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Abstract. In this paper we propose a method for improving the convergence rate of the
mixed finite element approximations for the Stokes eigenvalue problem. It is based on a
postprocessing strategy that consists of solving an additional Stokes source problem on an
augmented mixed finite element space which can be constructed either by refining the mesh
or by using the same mesh but increasing the order of the mixed finite element space.
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1. Introduction

In this paper we are concerned with the Stokes eigenvalue problem: Find (u, p, λ)

such that

(1.1)





−∆u + ∇p = λu in Ω,

∇ · u = 0 in Ω,

u = 0 on ∂Ω,
∫
Ω

u
2 dΩ = 1,

where Ω ⊂ R2 is a bounded domain with Lipschitz boundary ∂Ω and ∆, ∇, ∇·

denote the Laplacian, gradient, and divergence operators, respectively.

There are several works for the Stokes eigenvalue problems and their numerical

methods such as Babuška and Osborn [2], [3], [22], Křížek [16], Mercier, Osborn,

Rappaz, and Raviart [21], etc.
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Osborn [22], Mercier, Osborn, Rappaz, and Raviart [21] gave an abstract analysis

for the eigenpair approximations by mixed/hybrid finite element methods based on

the general theory of compact operators ([10]). Recently, many effective postprocess-

ing methods that improve the convergence rate for the approximations of the eigen-

value problems by the finite element methods have been proposed and analyzed ([1],

[11], [17], [18], [19], [20], [23] and [25]). Lin and Lü [19], Lin and Lin [18], Lin,

Huang and Li [17] have analyzed the Richardson extrapolation applied to the second

order elliptic eigenvalue problems. Chen and Lin [11] also analyzed the Richardson

extrapolation for the Stokes eigenvalue problems by the stream function-vorticity-

pressure method. Xu and Zhou [25] have given a two-grid discretization technique

to improve the convergence rate of the second order elliptic eigenvalue problems and

integral eigenvalue problems. Racheva and Andreev [23], Andreev, Lazarov, and

Racheva [1] have proposed a postprocessing method that improves the convergence

rate for the numerical approximations of 2m-order selfadjoint eigenvalue problems

and biharmonic eigenvalue problems.

In this paper, using the idea of the references above, we propose and analyze a

practical postprocessing algorithm which can improve the convergence rate of the

eigenpair approximations for the Stokes eigenvalue problem by the mixed finite ele-

ment method.

The postprocessing procedure can be described as follows: (1) solve the Stokes

eigenvalue problem in the original mixed finite element space; (2) solve an additional

Stokes source problem in an augmented space using the eigenvalue obtained previ-

ously multiplying the corresponding eigenfunction as the load vector. This method

can improve the convergence rate of the eigenpair approximations with relatively

inexpensive computation because we replace the solution of the Stokes eigenvalue

problem by an additional solution of a Stokes source problem on a finer mesh or in

a higher order mixed finite element space.

An outline of the paper is as follows. In Section 2, we introduce some prelimi-

naries and notation and state the weak form of the Stokes eigenvalue problem and

its corresponding discrete form. Section 3 is devoted to deriving the postprocessing

technique and analyzing its efficiency. In Section 4, we propose a practical compu-

tational algorithm to implement the postprocessing method. In Section 5, we give

a numerical result to confirm the theoretical analysis. Some concluding remarks are

given in the last section.
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2. Preliminaries and notation

In this paper we use the standard notation ([8], [9] and [20]) for the Sobolev

spaces Hr(Ω) (standard interpolation spaces for real numbers r) and their associated

inner products (·, ·)r, norms ‖ · ‖r and seminorms | · |r for r > 0. The Sobolev

space H0(Ω) coincides with L2(Ω), in which case the norm and inner product are

denoted by ‖ · ‖ and (·, ·), respectively. In addition, the subspace of L2(Ω) denoted

by L2
0(Ω) consists of the functions on L2(Ω) having mean value zero. We also use

the vector valued functions (Hr(Ω))2 just as in [9] and [14].

The corresponding weak form of (1.1) is: Find (u, p, λ) ∈ V ×W × R such that

s(u,u) = 1 and

(2.1)

{
a(u,v) + b(v, p) = λs(u,v) ∀v ∈ V,

b(u, q) = 0 ∀ q ∈ W,

where V = (H1
0 (Ω))2, W = L2

0(Ω), and

a(u,v) =

∫

Ω

∇u∇v dΩ,

b(v, p) = −

∫

Ω

∇ · vp dΩ,

s(u,v) =

∫

Ω

uv dΩ.

From [3] we know that the eigenvalue problem (2.1) has an eigenvalue sequence {λj}:

0 < λ1 6 λ2 6 . . . 6 λk 6 . . . , lim
k→∞

λk = ∞,

and the associated eigenfunctions

(u1, p1), (u2, p2), . . . , (uk, pk), . . . ,

where s(ui,uj) = δij .

For simplicity, we only consider simple eigenvalues in this paper. We know that

a(·, ·), b(·, ·), and s(·, ·) have the following properties ([14]):

|a(u,v)| 6 ‖u‖1‖v‖1,(2.2)

a(u,u) > C‖u‖2
1,(2.3)

|s(u,v)| 6 C‖u‖0‖v‖0,(2.4)

s(u,u) > C‖u‖2
0,(2.5)

sup
06=v∈V

b(v, q)

‖v‖1
> C1‖q‖0,(2.6)

‖u‖1 + ‖p‖0 6 C sup
06=(v,q)∈V×W

a(u,v) + b(v, p) + b(u, q)

‖v‖1 + ‖q‖0
,(2.7)
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where C1 > 0. In this paper, C and Ci denote constants independent of the mesh

size h and sometimes dependent on the eigenvalue λ and may be of different values

at their different occurrences.

For the eigenvalue there exists the Rayleigh quotient expression

(2.8) λ =
a(u,u)

s(u,u)
.

Now, let us define the finite element approximations of the problem (2.1). The well-

posedness of the discrete weak form of (2.1) can be guaranteed by the fact that the

corresponding approximation spaces satisfy the Babuška-Brezzi condition ([9] and

[14]). Let Th be a partition of Ω into finite elements (triangles or quadrilaterals),

which is quasi-uniform and has a mesh size h. Associated with the partition Th,

we define the finite element spaces Vh ⊂ V and Wh ⊂ W of piecewise polynomials

of degree k ([9] and [14]). Let Pr be the set of polynomials of degree not greater

than r with r > 0. Assume that the polynomial space Pk, k > 1, is used for the

construction of V, and that Pk−1 is used for the construction of Wh. The two

finite element spaces Vh and Wh are assumed to satisfy the following approximation

properties:

(2.9)





inf
v∈Vh

(‖u− v‖0 + h‖u− v‖1) 6 Chm+1‖u‖m+1, 0 6 m 6 k,

inf
q∈Wh

‖p− q‖0 6 Chm‖p‖m, 0 6 m 6 k,

for any u ∈ (Hm+1(Ω))2 and p ∈ Hm(Ω). Since the finite element spaces are

subspaces of (H1
0 (Ω))2, the functions in Vh are continuous and k > 1.

We know that the convergence rate of the eigenpair approximations by the finite

element methods depends on the regularities of the exact eigenfunctions. The exact

eigenfunctions of the Stokes problem belong only to the space (H1(Ω))2 ×H0(Ω) on

general domains. Nevertheless, for the domains with smooth boundary, the exact

eigenfunctions have additional regularities. In this case we need to use isoparametric

mixed finite element methods to fit the domain more exactly ([18] and [12]). The goal

of this paper is to propose and analyze a postprocessing method which can improve

the convergence rate for both the eigenvalue and the eigenfunction approximations.

The assumption that Ω is a convex polygonal domain can make the expression of

the main idea of this paper more transparent. However, we need to note that this

assumption limits the regularity of the exact eigenfunctions and makes the analysis

of the convergence rates much more complicated. It is well known ([15] and [13]) that

for a given f ∈ (Hγ(Ω))2 the solution (u, p) of the corresponding Stokes problem

(2.10)

{
a(u,v) + b(v, p) = (f ,v) ∀v ∈ V,

b(u, q) = 0 ∀ q ∈ W
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has the regularity ([4], [5], [7], [13] and [15])

(2.11) ‖u‖2+γ + ‖p‖1+γ 6 C‖f‖γ ∀ f ∈ (Hγ(Ω))2,

where 0 < γ 6 1 is a parameter that depends on the largest interior angle of ∂Ω ([4]

and [15]).

Now, let us define the approximation of an eigenpair (u, p, λ) by the mixed finite

element method as (uh, ph, λh) ∈ Vh ×Wh ×R such that s(uh,uh) = 1 and

(2.12)

{
a(uh,v) + b(v, ph) = λhs(uh,v) ∀v ∈ Vh,

b(uh, q) = 0 ∀ q ∈Wh.

From (2.12) we know that the Rayleigh quotient for λh is

(2.13) λh =
a(uh,uh)

s(uh,uh)
.

We know from [3] that the Stokes eigenvalue problem (2.12) has eigenvalues

0 < (λ1)h 6 (λ2)h 6 . . . 6 (λk)h 6 . . . 6 (λN )h,

and the corresponding eigenfunctions

((u1)h, (p1)h), ((u2)h, (p2)h), . . . , ((uk)h, (pk)h), . . . , ((uN )h, (pN )h),

where s((ui)h, (uj)h) = δij , 1 6 i, j 6 N . If the pair of finite element spaces Vh and

Wh satisfies the Babuška-Brezzi condition

(2.14) inf
06=q∈Wh

sup
06=v∈Vh

b(v, q)

‖v‖1‖q‖0
> C > 0,

the eigenvalue approximation λh and the corresponding eigenfunction approxima-

tion (uh, ph) have the following bound ([22], [21], [9], and [14]):

|λ− λh| 6 C
(

inf
v∈Vh

‖u− v‖1 + inf
q∈Wh

‖p− q‖0

)2

,(2.15)

‖u− uh‖0 + h‖u− uh‖1 6 Ch
(

inf
v∈Vh

‖u− v‖1 + inf
q∈Wh

‖p− q‖0

)
,(2.16)

‖p− ph‖0 6 C
(

inf
v∈Vh

‖u− v‖1 + inf
q∈Wh

‖p− q‖0

)
.(2.17)
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In particular, if (u, p) ∈ (Hk+1(Ω))2 ×Hk+1(Ω), then (2.9) yields the following error

estimates:

|λ− λh| 6 Ch2k(‖u‖k+1 + ‖p‖k)
2,(2.18)

‖u− uh‖0 + h‖u− uh‖1 + h‖p− ph‖0 6 Chk+1(‖u‖k+1 + ‖p‖k).(2.19)

If the domain is convex and polygonal, we have

|λ− λh| 6 Ch2s(‖u‖s+1 + ‖p‖s)
2,(2.20)

‖u− uh‖0 + h‖u− uh‖1 + h‖p− ph‖0 6 Chs+1(‖u‖s+1 + ‖p‖s),(2.21)

where and hereafter in this paper s := min{1 + γ, k}.

3. Postprocessing technique

In this section we present a postprocessing method to improve the accuracy of the

eigenvalue and eigenfunction approximations. This postprocessing method consists

of solving the original Stokes eigenvalue problem in the k-order mixed finite element

space and one additional Stokes source problem in an augmented mixed finite element

space. Here, we give two ways to construct the enriched space: on a finer mesh which

results from the original mesh by refining and on a k + 1-order mixed finite element

space on the same mesh.

To derive our method, we need first to introduce the error expansions of the

eigenvalues by the Rayleigh quotient formula. It is well known that there are the

Rayleigh quotient error expansions for the eigenvalues of the second elliptic prob-

lems.

Theorem 3.1. Assume (u, p, λ) is the true solution of the Stokes eigenvalue

problem (2.1), 0 6= w ∈ (H1
0 (Ω))2 and ψ ∈ L2

0(Ω) satisfy

(3.1) b(w, ψ) = 0.

Let us define

(3.2) λ̂ =
a(w,w)

s(w,w)
.

Then we have

(3.3) λ̂− λ =
a(w − u,w − u) + 2b(w − u, p− ψ) − λs(w − u,w − u)

s(w,w)
.

242



P r o o f. From (2.1), (2.12), (2.13), (3.1), (3.2) by direct computation we obtain

λ̂− λ =
a(w,w) − λs(w,w)

s(w,w)

=
a(w − u,w − u) + 2a(w,u) − a(u,u) − λs(w,w)

s(w,w)

=
a(w − u,w − u) + 2λs(w,u) + 2b(w, p) − λs(u,u) − λs(w,w)

s(w,w)

=
a(w − u,w − u) − λs(w − u,w − u) + 2b(w, p)

s(w,w)

=
a(w − u,w − u) − λs(w − u,w − u) + 2b(w − u, p)

s(w,w)

=
a(w − u,w − u) − λs(w − u,w − u) + 2b(w − u, p− ψ)

s(w,w)
.

This is the desired result and the proof is completed. �

If the eigenpair approximation (uh, ph, λh) of the Stokes eigenvalue problem (2.1)

has been obtained, let us define the Stokes source problem: Find (ũ, p̃) ∈ V ×W

such that

(3.4)

{
a(ũ,v) + b(v, p̃) = λhs(uh,v) ∀v ∈ V,

b(ũ, q) = 0 ∀ q ∈ W.

We also define the Rayleigh quotient formula

(3.5) λ̃ =
a(ũ, ũ)

s(ũ, ũ)
.

For (ũ, p̃, λ̃) we have the following error estimate.

Theorem 3.2. Assume (u, p, λ) is the true solution of the Stokes eigenvalue

problem (2.1), (uh, ph, λh) is the corresponding mixed finite element solution of the

discrete Stokes eigenvalue problem (2.12), (ũ, p̃) is the true solution of problem (3.4)

and λ̃ is defined by (3.5). Then we have the estimate

‖u− ũ‖1 + ‖p− p̃‖0 6 C(‖u− uh‖0 + |λ− λh|),(3.6)

|λ̃− λ| 6 C(‖u− uh‖
2
0 + |λ− λh|

2).(3.7)

P r o o f. From the Stokes eigenvalue (2.1) and the Stokes problem (3.4) we have

a(ũ− u,v) + b(v, p̃− p) + b(ũ − u, q)(3.8)

= s(λhuh − λu,v)

= λhs(uh − u,v) + (λh − λ)s(u,v)

6 C(‖uh − u‖0 + |λh − λ|)‖v‖1.
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Then, from (2.7), we have

‖ũ− u‖1 + ‖p̃− p‖0 6 sup
06=(v,q)∈V×W

a(ũ − u,v) + b(v, p̃− p) + b(ũ− u, q)

‖v‖1 + ‖q‖0
(3.9)

6 C(‖uh − u‖0 + |λh − λ|).

From Theorem 3.1 and (3.9) we obtain

λ̃− λ 6 C(‖ũ − u‖2
1 + ‖ũ− u‖1‖p̃− p‖0)

6 C(‖uh − u‖0 + |λh − λ|)2

6 C(‖uh − u‖2
0 + |λ− λh|

2).

So, the proof is complete. �

Based on the result of the convergence rate of the eigenpair approximation, for a

smooth domain we can obtain

‖ũ− u‖1 + ‖p̃− p‖0 6 Chk+1,(3.10)

|λ̃− λ| 6 Ch2k+2.(3.11)

For a convex polygonal domain, (2.20) and (2.21) yield

‖ũ− u‖1 + ‖p̃− p‖0 6 Chs+1,(3.12)

|λ̃− λ| 6 Ch2s+2.(3.13)

This means that (ũ, p̃, λ̃) is a much better approximation of the true solution (u, p, λ)

of the Stokes eigenvalue problem (2.1) than (uh, ph, λh).

4. Postprocessing algorithm

Theorem 3.2 has only theoretical value and cannot be used in practice since the

exact solution of the Stokes source problem (3.4) is not always known. In order to

make it useful, we need to get a sufficiently accurate approximation of the Stokes

source problem. Here we discuss two possible ways how to obtain the approximation

of the Stokes source problem (3.4). The first way is the “two-grid method” of Xu

and Zhou introduced and studied in [25] for second order differential equations and

integral equations. The second way proposed and studied by Andreev and Racheva

in [23] uses the same mesh but higher order mixed finite element space.

The first way uses a finer mesh (with mesh size h(k+1)/k or h(s+1)/s) to get an

approximation of λ̃ with an error O(h2k+2) or O(h2s+2). The advantage of this
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approach is that it uses the same finite element spaces and does not require higher

regularity of the exact eigenfunctions. The second way is based on the same finite

element mesh Th but using a one order higher mixed finite element space. Also, to

get an improvement for the approximation of λ̃h to the error O(h4) or O(h2+2γ)

from O(h2), we need to investigate the regularity of the Stokes eigenvalue problem.

We can treat both ways in the same abstract manner. Namely, let us introduce

the enriched mixed finite element space Ṽh × W̃h such that Vh × Wh ⊂ Ṽh ×

W̃h ⊂ (H1
0 (Ω))2 × L2

0(Ω) and consider the following discrete Stokes problem: Find

(ũh, p̃h) ∈ Ṽh × W̃h such that

(4.1)

{
a(ũh,v) + b(v, p̃h) = λhs(uh,v) ∀v ∈ Ṽh,

b(ũh, q) = 0 ∀ q ∈ W̃h.

Here we suppose that the approximation (ũh, p̃h) ∈ Ṽh × W̃h has the following

error estimate: for a smooth domain

(4.2) ‖ũ− ũh‖1 + ‖p̃− p̃h‖0 6 Chk+1(‖ũ‖k+2 + ‖p̃‖k+1),

and for a convex polygonal domain

(4.3) ‖ũ− ũh‖1 + ‖p̃− p̃h‖0 6 Chs+1(‖ũ‖s+2 + ‖p̃‖s+1).

So, we need to define the Rayleigh quotient

(4.4) λ̃h =
a(ũh, ũh)

s(ũh, ũh)
.

From the above analysis, we obtain the following error estimate for (ũh, p̃h, λ̃h) ∈

Ṽh × W̃h ×R.

Theorem 4.1. Assume λ̃h is defined by (4.4), (ũh, p̃h) is the solution of (4.1) and

(u, p, λ) is the true solution of the Stokes eigenvalue problem (2.1). Then we have

|λ̃h − λ| 6 C(‖u− uh‖0 + |λ− λh| + ‖ũ− ũh‖1 + ‖p̃− p̃h‖0)
2,(4.5)

‖ũh − u‖1 + ‖p̃h − p‖0 6 C(‖u − uh‖0 + |λ− λh| + ‖ũ− ũh‖1 + ‖p̃− p̃h‖0).(4.6)

P r o o f. First, from (3.6) and the triangle inequality we obtain (4.6). By virtue

of b(ũh, p̃h) = 0 and (3.3), the following error estimate holds

|λ̃h − λ| 6 C(‖ũh − u‖2
1 + ‖p̃h − p‖2

0)

6 C(‖u − uh‖0 + |λ− λh| + ‖ũ− ũh‖1 + ‖p̃− p̃h‖0)
2.

�
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Now, we can present a postprocessing algorithm which can improve the accuracy

of the eigenvalue and eigenfunction approximations for the Stokes eigenvalue prob-

lem (2.1).

Algorithm 1.

(1) Solve the Stokes eigenvalue problem (2.12) for (uh, ph, λh) ∈ Vh ×Wh ×R.

(2) Solve the Stokes problem (4.1) and find (ũh, p̃h) ∈ Ṽh × W̃h.

(3) Compute

λ̃h =
a(ũh, ũh)

s(ũh, ũh)
.

The pair (ũh, p̃h, λ̃h) represents a new (and better than (uh, ph, λh)) approxima-

tion to (u, p, λ).

Let us discuss two methods of constructing the augmented mixed finite element

space Ṽh × W̃h for solving the Stokes source problem (4.1).

Way 1 (“Two-grid method” from [25]): In this case, Ṽh × W̃h is the same type

of mixed finite element space as Vh ×Wh on the finer mesh T̃h with mesh size h
β

(β > 1). Here T̃h is a finer mesh of Ω which can be generated by the refinement just

as in the multigrid method ([25]).

First, let us consider the case when the exact eigenfunction is smooth and has the

error estimates (2.18) and (2.19). Because the maximum regularity of the solution

(ũ, p̃) of the Stokes source problem (3.4) is (H3(Ω))2 × H2(Ω), we need to choose

k 6 2. In this case, we obtain the following improved accuracy for the eigenpair

approximation when β = (k + 1)/k ([25]):

|λ̃h − λ| 6 Ch2k,(4.7)

‖ũh − u‖1 + ‖p̃h − p‖0 6 Chk+1.(4.8)

When Ω is a convex polygonal domain, the error estimate (2.20), (2.21) and Theo-

rem 4.1 yield

(4.9) |λ− λ̃h| 6 C(h2s+2 + h2βs).

The optimal parameter is chosen to balance the two terms in the above inequality,

i.e., 2s+ 2 = 2βs. So, we can obtain the following error estimate for β = (s+ 1)/s:

|λ− λ̃h| 6 Ch2s+2,(4.10)

‖ũh − u‖1 + ‖p̃h − p‖0 6 Chs+1.(4.11)

From this error estimate we see that the postprocessing method can provide the

same accuracy when solving the Stokes eigenvalue problem on the finer mesh T̃h.
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This improvement costs solving the Stokes source problem on a finer mesh with

mesh size O(hβ). This is better than solving the Stokes eigenvalue problem on

the finer mesh directly because solving the Stokes source problem needs much less

computation than solving the Stokes eigenvalue problem.

Way 2 (“Two space” method from [23]): In this case, Ṽh × W̃h is defined on the

same mesh Th but with order higher by one than Vh ×Wh. Since the maximum

regularity of the solution (ũ, p̃) for the Stokes source problem (3.4) is (H3(Ω))2 ×

H2(Ω), we can only use the first order mixed finite element space to solve the original

Stokes eigenvalue problem (2.12), and solve the Stokes source problem (4.1) in the

second order mixed finite element space. So, we have only the error estimate for

(uh, ph, λh)

|λ− λh| 6 Ch2,(4.12)

‖u− uh‖1 + ‖p− ph‖0 6 Ch.(4.13)

First, if the domain Ω is smooth, we have the error estimate

|λ− λ̃h| 6 Ch4,(4.14)

‖u− ũh‖1 + ‖p− p̃h‖0 6 Ch2.(4.15)

This is an obvious improvement as compared with (4.12) and (4.13).

When Ω is a convex polygonal domain, the regularity of the Stokes source problem

and the error estimate imply

|λ− λ̃h| 6 Ch2+2γ ,(4.16)

‖u− ũh‖1 + ‖p− p̃h‖0 6 Ch1+γ .(4.17)

This estimate is also an obvious improvement as compared with (4.12) and (4.13).

The improved error estimate above just costs solving the Stokes source problem

on the same mesh in the second order mixed finite element space.

5. Numerical results

In this section we give a numerical example to illustrate the efficiency of the post-

processing algorithm derived in this paper. Since we do not know the exact solution

of the Stokes eigenvalue problems, the numerical result only shows the behavior of

eigenvalue approximations by the postprocessing algorithm.

We consider the Stokes eigenvalue problem (1.1) on the domain Ω = (0, 1)× (0, 1).

According to [24] and [11], we can choose a sufficiently accurate first eigenvalue

approximation λ = 52.3446911 as the true first eigenvalue.

247



Here we give the numerical results of the postprocessing algorithm with the en-

riched spaces constructed by one order higher mixed finite element. We first solve the

Stokes eigenvalue problem (2.12) by the lowest order Bernardi-Raugel mixed finite

element ([6], [9] and [14]) and solve the Stokes source problem (3.4) by the Q2 − P1

mixed finite element on the rectangular meshes ([9] and [14]). Now, we introduce

the lowest order Bernadi-Raugel mixed finite element

Vh = {v ∈ (H1
0 (Ω))2 : v|e ∈ Q12 ×Q21, ∀ e ∈ Th},

Qh = {p ∈ L2
0(Ω): p|e ∈ Q00, ∀ e ∈ Th},

and the Q2 − P1 mixed finite element

Vh = {v ∈ (H1
0 (Ω))2 : v|e ∈ Q22 ×Q22, ∀ e ∈ Th},

Qh = {p ∈ L2
0(Ω): p|e ∈ P1, ∀ e ∈ Th},

where Qij = span{xkyl : 0 6 k 6 i, 0 6 l 6 j} and Pi = span{xkyl; k > 0, l >

0, k+ l 6 i}. From the above theoretical analysis, we know that the accuracies of λh

and λ̃h are O(h2) and O(h4), respectively.

In order to illustrate the convergence rate, we introduce the notation

errh = λh − λ,

ẽrrh = λ̃h − λ,

Rh =
log(|errh1

|/|errh2
|)

log(|h1/h2|)
,

ẽrrh = λ̃h − λ,

R̃h =
log(|ẽrrh1

|/|ẽrrh2
|)

log(|h1/h2|)
.

The numerical results are shown in Tab. 1. From Tab. 1, we can find that the post-

processing algorithm can improve the accuracy of the eigenvalue approximations and

thus confirm the theoretical analysis.

M×N 4×4 8×8 16×16 32×32 64×64

λh 51.531253583 52.093629173 52.278091067 52.327797607 52.340452665

λ̃h 52.484991391 52.355892886 52.345473959 52.34474510 52.344694676

errh −8.13438E−1 −2.51062E−1 −6.66000E−2 −1.68935E−2 −4.23844E−3

ẽrrh 1.403003E−1 1.120179E−2 7.828588E−4 5.399888E−5 3.575866E−6

Rh – 1.695988266 1.914448462 1.979055271 1.994864197

R̃h – 3.646717312 3.838832828 3.857750706 3.916564890

Table 1. The results for the eigenvalue approximations by postprocessing algorithm.
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6. Concluding remarks

The method and the result can be extended to the general mixed eigenvalue

problems which can be described by (2.1) with a(·, ·), b(·, ·) and c(·, ·) satisfy-

ing (2.2)–(2.7). We can use the better eigenvalue and eigenfunction approximation

(ũh, p̃, λ̃h) to construct an a posteriori error estimator of the eigenpair approximation

(uh, ph, λh) for the Stokes eigenvalue problem ([11]).
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