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Abstract. In this article we transform a large class of parabolic inverse problems into
a nonclassical parabolic equation whose coefficients consist of trace type functionals of
the solution and its derivatives subject to some initial and boundary conditions. For this
nonclassical problem, we study finite element methods and present an immediate analysis
for global superconvergence for these problems, on basis of which we obtain a posteriori
error estimators.
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1. Introduction

In the present work we study the numerical solutions of some inverse problems,

i.e., the determination of some unknown function p(t) in a parabolic equation. The

classical example is that one needs to find the temperature distribution u(x, t) as

well as the thermal coefficient a(t) which simultaneously satisfy

ut = a(t)uxx, 0 < x < 1, 0 < t < T,(1.1)

u(x, 0) = u0(x), 0 6 x 6 1,(1.2)

u(0, t) = f1(t), 0 6 t 6 T,(1.3)

u(1, t) = f2(t), 0 6 t 6 T,(1.4)

*This research was supported in part by the Shahid Beheshti University, the National
Basic Research Program of China (2007CB814906), the National Natural Science Foun-
dation of China (10471103 and 10771158), Social Science Foundation of the Ministry of
Education of China (Numerical methods for convertible bonds, 06JA630047), Tianjin
Natural Science Foundation (07JCYBJC14300).
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and the over-specification

(1.5) a(t)ux(0, t) = g(t), 0 6 t 6 T.

The well-posedness of the problem is studied in [9]. Moreover, in [8] the numerical

solution by the finite difference method is also discussed. However, we investigate the

problem (1.1)–(1.5) from a rather different point of view. If we solve equation (1.5)

for a(t) and substitute it into the equation (1.1), then the equation (1.1) becomes

ut =
g(t)

ux(0, t)
uxx

which is nonclassical since a functional of the derivative of the solution with respect

to the variable x is involved in the equation. This example motivates us to consider

the following general nonclassical problem:

ut = a(x, t, u, ux, ux(x0, t))uxx + b(x, t, u, ux, ux(x0, t)),(1.6)

u(x, 0) = u0(x), 0 6 x 6 1,(1.7)

u(0, t) = f1(t), 0 6 t 6 T,(1.8)

u(1, t) = f2(t), 0 6 t 6 T,(1.9)

where x0 ∈ [0, 1] is a fixed point.

The problem (1.6)–(1.9) represents a large class of parabolic inverse problems in

which an unknown function p(t) as well as the solution itself are to be determined.

As another example of the motivation of our study, let us consider the problem of

finding (u(x, t), a(t)) such that

(1.10) ut = uxx + a(t)ux, 0 < x < 1, 0 < t < T,

subject to the initial-boundary conditions (1.2)–(1.4) and an additional condition

∫ 1

0

u(x, t) dx = g(t), 0 6 t 6 T.

If one differentiates with respect to the variable t in the above equation and uses the

resulting equation, then one obtains

a(t) =
g′(t) − [ux(1, t) − ux(0, t)]

f2(t) − f1(t)
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provided that f1(t) 6= f2(t). Consequently, the above inverse problem is of the form

of our problem (1.6)–(1.9) with the specific equation

ut = uxx +
g′(t) − [ux(1, t) − ux(0, t)]

f2(t) − f1(t)
ux.

When an unknown function a(t) appears as the coefficient of a lower order term in a

parabolic equation, it is not difficult to see that one is able to transform the problem

into our nonclassical form under reasonable conditions. The reader can find many

more such examples in [5] and [2].

Recently, the study of parabolic inverse problems has received much attention. For

example, finite element methods and finite difference methods have been investigated

in [10], [11], and [19], respectively. Here and throughout this paper “parabolic inverse

problem” means that an unknown coefficient that is assumed to be a function of

only the time variable and the solution of a parabolic equation subject to suitable

initial-boundary conditions is to be determined. For the existence and uniqueness of

solutions of such problems, the reader can refer to [1], [7], [15], [4], [16], [17], [8], [9],

[3], [18], [14] etc.

However, the theory of numerical solution of these problems is far from satisfac-

tory. For the nonclassical problem (1.6)–(1.9), the paper [5] established the global

solvability as well as the continuous dependence of the solution upon the data. In

the present paper we continue the work of [5], [6] and investigate the numerical

calculation for the solution of our problem. We will introduce a new function and

transform the problem into a variational form. The classical Galerkin procedure is

then applied to our problem, and the global superconvergence of finite element meth-

ods is derived in this article. In addition, as a by-product of the superconvergence,

a posteriori error estimates are obtained.

2. Superclose estimates

For the sake of simplicity, we assume that f1(t) = f2(t) = 0 and x0 = 0 in

problem (1.6)–(1.9). We shall use the following notation throughout the paper.

Set I = (0, 1). For u, v ∈ L2(I) we define

〈u, v〉 =

∫ 1

0

u(x)v(x) dx,

‖u‖2
0 = 〈u, u〉 =

∫ 1

0

u2(x) dx,

H̃1
0 (I) =

{

u ∈ H1(I),

∫ 1

0

u(x) dx = 0

}

,
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and

|u|1 = ‖u‖H1

0
(I) = ‖ux‖0.

Evidently, H̃1
0 (I) is a Banach space with the H1

0 (I)-norm. To transform the prob-

lem (1.6)–(1.9) into a variational form, we introduce a new function

v(x, t) = ux(x, t), (x, t) ∈ QT ,

where u(x, t) is the solution of problem (1.6)–(1.9) and QT = I × [0, T ]. Then

v(x, t) ∈ H̃1
0 (I) and

u(x, t) =

∫ x

0

v(y, t) dy, (x, t) ∈ QT .

Furthermore, using (1.6) we see that v(x, t) satisfies

(2.1)

(
∫ x

0

v(y, t) dy

)

t

= avx + b in QT ,

and

(2.2) ut(0, t) = ut(1, t) = 0, 0 6 t 6 T.

Let w ∈ H̃1
0 (I) be arbitrary. We multiply the equation (2.1) by wx(x) and integrate

it over (0, 1) with respect to x. Integrating by parts the term on the left-hand side

of the equation (2.1) and using the boundary condition (2.2), we obtain

〈vt, w〉 + 〈avx + b, wx〉 = 0, t ∈ (0, T ],(2.3)

〈v, w〉 = 〈u′

0, w〉, t = 0,(2.4)

where

a = a

(

x, t,

∫ x

0

v(y, t) dy, v(x, t), v(0, t)

)

, (x, t) ∈ QT ,(2.5)

b = b

(

x, t,

∫ x

0

v(y, t) dy, v(x, t), v(0, t)

)

, (x, t) ∈ QT .(2.6)

It is easy to see that if v(x, t) is a variational solution of (2.3)–(2.6) and sufficiently

smooth, then u(x, t) =
∫ x

0
v(y, t) dy is a solution of the problem (1.6)–(1.9). Hence

if one can obtain an approximate solution for the variational problem (2.3)–(2.6),

one also has an approximate solution for the original problem (1.6)–(1.9). There-

fore, we shall concentrate on the approximation of the solution of the variational

problem (2.3)–(2.6) in the rest of this paper.
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For convenience, the following conditions are assumed in the sequel:

(H1) The functions a(x, t, u, p, q) and b(x, t, u, p, q) are twice differentiable with re-

spect to all their arguments.

(H2) (i) a(x, t, u, p, q) > a0 > 0;

(ii) |∇u,p,qa(. . .)| + |∇u,p,qb(. . .)| 6 A0 for (x, t, u, p, q) ∈ QT × R
3, where

∇u,p,qa =
(

∂a/∂u, ∂a/∂p, ∂a/∂q
)

.

Next, we will approximate the problem (2.3)–(2.4) by the finite element method.

To this purpose, we let Th : 0 6 x0 < x1 < . . . < xN 6 1 be a division of the interval

[0, 1], and ei := [xi, xi+1] (i = 0, 1, . . . , N − 1) represents the (i + 1)st element.

Furthermore, let Vh ⊂ H̃1
0 (I) consist of piecewise linear polynomials with respect

to the partition Th. Thus, the semi-discrete finite element scheme of (2.3)–(2.4) is

defined as follows: Find U(x, t) ∈ Vh such that

〈Ut, W 〉 + 〈AUx + B, Wx〉 = 0, t ∈ (0, T ], W ∈ Vh,(2.7)

U(x, 0) = ihu′

0(x),(2.8)

where ih is the piecewise linear interpolation operator, and

A = a

(

x, t,

∫ x

0

U(y, t) dy, U(x, t), U(0, t)

)

, (x, t) ∈ QT ,(2.9)

B = b

(

x, t,

∫ x

0

U(y, t) dy, U(x, t), U(0, t)

)

, (x, t) ∈ QT .(2.10)

From (2.3) and (2.7) we can derive the following error equation:

(2.11) 〈vt − Ut, W 〉 + 〈avx − AUx + b − B, Wx〉 = 0, W ∈ Vh.

First of all, from [12] we recall the following lemma.

Lemma 2.1. For any W ∈ Vh we have

|〈A(v − ihv)x, Wx〉| 6 Ch2‖v‖2|W |1,

where A is given by (2.9).
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Theorem 2.2. Under the conditions (H1) and (H2) we have the supercloseness

estimate

‖U − ihv‖0 + ‖U − ihv‖L2(0,T ;H1(I)) 6 Ch2.

P r o o f. Let

θ(x, t) = U(x, t) − ihv(x, t).

Then from (2.11) we find for any W ∈ Vh that

〈θt, W 〉 + 〈Aθx + B, Wx〉

= 〈(a − A)vx + b, Wx〉 + 〈vt − ihvt, W 〉 + 〈A(v − ihv)x, Wx〉

or

〈θt, W 〉 + 〈Aθx, Wx〉(2.12)

= 〈(a − A)vx + b − B, Wx〉 + 〈vt − ihvt, W 〉 + 〈A(v − ihv)x, Wx〉

:= I + II, W ∈ Vh.

From Lemma 2.1 we obtain

|II| = |〈vt − ihvt, W 〉 + 〈A(v − ihv)x, Wx〉|(2.13)

6 Ch2(‖vt‖2 + ‖v‖2)|W |1.

Since

(a − A)vx + b − B

=

[

a

(

x, t,

∫ t

0

v(y, t) dy, v(x, t), v(0, t)

)

− a

(

x, t,

∫ t

0

U(y, t) dy, U(x, t), U(0, t)

)]

vx

+ b

(

x, t,

∫ t

0

v(y, t) dy, v(x, t), v(0, t)

)

− b

(

x, t,

∫ t

0

U(y, t) dy, U(x, t), U(0, t)

)

= b1Z + c1Z(0, t) + d1

∫ x

0

Z(y, t) dy,
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where

b1 =

[
∫ 1

0

ap(x, t, α(τ), β(τ), γ(τ)) dτ

]

vx +

∫ 1

0

bp(x, t, α(τ), β(τ), γ(τ)) dτ,

c1 =

[
∫ 1

0

aq(x, t, α(τ), β(τ), γ(τ)) dτ

]

vx +

∫ 1

0

bq(x, t, α(τ), β(τ), γ(τ)) dτ,

d1 =

[
∫ 1

0

au(x, t, α(τ), β(τ), γ(τ)) dτ

]

vx +

∫ 1

0

bu(x, t, α(τ), β(τ), γ(τ)) dτ,

α(τ) = τ

(
∫ τ

0

U(y, t) dy

)

+ (1 − τ)

(
∫ τ

0

v(y, t) dy

)

,

β(τ) = τU + (1 − τ)v,

γ(τ) = τU(0, t) + (1 − τ)v(0, t),

Z(x, t) = v(x, t) − U(x, t),

we have

|I| = |〈(a − A)vx + b − B, Wx〉|

=

∣

∣

∣

∣

〈

b1Z + c1Z(0, t) + d1

∫ x

0

Z(y, t) dy, Wx

〉∣

∣

∣

∣

6

∣

∣

∣

∣

〈

b1(v − ihv) + c1(v − ihv)(0, t) + d1

∫ x

0

(v − ihv)(y, t) dy, Wx

〉∣

∣

∣

∣

+

∣

∣

∣

∣

〈

b1θ + c1θ(0, t) + d1

∫ x

0

θ(y, t) dy, Wx

〉
∣

∣

∣

∣

,

which, together with Lemma 2.1, leads to

|I| 6 Ch2‖v‖2|W |1 +

∣

∣

∣

∣

〈

b1θ + c1θ(0, t) + d1

∫ x

0

θ(y, t) dy, Wx

〉∣

∣

∣

∣

(2.14)

6 Ch2‖v‖2|W |1 + C(‖θ‖0 + |θ(0, t)|)|W |1.

Thus, from (2.12), (2.13) and (2.14) we have

(2.15) 〈θt, W 〉 + 〈Aθx, Wx〉 6 Ch2(‖vt‖2 + ‖v‖2)|W |1 + C(‖θ‖0 + |θ(0, t)|)|W |1.

It follows from taking W = θ in (2.15) and applying the inequality (see Cannon and

Yin [6])

|θ(0, t)| 6 ε|θ|1 + C‖θ‖0

and the ε-inequality that

1

2

d

dt
‖θ‖2

0 + 〈Aθx, θx〉 6 Ch4(‖vt‖2 + ‖v‖2)
2 + ε|θ|21 + C‖θ‖2

0,
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or by condition (H2),

d

dt
‖θ‖2

0 + |θ|21 6 Ch4(‖vt‖2 + ‖v‖2)
2 + C‖θ‖2

0.

Since ‖θ(0)‖0 = 0, we obtain by integrating the above inequality from 0 to t that

‖θ‖2
0 +

∫ t

0

|θ|21 dτ 6 Ch4

∫ t

0

(‖vt‖
2
2 + ‖v‖2

2) dτ + C

∫ t

0

‖θ‖2
0 dτ,

which, together with the Gronwall lemma, implies

‖θ‖2
0 +

∫ t

0

|θ|21 dτ 6 Ch4

∫ t

0

(‖vt‖
2
2 + ‖v‖2

2) dτ.

This completes the proof of the theorem. �

R em a r k 2.3. From Theorem 2.2 we know that ‖U − ihv‖L2(0,T ;H1(I)) converges

at a rate of O(h2), which is referred to as the finite element solution being superclose

to the nodal interpolant.

3. Global superconvergence estimates

By means of the interpolation postprocessing technique [12], on the basis of The-

orem 2.2 we can obtain the following global superconvergence estimate.

Theorem 3.1. Assume that v ∈ H3(I). Then we have under the conditions of

Theorem 2.2 that

‖I2
2hU − v‖L2(0,T ;H1(I)) 6 Ch2,

where I2
2h is a piecewise polynomial interpolation operator of degree at most 2 asso-

ciated with the mesh T2h of mesh size 2h, from which Th is assumed to be gained

by subdividing each element of T2h into two equal elements so that the number of

elements M for Th is an even number.

As a by-product of Theorem 3.1 we can immediately obtain the following re-

sult [12].
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Theorem 3.2. Under the assumptions of Theorem 3.1 we have

‖v − U‖L2(0,T ;H1(I)) = ‖U − I2
2hU‖L2(0,T ;H1(I)) + O(h2).

In addition, if there exist positive constants C0 and ε ∈ (0, 1) such that

‖v − U‖L2(0,T ;H1(I)) > C0h
2−ε,

then

lim
h→0

‖v − U‖L2(0,T ;H1(I))

‖I2
2hU − U‖L2(0,T ;H1(I))

= 1.
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