
Applications of Mathematics

Runchang Lin; Zhimin Zhang
Numerical study of natural superconvergence in least-squares finite element methods for
elliptic problems

Applications of Mathematics, Vol. 54 (2009), No. 3, 251–266

Persistent URL: http://dml.cz/dmlcz/140363

Terms of use:
© Institute of Mathematics AS CR, 2009

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/140363
http://dml.cz


54 (2009) APPLICATIONS OF MATHEMATICS No. 3, 251–266

NUMERICAL STUDY OF NATURAL SUPERCONVERGENCE IN

LEAST-SQUARES FINITE ELEMENT METHODS FOR

ELLIPTIC PROBLEMS*

Runchang Lin, Laredo, Zhimin Zhang, Detroit

Dedicated to Ivan Hlaváček on the occasion of his 75th birthday

Abstract. Natural superconvergence of the least-squares finite element method is sur-
veyed for the one- and two-dimensional Poisson equation. For two-dimensional problems,
both the families of Lagrange elements and Raviart-Thomas elements have been consid-
ered on uniform triangular and rectangular meshes. Numerical experiments reveal that
many superconvergence properties of the standard Galerkin method are preserved by the
least-squares finite element method.
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1. Introduction

Superconvergence analysis and a posteriori error estimation for finite element

methods (FEMs) have been studied for a wide range of problems. For elliptic bound-

ary value problems, there exists abundant mathematical and engineering literature

to this subject; see, e.g., monographs and surveys [1], [3], [17], [18], [31], [34], [36],

[43], [44], [46], [48], [49] and their references for a bibliography. In particular, su-

perconvergence properties of mixed finite element approximations have been studied

in, e.g., the Raviart-Thomas [42] and Brezzi-Douglas-Marini [13] spaces for elliptic

problems; cf. [7], [8], [12], [19], [24], [25], [26], [27], [29], [33], [35]. Besides its own

theoretical importance, superconvergence analysis and a posteriori error estimation

*The second author was supported in part by the US National Science Foundation under
Grant DMS-0612908.
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have essential applications in numerical approximation of partial differential equa-

tions (PDEs) arising from science and engineering, which can provide competitive

solution quality estimates with significantly less computational cost.

Recently, the interest in least-squares finite element methods (LSFEMs) has grown

continuously. The standard LSFEM transforms the original problem into a system

of first-order differential equations, to whose residual an L2 least-squares principle is

applied. This mixed LSFEM possesses many desirable properties, such as the choice

of approximating spaces is not subject to the Babuška-Brezzi (BB) condition [2], [11],

which ensure LSFEMs successful application to a large variety of problems arising

in sciences and engineering. For a review of the method, please refer to [6], [30] and

their extensive bibliographies.

Optimal error estimates of LSFEMs for second-order elliptic problems have been

established in, e.g., [5], [14], [15], [39], [40], [41]; they are analogous to the error es-

timates of standard Galerkin finite element methods. There are also several papers

in literature devoted to pointwise superconvergence analysis for the least-squares

method. For example, superconvergence phenomena for a LSFEM have been ob-

served in numerical experiments of [16] for two-point boundary value problems,

which are similar to those for Galerkin methods. In a later article [41], the au-

thors studied error estimates of a least-squares mixed FEM for the one-dimensional

self-adjoint equations. Derivative superconvergence at the Gaussian points and func-

tion value superconvergence at interelement nodes have been proved. In [38], optimal

and superapproximation error estimates in the maximum norm and function value

superconvergence at the Lobatto points are established. Nevertheless, research and

applications of superconvergence and a posteriori error estimation for LSFEMs have

not been given adequate importance, though they have become standard practice

to Galerkin finite element schemes for different types of differential equations (cf.,

e.g., [1], [3], [32], [50]). Especially for the two-dimensional elements, there is no

pointwise superconvergence result available in literature (cf. also [9] and [10] for any

space dimension).

In this paper, our attention is focused on numerical study of natural superconver-

gence for triangular and rectangular least-squares elements for the Poisson equation.

Here, by natural superconvergence, we refer to the pointwise superconvergence phe-

nomena without using recovery or postprocessing techniques. We consider both

the C0 Lagrange elements and the Raviart-Thomas elements for the approximation

spaces. Theoretical investigation of superconvergence and a posteriori error estima-

tion for LSFEMs is an ongoing research project.

This paper is organized as follows. In Section 2, the least-squares finite element

formulation is introduced. Some optimal convergence results, and superconvergence

results in the one-dimensional setting are reviewed. In Section 3, numerical investiga-
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tion for some two-dimensional least-squares elements are conducted. Some remarks

are made in Section 4.

2. Formulation and review

Consider the Poisson equation with the Dirichlet homogeneous boundary condition

(2.1)

{

−∆u = f in Ω = (0, 1)d,

u = 0 on ∂Ω,

where d = 1 or 2 is the spatial parameter and f ∈ L2(Ω) is sufficiently smooth.

Assume that the elliptic problem has a unique solution u ∈ H1
0 (Ω) ∩ H2(Ω), where,

and throughout this paper, we use the standard notation for the Sobolev spaces and

associated norms. The problem (2.1) may be transformed into a first-order equation

system

(2.2)











p −∇u = 0 in Ω,

−∇ · p = f in Ω,

u = 0 on ∂Ω,

where∇ and∇· are the gradient and divergence operators, respectively. Here vectors

and scalars are shown in bold and plain fonts, respectively. Define the space

H(Ω) = H(div; Ω) × H1
0 (Ω),

where

H(div; Ω) = {q ∈ [L2(Ω)]d : ∇ · q ∈ L2(Ω)}

has the corresponding norm

‖q‖H(div;Ω) = (‖∇ · q‖2
L2(Ω) + ‖q‖2

L2(Ω))
1/2.

For u = [p, u]T ∈ H(Ω), let

Au =

[

p −∇u

−∇ · p

]

and f =

[

0

f

]

.

Equations (2.2) thus read

Au = f in Ω.
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2.1. Least-squares finite element discretization

The least-squares functional J is defined as

J (v; f) =
1

2
‖Av − f‖2

L2(Ω) =
1

2
(Av − f ,Av − f),

where (u,v) =
∫ 1

0
u · v dx is the standard inner product. A minimizer u of the

functional J satisfies

lim
t→0

d

dt
J (u + tv; f) = (Au − f ,Av) = 0 ∀v ∈ H(Ω).

The least-squares variational formulation of (2.2) follows: Find u ∈ H(Ω) such that

(2.3) B(u,v) = L(v) ∀v ∈ H(Ω),

where the bilinear form B and the linear functional L are defined as

B(u,v) = (Au,Av) =

∫

Ω

(

(p −∇u) · (q −∇v) + (−∇ · p)(−∇ · q)
)

dΩ,

L(v) = (f ,Av) =

∫

Ω

f(−∇ · q) dΩ,

with u = [p, u]T and v = [q, v]T . The following coercivity result for the bilinear

form can be obtained, cf. [15], [40], [41].

Proposition 2.1. There exists a constant α > 0 such that

B(v,v) > α(‖q‖2
H(div;Ω) + ‖v‖2

H1(Ω))

for all v = [q, v]T ∈ H(Ω).

By the Lax-Milgram lemma, problem (2.3) has a unique solution in H(Ω).

Let Th = {Ki}
N
i=1 be a triangulation of Ω, where Ki is the ith element. When

d = 2, we consider only the uniform rectangular mesh and the triangular mesh of

the regular pattern in this paper (see Fig. 1). Set the mesh parameter h = max
16i6N

hi,
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Triangular mesh of regular pattern Rectangular mesh

Figure 1. Finite element meshes.

where hi is the diameter of Ki. Define Vh and Wh as finite dimensional subspaces

ofH1
0 (Ω) andH(div; Ω)which consist of piecewise polynomials. We denote by Pk(Ki)

the space of all polynomials of degree not greater than k restricted to the element Ki,

and by Qk,r(Ki) the space of polynomials of degree less than or equal to k in the first

variable and to r in the second. We shall use Qk for Qk,k. Then for the Lagrange

elements we set

Vh = {vh ∈ C0(Ω): vh|Ki
∈ Ψk(Ki) ∀Ki ∈ Th, v|∂Ω = 0},

Wh = {qh ∈ H(div; Ω): qh|Ki
∈ [Ψr(Ki)]

d ∀Ki ∈ Th},

where Ψk(Ki) is taken as Pk(Ki) for triangular elements, and as Qk(Ki) for rectan-

gular ones. Another choice of the finite element space is, among others, the Raviart-

Thomas space. On triangular elements, the kth order Raviart-Thomas space (RTk)

is defined by

Vh = {vh ∈ L2(Ω): vh|Ki
∈ Pk(Ki) ∀Ki ∈ Th, v|∂Ω = 0},

Wh =

{

qh ∈ H(div; Ω): qh|Ki
∈ [Pk(Ki)]

2 ⊕

[

x

y

]

Pk(Ki) ∀Ki ∈ Th

}

.

The degrees of freedom of Wh(Ki) are given by the moments
∫

e

qh · nw ds ∀w ∈ Pk(e), e ∈ ∂Ki,

∫

Ki

qh · rdΩ ∀ r ∈ (Pk−1(Ki))
2,

where n is the outward unit normal vector to ∂Ki. On rectangular elements, the

RTk is defined by

Vh = {vh ∈ L2(Ω): vh|Ki
∈ Qk(Ki) ∀Ki ∈ Th, v|∂Ω = 0},

Wh = {qh ∈ H(div; Ω): qh|Ki
∈ Qk+1,k(Ki) × Qk,k+1(Ki) ∀Ki ∈ Th}.
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In this case, the degrees of freedom of Wh(Ki) are given by

∫

e

qh · nw ds ∀w ∈ Pk(e), e ∈ ∂Ki,

∫

Ki

qh · rdΩ ∀ r = [r1, r2] ∈ Qk−1,k(Ki) × Qk,k−1(Ki).

The Raviart-Thomas spaces defined above consist of all vector fields whose normal

components are continuous across the edges. They satisfy also the BB-condition

which, however, is not required for well-posedness of the LSFEM. Notice that,

for RTk, the degree of polynomial basis functions in Wh is k + 1 for each variable.

The finite element approximation to problem (2.3) is posed as follows: find uh ∈

Wh × Vh such that

(2.4) B(uh,vh) = L(vh) ∀vh ∈ Wh × Vh.

By Proposition 2.1 and the Lax-Milgram lemma, problem (2.4) has a unique solution.

Moreover, by (2.3) and (2.4), the following Galerkin orthogonality property holds:

(2.5) B(u − uh,vh) = 0 ∀vh ∈ Wh × Vh.

2.2. Review of error estimation

We next review some error estimates results for LSFEMs in literature. The fol-

lowing results can be found in, e.g., [15], [40], [41].

Proposition 2.2. Let s = min(k, r) and assume that u ∈ Hs+1(Ω) and p ∈

[Hs+1)(Ω)]d. Then

‖u − uh‖H1(Ω) + ‖p− ph‖H(div;Ω) 6 Chs(‖u‖Hs+1(Ω) + ‖p‖Hs+1(Ω)).

In this paper, C is used to denote a generic positive constant that is independent

of u, p, and h. The following better estimate holds [41].

Proposition 2.3. Assume that u ∈ Hk+1(Ω) and p ∈ [Hr(Ω)]d. If r = k + 1,

then

‖u − uh‖L2(Ω) + ‖p− ph‖H(div;Ω) 6 Chr(‖u‖Hr(Ω) + ‖p‖Hr(Ω)).

Moreover, for the one-dimensional problems [41] and two-dimensional finite ele-

ment spaces with the grid decomposition property (GDP) [5], the following estimate

can be obtained.
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Proposition 2.4. Let s = min(k, r) and assume that u ∈ Hs+1(Ω) and p ∈

[Hs+1(Ω)]d. Then

‖u − uh‖L2(Ω) + ‖p− ph‖L2(Ω) 6 Chs+1(‖u‖Hs+1(Ω) + ‖p‖Hs+1(Ω)).

The convergence and natural superconvergence for the one-dimensional LSFEMs

have been studied in details. In particular, the results in Propositions 2.2 and 2.4

can be improved when k 6= r. The following estimates are given in [41].

Proposition 2.5. Let κ = min(k, r + 1) and ̺ = min(k + 1, r). Assume that

u ∈ Hk+1(Ω) and p ∈ Hr+1(Ω). Then

‖u − uh‖H1(Ω) 6 Chκ(‖u‖Hκ+1(Ω) + ‖p‖Hκ(Ω)),

‖p − ph‖H1(Ω) 6 Ch̺(‖u‖H̺(Ω) + ‖p‖H̺+1(Ω)).

Proposition 2.6. Let κ = min(k, r + 1) and ̺ = min(k + 1, r). Assume that

u ∈ Hk+1(Ω) and p ∈ Hr+1(Ω). Then

‖u − uh‖L2(Ω) 6 Chκ+1(‖u‖Hκ+1(Ω) + ‖p‖Hκ(Ω)) for r > 1,

‖p − ph‖L2(Ω) 6 Ch̺+1(‖u‖H̺(Ω) + ‖p‖H̺+1(Ω)) for k > 1.

When |k − r| = 1, the estimates in Propositions 2.5 and 2.6 are optimal, since the

order of convergence corresponds to the theoretical order of the Galerkin method.

When |k − r| > 1, nevertheless, the estimates are no longer optimal. See numerical

results in [9], [10], and [38] for detailed examples.

The superconvergence phenomena at interelement nodes and the elemental Gaus-

sian points have been observed in [16] and analyzed in [41]; cf. also [38].

Proposition 2.7. Let s = min(k, r) and let xi be a meshpoint. Assume that

u ∈ Hs+1(Ω) and p ∈ Hs+1(Ω). Then

|(u − uh)(xi)| + |(p − ph)(xi)| 6 Ch2s(‖u‖Hs+1(Ω) + ‖p‖Hs+1(Ω)).

Proposition 2.8. Let s = min(k, r) and suppose that u ∈ Hs+1(Ω) and

p ∈ Hs+1(Ω). Let Fi be the affine mapping from [−1, 1] to ei and let gj,k be the
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jth Gaussian point of order k in [−1, 1], 1 6 j 6 k. Then for 1 6 i 6 N , 1 6 j 6 k,

and 1 6 ̺ 6 r,

|(u − uh)′(Fi(gj,k))| + |(p − ph)′(Fi(g̺,r))| 6 Chs+1(‖u‖Hs+1(Ω) + ‖p‖Hs+1(Ω)).

The following optimal and superapproximation estimates in the maximum norm

have recently been established in [38].

Proposition 2.9. Let s = min(k, r) and assume that u ∈ W s+1
∞ (Ω) and p ∈

W s+1
∞ (Ω). Then

‖u − uh‖L∞(Ω) + ‖p − ph‖L∞(Ω) 6 Chs+1(‖u‖W s+1
∞ (Ω) + ‖p‖W s+1

∞ (Ω)),(2.6)

‖u − uh‖W 1
∞

(Ω) + ‖p − ph‖W 1
∞

(Ω) 6 Chs(‖u‖W s+1
∞ (Ω) + ‖p‖W s+1

∞ (Ω)).(2.7)

Proposition 2.10. Let s = min(k, r) and assume that u ∈ W s+1
∞ (Ω) and p ∈

W s+1
∞ (Ω). Let Nhu = [Mhp, Nhu]T be the projection of u into Wh × Vh so that

((Mhp − p)′, q′) = 0 for all q ∈ Wh and ((Nhu − u)′, v′) = 0 for all v ∈ Vh. Then

‖(Nhu − uh)′‖L∞(Ω) + ‖(Mhp − ph)′‖L∞(Ω)(2.8)

6 Chs+1(‖u‖W s+1
∞ (Ω) + ‖p‖W s+1

∞ (Ω)).

When s > 1, then

‖Nhu − uh‖L∞(Ω) + ‖Mhp − ph‖L∞(Ω)(2.9)

6 Chs+2(‖u‖W s+1
∞ (Ω) + ‖p‖W s+1

∞ (Ω)).

Propositions 2.9 and 2.10 lead to the following superconvergence error estimate at

the Lobatto points [38].

Proposition 2.11. Let s = min(k, r) and assume that u ∈ Hs+1(Ω) and

p ∈ Hs+1(Ω). Let Fi be the affine mapping from [−1, 1] to ei and let lj,k be the

jth Lobatto point of order k in [−1, 1], 1 6 j 6 k − 1. Then for s > 1, 1 6 i 6 N ,

1 6 j 6 k − 1, and 1 6 ̺ 6 r − 1 we have

|(u − uh)(Fi(lj,k))| + |(p − ph)(Fi(l̺,r))| 6 Chs+2(‖u‖Hs+1(Ω) + ‖p‖Hs+1(Ω)).

R em a r k 2.1. The convergence results in Propositions 2.2–2.11 hold for gen-

eral elliptic two-point boundary value problems. The superconvergence estimates

(Propositions 2.7, 2.8, and 2.11) are analogous to those for the standard Galerkin

method; cf., e.g., [21], [22], [45]. However, the estimation cannot be improved when

k 6= r. See [38] for details.
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Natural superconvergence for the two-dimensional LSFEMs has not been reported

in literature. Nevertheless, pointwise superconvergence has been well studied for

the Galerkin method, see, e.g., [4], [17], [31], [36], [37], [44], [47]. In particular,

for rectangular elements, derivative superconvergence is achieved along the corre-

sponding Gaussian lines, and function value superconvergence is obtained at tensor

product of the Lobatto points. In a triangular mesh of the regular pattern, deriva-

tive superconvergence points are along tangential directions at the midpoints of edges

for elements of odd degrees, and at the second order Gaussian points of edges for

quadratic elements; while function value superconvergence points are the vertices and

midpoints of edges for elements of even degrees. Some pointwise superconvergence

results have also been proved for the Raviart-Thomas and Brezzi-Douglas-Marini

elements, see, e.g., [23], [24], [25], [28], [29], [33]. In the next section, we will inves-

tigate natural superconvergence for the two-dimensional least-squares Lagrange and

Raviart-Thomas elements in uniform rectangular and regular triangular meshes.

3. Numerical experiments

Numerical examples for the one-dimensional LSFEMs can be found in [16], [38].

In this section we consider the two-dimensional test problem (2.1) with the exact

solution

u(x, y) = (ey − sin 2πx)(x − x2)(y − y2).

The primary objective of the numerical study is to determine whether the least-

squares formulation exhibits natural superconvergence properties similar to those

of the standard Galerkin method. The discrete problem is set up as described in

the preceding sections using the Lagrange and Raviart-Thomas elements, and it is

solved on a set of equidistant meshes of decreasing size. A computer algebra system

(e.g. Maple) is employed to compute the exact analytical formation of the stiffness

matrices and load vectors. Set eh = u − uh and εh = p − ph as numerical errors,

the derivatives of which are also considered. The results for the rate of convergence

are illustrated as the slope of log-log plots of errors against mesh size h in the usual

way.

3.1. Lagrange elements

Linear (P1) and quadratic (P2) elements on triangular meshes, and bilinear (Q1)

and biquadratic (Q2) elements on rectangular meshes are tested and presented in

Figs. 2 and 3, respectively. Optimal convergence rates of Propositions 2.2 and 2.4

have been observed in the numerical results since both the meshes have the GDP,

they, however have not been plotted; cf. the numerical experiments in [5]. Supercon-

vergence for derivatives and function values has been tested at certain points.
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In particular, for linear elements, |∂xeh| and |∂yeh| have convergence rate O(h2)

at the midpoints of horizontal and vertical edges, respectively, which is one order

higher than a global rate O(h) of ‖eh‖H1(Ω). |∂xεh,1| and |∂yεh,2| converge with

rate O(h1.6) at the midpoints of horizontal and vertical edges, respectively, which can

be contrasted with the optimal rate O(h) of ‖εh‖H(div,Ω). Here ∂x and ∂y are used for

∂/∂x and ∂/∂y, respectively, and εh,l is the lth component of εh, l = 1, 2. Moreover,

|∂xεh,2| and |∂yεh,1| converge with the rate of O(h1.4). For quadratic elements,

the convergence rate of |∂xeh| and |∂yeh| at the local Gaussian points (g2,s, yj) of

horizontal edges (with g2,s = xi −
1
2

(

1± 1√
3

)

h in [xi −h, xi]) and (xi, g2,s) of vertical

edges (with g2,s = yj −
1
2

(

1± 1√
3

)

h in [yj −h, yj]) are about O(h3), as compared with

a global rate of O(h2). The rate for |eh| is O(h4) at vertices and midpoints of edges

(i.e. the local Lobatto points li,j of edges in this case), which is one order higher

than the optimal rate. Superconvergence of εh and its derivatives is nonetheless not

observed at the corresponding Lobatto and Gaussian points. See details in Fig. 2.

For bilinear elements, |∂xeh|, |∂yeh|, and |∇ · εh| have second order superconver-

gence rate along the corresponding Gaussian lines (denoted by gi,j in Fig. 3). That

is to say, in an element [xi − h, xi]× [yj − h, yj], |∂xeh| and |∂xεh,1| are calculated at

some points gi,j along
{

xi−
1
2h

}

×[yj−h, yj], and |∂yeh| and |∂yεh,2| are computed at

some other points gi,j along [xi−h, xi]×
{

yj −
1
2h

}

. For biquadratic elements, |∂xeh|

and |∂yeh| converge in rate O(h3) along Gaussian lines
{

xi−
1
2

(

1± 1√
3

)

h
}

×[yj−h, yj]

and [xi − h, xi] ×
{

yj −
1
2

(

1 ± 1√
3

)

h
}

, respectively. |∂xεh,1| and |∂yεh,2| have con-

vergence rate O(h2.2) along the corresponding lines, which are still higher than the

global rate O(h2). Superconvergence rate of O(h3.7) has been observed for |eh| at

the tensor product of local Lobatto points li,j , which are vertices of the mesh and

midpoint of edges. Superconvergence of εh is not observed at the Lobatto points.

See details in Fig. 3.

3.2. Raviart-Thomas elements

The triangular and rectangularRT0 andRT1 have also been used for the LSFEM to

compute the model problem. Notice that the numerical results by Raviart-Thomas

elements might be discontinuous at vertices and/or along edges, where arithmetic

averages have been used in calculation of errors. For the RT0 elements, convergence

rate has been investigated at vertices and midpoints of edges for function values and

derivatives. No superconvergence has been observed. Similar computation has been

conducted for triangular RT1 elements, which leads to no superconvergence at the

aforementioned points either. For rectangular RT1 elements, it is observed that, at

the element center (xi+ 1
2
, yj+ 1

2
) (i.e. the tensor product of the local Gaussian point),

the convergence rates of |∂xeh|, |∂yeh|, and |∇ ·εh| are all about O(h2), which is one

order higher than the estimate in Proposition 2.2, cf. also [26]. We notice that for
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10−5

10−4

10−3

10−2

10−1

100

10−2

P1 element

|(u−uh)x(xi+1/2, yj)| slope: 1.963
|(u−uh)y(xi, yj+1/2)| slope: 1.9858
|(p1−ph,1)x(xi+1/2, yj)| slope: 1.5721
|(p2−ph,2)y(xi, yj+1/2)| slope: 1.5986
|(p1−ph,1)y(xi, yj+1/2)|+ |(p2−ph,2)x(xi+1/2, yj)|
slope: 1.4419

10−7

10−6

10−5

10−4

10−3

10−2

10−1

P2 element

|(u−uh)x(g2,s, yj)| slope: 2.9644
|(u−uh)y(xi, g2,s)| slope: 2.9333
|(u−uh)(li,j)| slope: 3.9763

Figure 2. Superconvergence of Lagrange triangular elements.

the standard non-least-squares RT1 element, the optimal convergence rate for |∇·εh|

is also O(h2), cf. [20]. See details in Fig. 4.
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10−4

10−3

10−2

10−1

100

10−1.9 10−1.8 10−1.7 10−1.6 10−1.5 10−1.4 10−1.3 10−1.2 10−1.1

Q1 element

|(u−uh)x(gi,j)|+ |(u−uh)y(gi,j)| slope: 1.9079
|∇·(p−ph)(gi,j)| slope: 1.8921

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

10−1.9 10−1.8 10−1.7 10−1.6 10−1.5 10−1.4 10−1.3 10−1.2 10−1.1

Q2 element

|(u−uh)x(gi,j)|+ |(u−uh)y(gi,j)| slope: 3.0052
|∇·(p−ph)(gi,j)| slope: 2.2255
|(u−uh)(li,j)| slope: 3.728

Figure 3. Superconvergence of Lagrange rectangular elements.
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10−4

10−3

10−2

10−1

10−1

RT1 element

|(u−uh)x(xi+1/2, yj+1/2)|+ |(u−uh)y(xi+1/2, yj+1/2)| slope: 1.943
|∇·(p−ph)(xi+1/2, yj+1/2)| slope: 1.9791

Figure 4. Convergence of RT1 rectangular elements.

4. Conclusions

In the paper we have considered pointwise superconvergence of the LSFEM for the

simple model problem of the Poisson equation. Convergence and superconvergence

error estimates for the one-dimensional problems in literature have been reviewed.

Numerical investigation has been conducted for the two-dimensional Lagrange and

Raviart-Thomas elements. Some, but not all, superconvergence properties of the

Galerkin method have been preserved by the LSFEM. A theoretical investigation of

natural superconvergence for the two-dimensional LSFEM is an ongoing project.
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