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METHOD WITH APPLICATIONS TO SUPERCONVERGENCE
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Dedicated to Ivan Hlaváček on the occasion of his 75th birthday

Abstract. We show that a non-standard mixed finite element method proposed by Barrios
and Gatica in 2007, is a higher order perturbation of the least-squares mixed finite element
method. Therefore, it is also superconvergent whenever the least-squares mixed finite el-
ement method is superconvergent. Superconvergence of the latter was earlier investigated
by Brandts, Chen and Yang between 2004 and 2006. Since the new method leads to a
non-symmetric system matrix, its application seems however more expensive than applying
the least-squares mixed finite element method.
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1. Introduction

In the past decades, many types of finite element methods for the numerical ap-

proximation of solutions to partial differential equations have been formulated and

investigated. After the standard [14] and mixed [9], [10], [19] finite element methods,

the more recent least-squares mixed finite element methods [11], [12], [13], [16], [17],

[2] got a fair amount of attention. Similar to the mixed finite element methods, they

use the formulation of second order elliptic equations as systems of first order equa-

tions. However, instead of applying a Galerkin-type orthogonality approach, they

aim to minimize the residual. This avoids the technicalities one encounters in the

mixed method that arise as a result of the Babuška-Brezzi [9] conditions and leads to

symmetric positive definite systems of linear algebraic equations, instead of merely

indefinite symmetric systems. Moreover, the author of this paper and his co-authors

have proved in [6], [7], [8] that, using classical examples of standard and mixed finite
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element spaces, the least-squares mixed finite element approximations are, under

some mild conditions, only higher order perturbations of the approximations that

one would obtain using the standard and the mixed finite element method. This,

for instance, immediately implies superconvergence for the least-squares mixed finite

element method whenever the other two methods exhibit superconvergence.

In a recent paper [1], the authors proposed an alternative way to circumvent the

Babuška-Brezzi conditions that complicate the mixed finite element method. By

adding two terms to the mixed formulation, they arrived at a new, non-standard

mixed finite element method. The current paper aims to analyze the approximation

porperties of this method in a way different from that in [1]. By comparing the new

non-standard approximations to those obtained from the least-squares mixed finite

element method directly, the conclusion is the same as for this least-squares mixed

method: when classical examples of finite element spaces are used and the model

problem at hand is well-behaved, the non-standard method is a higher order pertur-

bation of the standard and the mixed method. Approximation and superconvergence

properties are thus inherited by the new method as well. However, its system matrix

is non-symmetric. Thus, while obtaining approximations that very much resemble

those obtained with the known methods, the costs of applying the method seem to be

considerably higher. This, of course, questions the practical use of the new method.

2. Preliminaries

Using an elliptic model problem, we introduce the mixed finite element method

and its non-standard variant from [1]. We also recall the least-squares mixed fi-

nite element method, since it is our objective to compare it with the non-standard

method. Simultaneously, notation concerning Sobolev spaces and norms and inner

products will be set, and some minor results given.

2.1. Sobolev spaces and norms, bilinear forms, and a model problem

Let Ω ⊂ R
n be a bounded convex polytopic domain and let A : Ω → R

2×2 be

symmetric with Lipschitz continuous coefficients and with eigenvalues in the interval

[β2, β−2] for some β ∈ (0, 1]. We use the standard notation for Sobolev spaces and

their norms and semi-norms; the L2-norm and inner product we denote by | · |0 and

(·, ·). Apart from the usual norms on H(div; Ω) and H1
0 (Ω) we define

(1) ‖q‖2
div,A = (q,q)div,A

where

(2) (r,q)div,A = d(r,q) + (div r, div q) and d(r,q) = (A−1r,q).
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Furthermore, the energy inner product and energy norm on H1
0 (Ω) are

(3) a(w, v) = (A∇w,∇v) and |v|21,A = a(v, v).

We equip the product space H1
0 (Ω) × H(div; Ω) with the canonical inner product

and norm

(w, r; v,q)1×div,A = a(w, v) + (r,q)div,A, and(4)

‖(v,q)‖2
1×div,A = (v,q; v,q)1×div,A.

The weighted norms above are equivalent to the usual norms and semi-norms

on H1(Ω) and H(div; Ω), which we get from the choice A = I, the identity matrix.

The Poincaré-Friedrichs inequality and the assumption on the eigenvalues of A show

that

(5) dA = sup
06=v∈H1

0
(Ω)

|v|0
|v|1,A

< ∞.

The constant dA depends only on the diameter of Ω and on β. To conclude, define

the bilinear form b : H1(Ω) × H(div; Ω) by

(6) b(v,q) = (v, div q),

then with the constant γ defined by

(7) 0 < γ =

√

d2
A

d2
A + 1

< 1,

the following useful lemma was proved in [8].

Lemma 2.1. For all v ∈ H1
0 (Ω) and q ∈ H(div; Ω),

(8) b(v,q) 6 γ|v|1,A‖q‖div,A 6
1

2
γ‖(v,q)‖2

1×div,A.

We are now able to describe the model problem that is used in this paper. Given

f ∈ H−1(Ω), find u ∈ H1
0 (Ω) such that

(9) − div(A∇u) = f in Ω, u = 0 on ∂Ω.

An equivalent first-order system is to find functions u ∈ H1
0 (Ω) and p ∈ H(div; Ω)

such that

(10) p = −A∇u in Ω, div p = f in Ω.
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We have now introduced all the necessary notation to describe a number of finite

element methods.

2.2. The mixed and the least-squares mixed finite element method

The mixed finite element method [9], [10] is based on the first-order formula-

tion (10). It can be shown that (u,p) is the unique pair in L2(Ω) × H(div; Ω) such

that

(11) ∀(w,q) ∈ L2(Ω) × H(div; Ω), d(p,q) − b(u,q) + b(w,p) = (f, w).

Let Wh ⊂ L2(Ω) and Γh ⊂ H(div; Ω) be finite element subspaces indexed by the

discretization parameter h that signifies the maximum diameter of the finite element

in the partition Th of Ω. Assume thatWh = div Γh. Then the discrete version of (11),

which is to find (um
h ,pm

h ) ∈ Wh × Γh such that

(12) ∀ (wh,qh) ∈ Wh × Γh, d(pm
h ,qh) − b(um

h ,qh) + b(wh,pm
h ) = (f, wh),

has a unique solution (um
h ,pm

h ). Notice that (12) immediately implies that

(13) ∀wh ∈ Wh, (div(p − pm
h ), wh) = 0.

To derive optimal error bounds for a sequence of approximations, the pair Wh,Γh

also needs to satisfy Babuška-Brezzi conditions uniformly in the discretization pa-

rameter h,

(14) inf
h>0

inf
06=w∈Wh

sup
qh∈Γh

b(wh,qh)

|w|0‖qh‖div
> 0.

In order to circumvent the design of Babuška-Brezzi stable finite element spaces, the

least-squares mixed finite element method was developed. See [11], [12], [13], [16],

[17], [2] for details on this method. It is based on the minimization of the functional

J : H1
0 (Ω) × H(div; Ω) → R defined by

(15) J(v,q) = (f − div q, f − div q) + (q + A∇v, A−1(q + A∇v)).

Clearly, J(v,q) > 0 for all (v,q) ∈ H1
0 (Ω) × H(div; Ω), and the solution (u,p) ∈

H1
0 (Ω) × H(div; Ω) of (10) is a pair for which J = 0. Setting the first variation

in (15) to zero gives

(16) ∀ (v,q) ∈ H1
0 (Ω) × H(div; Ω), B(u,p|v,q) = (f, div q),
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where the bilinear form B is defined in terms of (4) and (6) by

(17) B(w, r|v,q) = (w, r; v,q)1×div,A − b(w,q) − b(v, r).

This form is continuous on H1
0 (Ω) × H(div; Ω) as well as coercive, since

(18) B(v,q|v,q) = ‖(v,q)‖2
1×div,A − 2b(v,q) > (1 − γ)‖(v,q)‖2

1×div,A

due to Lemma 2.1, and γ < 1. Thus, by the Lax-Milgram lemma, (u,p) is the unique

solution of (16), and given any Lagrange finite element space Vh ⊂ H1
0 (Ω) [14], there

also exists a unique pair (ul
h,pl

h) ∈ Vh × Γh, called the least-squares mixed finite

element approximation, such that

(19) ∀ (vh,qh) ∈ Vh × Γh, B(ul
h,pl

h|vh,qh) = (f, div qh).

In [8], the approximation ul
h was compared with the standard finite element approx-

imation us
h ∈ Vh, satisfying

(20) a(us
h, vh) = (f, vh) for all vh ∈ Vh,

and pl
h was compared with its mixed finite element counterpart given in (11). The

main result of that paper is that they are superclose under some relatively mild

conditions.

Theorem 2.2. If (Wh,Γh) with Wh = div(Γh) is a Babuška-Brezzi stable pair

and Wh contains the piecewise constants, then

(21) ‖(ul
h − us

h,pl
h − pm

h )‖1×div,A 6 Ch‖(u − us
h,p− pm

h )‖1×div,A.

This result allows a priori bounds for the least-squares mixed method to be refined,

and also for superconvergence results of standard and mixed methods [15], [20], [3],

[4], [5] to be transferred towards the least-squares mixed finite element method.

See [7] for details.

2.3. A non-standard mixed finite element method

A recent alternative to the least-squares mixed finite element method, also with

the goal to avoid the Babuška-Brezzi condition, was given in [1]. In that paper it

was proposed to add to the mixed weak formulation (11) the equalities

1

2
(A∇u + p, A−1(A∇v − q)) = 0 and (div p, div q) = (f, div q),
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which hold since p = −A∇u and div p = f . Of course, as a consequence, u must

now be sought in H1
0 (Ω) instead of in L2(Ω). Here, however, we propose a minor

modification of that idea, which is to include a factor of one half also in the second

equality and to add, correspondingly,

(22)
1

2
(div p, div q) =

1

2
(f, div q).

It will turn out that the analysis of this method becomes even easier with this factor

included, and we suspect that also its numerical behavior may slightly improve due

to this modification.

R em a r k 2.3. We stress that including the factor of one half does not influence

the validity of the results that are proved in this paper. It merely simplifies their

proofs.

Green’s formula can be used to obtain the second equality in

(A∇u + p, A−1(A∇v − q)) = (A∇u,∇v) − (∇u,q) + (p,∇v) − (p, A−1q)

= a(u, v) + b(u,q) − b(v,p) − d(p,q),

hence, the resulting non-standard mixed formulation is to find (u,p) in H1
0 (Ω) ×

H(div; Ω) such that for all (v,q) ∈ H1
0 (Ω) × H(div; Ω),

(23)
1

2
a(u, v)+

1

2
d(p,q)−

1

2
b(u,q)+

1

2
b(v,p)+

1

2
(div p, div q) = (f, v)+

1

2
(f, div q).

Therefore, defining the bilinear form

(24) C(w, r|v,q) = a(w, v) + d(r,q) − b(w,q) + b(v, r) + (div r, div q),

the corresponding discrete formulation is to find (uh,ph) ∈ Vh × Γh such that

(25) C(uh,ph|vh,qh) = 2(f, vh) + (f, div qh).

Note that C is a non-symmetric bilinear form. Nonetheless, in [1] it was shown that

C is both continuous and coercive, hence the discrete problem is well-posed.
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3. Analysis of the non-standard mixed finite element method

Here we provide an analysis of the non-standard mixed finite element method in

terms of the least-squares mixed finite element method. As turns out, the similarities

between the two allow for a relatively easy comparison.

3.1. A relation between the bilinear forms B and C

Consider the bilinear form B from (17) and the bilinear form C from (24). Once

C is rewritten using (2) from (24) into

(26) C(w, r|v,q) = (w, r; v,q)1×div,A − b(w,q) + b(v, r)

we see immediately that C is coercive, since

(27) C(v,q|v,q) = ‖(v,q)‖2
1×div,A.

In fact, C is a skew-symmetric perturbation of the natural inner product on H1
0 (Ω)×

H(div; Ω). Notice that this is due to the factor one half in (22). Without it, however,

the coercivity would still be trivial. We also immediately see the following relation.

Proposition 3.1. We have C(w, r|v,q) = B(w, r|v,q) + 2b(v, r).

Thus, rather than interpreting the new method as a non-standard mixed finite

element method, as was done in [1], it is more natural to see it as a slight variation

of the least-squares mixed finite element method, in particular after including the

factor one half in (22). Indeed, we simply add together

(28) B(ul
h,pl

h|vh,qh) = (f, div qh) and 2b(vh,ph) = 2(f, vh)

and end up with the method proposed in Section 2.3. It is however not immediately

clear what its merits are. The coercivity constant is now equal to one and not to

1 − γ as we saw in (18). This is in principle an advantage. The price to pay is that

a linear system needs to be solved that is of the form

(29) (M + S)x = b

with M symmetric positive definite and S skew-symmetric, or, if the factor one half

is not included, of a less special non-symmetric system.

3.2. A supercloseness result

For all (vh,qh) ∈ Vh × Γh we have

C(u,p|v,q) = 2(f, v) + (f, div q) and(30)

C(uh,ph|vh,qh) = 2(f, vh) + (f, div qh).
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Subtraction leads to the error equation

(31) C(u − uh,p− ph|vh,qh) = 0.

We can now compare the approximations uh,ph with their least-squares mixed finite

element counterparts ul
h,pl

h as follows.

Lemma 3.2. We have C(uh − ul
h,ph − pl

h|vh,qh) = 2(div(p − pl
h), vh).

P r o o f. Using (31) and the relation with the bilinear form B from Lemma 3.1

we find

C(uh − ul
h,ph − pl

h|vh,qh) = C(u − ul
h,p− pl

h|vh,qh)

= B(u − ul
h,p − pl

h|vh,qh) + 2(div(p − pl
h), vh).

The term with B vanishes, since it is the error equation for the least-squares mixed

method. �

To continue, we need the L2-orthogonal projection Ph on the space of piecewise

constants. The following lemma is about the least-squares mixed finite element

method. It could have easily been proved in the paper [8] but in that context there

was no need for the result. Now there is.

Lemma 3.3. Assume that Wh contains the piecewise constants. Then for all

vh ∈ Vh we have

(32) |(div(p− pl
h), vh)| 6 Ch‖(u − us

h,p − pm
h )‖1×div,A|vh|1,A.

P r o o f. Using (13) and the fact that Wh contains the piecewise constants, we

can rewrite

(div(p − pl
h), vh) = (div(pm

h − pl
h), vh) + (div(p − pm

h ), vh)(33)

= − (A−1(pm
h − pl

h), A∇vh) + (div(p − pm
h ), vh − Phvh).

Taking the absolute value and using the Cauchy-Schwarz inequality then yields that

(34) |(div(p− pl
h), vh)| 6 ‖pm

h − pl
h‖div,A|vh|1,A + | div(p − pm

h )|0Ch|vh|1.

Using Theorem 2.2 and the equivalence of | · |1,A and | · |1 gives

(35) |(div(p− pl
h), vh)| 6 Ch‖(u − us

h,p − pm
h )‖1×div,A|vh|1,A.

This proves the statement. �

We will now prove our main result, showing that the non-standard mixed finite ele-

ment method is a higher order perturbation of the least-squares mixed finite element

method.
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Theorem 3.4. If (Wh,Γh) with Wh = div(Γh) is a Babuška-Brezzi stable pair

and Wh contains the piecewise constants, then

(36) ‖(uh − ul
h,ph − pl

h)‖1×div,A 6 Ch‖(u − us
h,p− pm

h )‖1×div,A.

P r o o f. The coercivity (27) of C and Lemmas 3.2 and 3.3 give

‖(uh − ul
h,ph − pl

h)‖2
1×div,A

= C(uh − ul
h,ph − pl

h|uh − ul
h,ph − pl

h)

= 2(div(p − pl
h), uh − ul

h)

6 Ch‖(u − us
h,p − pm

h )‖1×div,A|uh − ul
h|1,A

6 Ch‖(u − us
h,p − pm

h )‖1×div,A‖(uh − ul
h,ph − pl

h)‖1×div,A.

Dividing by ‖(uh − ul
h,ph − pl

h)‖1×div,A gives the statement. �

The conclusion is that the non-standard mixed finite element method inherits not

only a priori bounds but also supercloseness and superconvergence properties of the

least-squares mixed finite element method.

3.3. Example: lowest order standard and mixed finite element spaces

We will give one example. For more examples, we refer to [7]. Suppose that Vh is

the space of continuous piecewise linear functions [14] relative to a uniform partition

of the domain Ω ⊂ R
n with n = 2. It is well known [4] that the standard method

yields us
h superclose to the nodal interpolant Lhu ∈ Vh,

(37) |Lhu − us
h|1 6 Ch2|u|3, whereas |u − us

h| 6 Ch|u|2.

Moreover, let Γh ⊂ H(div; Ω) be the space of lowest order Raviart-Thomas [10], [19]

functions with respect to this partition. For the mixed finite element method with

Wh = div(Γh) it is also known [3], though only for n = 2, that

(38) ‖Πhp − pm
h ‖div 6 Ch2|p|2 6 Ch2|u|3, whereas ‖p− pm

h ‖ 6 Ch|p|1,

and where Πh is the Fortin interpolant of p in Γh. Now, Theorem 2.2 and the triangle

inequality yield that

(39) ‖(ul
h − Lhu,pl

h − Πhp)‖1×div,A 6 Ch2|u|3,

as was shown in [7]. With Theorem 3.4 from the present paper we now have the

corresponding result also for the non-standard mixed finite element method,

(40) ‖(uh − Lhu,ph − Πhp)‖1×div,A 6 Ch2|u|3.

233



Thus, using the same post-processors as for us
h and ul

h and for pm
h and for pl

h, also

the approximation order of uh and ph can be enhanced in an inexpensive fashion.

4. Concluding remarks

We studied a non-standard mixed finite element method proposed in [1]. This

method leads to a coercive though non-symmetric bilinear form even for symmetric

elliptic problems. By including a factor one half in the formulation of their method,

the bilinear form C could be written as a skew-symmetric perturbation of a symmet-

ric positive definite bilinear form, and more easily compared with the bilinear form

that results from the least-squares mixed finite element method.

The main result is that the new method is only a higher order perturbation of the

least-squares mixed finite element method and thus that the non-symmetry does not

spoil the approximation properties of the method. On the other hand, for exactly the

same reason, it cannot be better than the least-squares mixed finite element method

in a significant way. Thus, we advise against its use for the model problem studied,

because solving the non-symmetric linear system would be too expensive compared

to the usual symmetric positive definite system that needs to be solved.
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