 have been obtained by repeated operations on the vector

potential. The quantity amp is calculated by two space derivatives and two time

derivatives of A, while rho is calculated by three space derivatives, one time deriva-

tive and one time integration of A. These facts explain the fluctuating values of amp

and rho, and why the convergence of amp and rho towards zero is not straightfor-

ward.

6.4. Time histories

First, we will describe three representative runs which yield Fig. 1. All three

simulations are run 4000 steps with a time increment ∆t = π/400 and a space
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discretization given by (m1,m2,m3) = (8, 8, 16). The source J is non-zero during

time levels 2 through 399, i.e. for t ∈ (0, Tp) with Tp = π.

(i) ε = 1, vacuum. A = (0, 0, AT
3 )T , B = (BT

1 , B
T
2 , 0)T , E = (ET

1 , E
T
2 , E

T
3 )T ,

where the amplitudes of E1 and E2 are much smaller than that of E3. E1 and

E2 come from the scalar potential ϕ and the main contribution to E3 is the

inductive part A3t.

(ii) ε = ε(x1, x2). A = (AT
1 , A

T
2 , A

T
3 )T , where A1 essentially coincides with A2

because of the choice of parameters that define case (ii). See Section 6.1.

(iii) ε = ε(x1, x3). A = (AT
1 , 0, A

T
3 )T . The field pattern (E,B) is complicated. All

components of E and B are of approximately the same size.

We make fft-analyses of time histories of the components of A in Fig. 1 and find

spectra with peaks. For further information, simulations are run 48 000 time steps

with ∆t = π/400 and (m1,m2,m3) = (8, 8, 8). Then clear beats appear in cases (ii)

and (iii). Analyses of the time histories of A1 and A3 at time levels 401–48000 yield

spectra with sharp peaks. The peak at the lowest freqency is identified with the

fundamental frequency ωf , and any other peak is denoted by ωp. In cases (i), (ii),

(iii) one has ωf = 2.218, 1.882 and 1.882, respectively. Recall that the theoretical

value of the fundamental frequency is π/
√

2 ≈ 2.221 for a 2×2×2 vacuum cube [11,

Chap. 13]. In Tab. 4 values of peak quotients ωp/ωf are shown. As can be realized

from [11, Chap. 13], for a vacuum cube the exact value of ωp/ωf is σ/
√

2 provided

σ2 takes any of the values 1 + 1, 1 + 1 + 1, 1 + 22, 1 + 1 + 22, 22 + 22, 1 + 22 + 22, . . .

(see row 2). The computed values are given in rows 3–5.

σ2 2 3 5 6 8 9

σ/
√

2 1 1.225 1.581 1.732 2.000 2.121
(i) ωp/ωf 1 – – 1.735 – –
(ii) ωp/ωf 1 – 1.575 1.732 2.018 2.116

(iii) ωp/ωf 1 1.244 1.577
1.744
1.774

– 2.143

Table 4. Peak frequencies of A3 compared with the fundamental peak frequency. (i) ε = 1,
(ii) ε = ε(x1, x2), (iii) ε = ε(x1, x3).
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