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Abstract. The paper is devoted to the problem of verification of accuracy of approximate
solutions obtained in computer simulations. This problem is strongly related to a posteriori
error estimates, giving computable bounds for computational errors and detecting zones in
the solution domain where such errors are too large and certain mesh refinements should
be performed. A mathematical model embracing nonlinear elliptic variational problems
is considered in this work. Based on functional type estimates developed on an abstract
level, we present a general technology for constructing computable sharp upper bounds for
the global error for various particular classes of elliptic problems. Here the global error is
understood as a suitable energy type difference between the true and computed solutions.
The estimates obtained are completely independent of the numerical technique used to
obtain approximate solutions, and are sharp in the sense that they can be, in principle,
made as close to the true error as resources of the used computer allow. The latter can
be achieved by suitably tuning the auxiliary parameter functions, involved in the proposed
upper error bounds, in the course of the calculations.

Keywords: a posteriori error estimation, error control in energy norm, error estimates of
functional type, elliptic equation of second order, elliptic equation of fourth order, second
order elasticity system, mixed boundary conditions, gradient averaging
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1. Introduction

Many physical phenomena can be described by means of mathematical models

presenting linear and nonlinear boundary value problems of elliptic type [10], [13],

*The first author was supported by the Hungarian Research Office NKTH under Öveges
Program, by the Hungarian Research Grant OTKA No. K 67819, and by Bolyai Scholar-
ship. The second author was supported by the Academy Research Fellowship No. 208628
and project No. 211512 from the Academy of Finland.
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[30], [38], [47]. Various numerical techniques (such as the finite difference method,

the finite element method, the finite volume method, etc.) are well developed for

finding approximate solutions for such problems, see, e.g., [10], [30] and references

therein.

In order to be practically meaningful, computer simulations always require an

accuracy verification of computed approximations. Such a verification is the main

purpose of a posteriori error estimation methods. Several approaches have been

suggested for deriving various a posteriori estimates for elliptic problems, involving

errors measured in global (energy) norms (see [1], [4], [5], [17], [20], [41], [48], [49],

[50], [53]) or various local quantities [6], [12], [19], [27], [42], [47], see also references

in the above mentioned works.

However, most of the estimates proposed there strongly use the fact that the

computed solutions are true finite element (FE) approximations which, in fact, rarely

happens in real computations, e.g., due to quadrature rules, forcibly stopped iterative

processes, various round-off errors, or even bugs in computer codes.

A different approach, based on functional analysis background, was first developed

in [43], see monograph [40] and also [44], [45], and the references therein. Hereby

the estimation is developed independently of the numerical method used to obtain

the approximation. One can thus obtain sharp estimates for linear problems and

for certain nonlinear problems; however, for nonlinear problems in general, these

estimates may fail to ensure the best upper bound [40, p. 236].

In this paper, based on a Banach space framework, we present another general

functional type technology for obtaining sharp computable guaranteed error bounds

needed for reliable control of the overall accuracy of computed approximations. Such

bounds are again valid for any conforming approximation independently of the nu-

merical method used to obtain them. The bounds obtained can be made arbitrarily

close to the true error by tuning the auxiliary parameters involved. In real calcula-

tions this closeness only depends on resources of the concrete computer. Based on

the general theory, our error estimates are given for various classes of elliptic prob-

lems. We also discuss some issues of the practical realization of the proposed error

estimation procedures.

We note that the estimates proposed in this work can be considered a certain

generalization of results presented for the first time in [43] and in a unified manner

in [40], mentioned above. However, our way of constructing the error estimates is

somewhat different and leads to sharp bounds for nonlinear problems. In partic-

ular, it does not require tools of the duality theory and is based purely on direct

calculations. Estimates based on a similar direct approach are also obtained for

linear convection-reaction-diffusion problems in [29], [31] and for Maxwell equations

in [18].
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Another advantage of the proposed approach is that it only uses a few (at most

five) global constants, which do not depend on the computational process and must

be computed only once in advance (or in parallel). These constants come from

embedding theorems and the nonlinear coefficients of the equation. Many other

existing estimation techniques (e.g., the residual-type ones) normally involve much

more unknown constants (usually related to patches of computational meshes used).

Such constants are very hard to compute (or even sufficiently accurately estimate

from above) and their evaluation normally leads to a very big overestimation of the

error even in simple cases (cf. [9]). Moreover, those constants have to be always

recomputed when we perform adaptive computations and change the computational

mesh. To the contrary, our global constants do remain the same under any change

of meshes during the whole computational process. Moreover, it suffices to estimate

our constants only roughly from above (which can actually rely on a known explicit

value or can be cheaply calculated), since the terms which they multiply are normally

decreasing towards zero during the tuning process of the error estimate.

Chapters 2–3 are devoted to the general estimation theory in a Banach space. We

consider operator equations of the form

(1.1) F (u) + l = 0

in a Banach space V with a given nonlinear operator F : V → V ∗ and a given

bounded linear functional l ∈ V ∗. We will assume certain monotonicity properties

of F that both ensure well-posedness for (1.1) and allow a suitable measuring of the

error. We give a proper background in Chapter 2, and present our sharp upper error

bounds in Chapter 3. Applications to various classes of elliptic problems including

second order problems with Dirichlet and mixed boundary conditions, systems, and

fourth order equations are developed in Chapter 4.

2. Theoretical background

2.1. Some elementary definitions and properties

For the reader’s convenience we define some basic notions and notation that we

will use, together with some well-known properties. See, e.g., [13], [52] for related

topics. We will use the following notation. Let V be a given Banach space with

a norm ‖ · ‖V . Then its dual space V ∗ consists of all bounded linear functionals

l : V → R on V . If l ∈ V ∗ and u ∈ V , then the value of l at u is denoted by 〈l, u〉,

where 〈·, ·〉 is the duality pairing.

Definition 2.1. The operator F : V → V ∗ is called a monotone operator if

〈F (u) − F (v), u − v〉 > 0 (u, v ∈ V ),

299



a strictly monotone operator if

〈F (u) − F (v), u − v〉 > 0 (u, v ∈ V, u 6= v),

and a uniformly monotone operator if there exists a constant m > 0 such that

〈F (u) − F (v), u − v〉 > m‖u − v‖2
V (u, v ∈ V ).

Definition 2.2. The nonlinear operator F : V → V ∗ has a bihemicontinuous

Gâteaux derivative if

(i) F is Gâteaux differentiable;

(ii) F ′ is bihemicontinuous, i.e., for any u, k, w, h ∈ V the mapping (s, t) 7→ F ′(u +

sk + tw)h is continuous from R
2 to V ∗.

In addition, this Gâteaux derivative is called symmetric if

(iii) for any u ∈ V the operator F ′(u) is symmetric, i.e.,

〈F ′(u)h, v〉 = 〈F ′(u)v, h〉 (u, h, v ∈ V ).

Accordingly, a nonlinear functional J : V → R has a bihemicontinuous symmetric

second Gâteaux derivative if J is twice Gâteaux differentiable and J ′′ satisfies (ii)–

(iii) above.

Definition 2.3. The operator F : V → V ∗ is called a potential operator if there

exists a Gâteaux differentiable functional φ : V → R such that φ′(u) = F (u) (u ∈ V ).

(Such a φ is called a potential of F .)

The following characterization holds, see, e.g., [52]:

Proposition 2.1. Let an operator F : V → V ∗ have a bihemicontinuous Gâteaux

derivative. Then F is a potential operator if and only if F ′(u) is symmetric for any

u ∈ V .

Then we have a related basic well-posedness result:

Theorem 2.1. Let an operator F : V → V ∗ have a bihemicontinuous symmetric

Gâteaux derivative, and let there exist a constant m > 0 such that

〈F ′(u)v, v〉 > m‖v‖2
V (u, v ∈ V ).

Then for any l ∈ V ∗ the operator equation (1.1) has a unique solution u∗ ∈ V .

For a proof see, e.g., [13], [52]. We note that the solution u∗ is the unique minimizer

of the functional J(u) := φ(u) + 〈l, u〉, where φ comes from Definition 2.3.
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2.2. Error functionals for monotone operators

Let us assume that the operator equation (1.1) has a unique solution u∗ ∈ V .

(Sufficient conditions will be given later when our main result is presented in Sec-

tion 3.)

In this paper we consider an approximate solution u ∈ V of equation (1.1), i.e. u ≈

u∗ where u∗ is the exact solution. Our goal is to estimate the error arising from

this approximation. For this purpose, we will use the following (energy type) error

functional for equation (1.1):

(2.1) E(u) := 〈F (u) + l, u − u∗〉 (u ∈ V )

or in other form

(2.2) E(u) = 〈F (u) − F (u∗), u − u∗〉 (u ∈ V ).

The following facts obviously hold. If F is monotone then E(u) > 0 = E(u∗)

(u ∈ V ). If F is also strictly monotone then E(u) = 0 if and only if u = u∗.

If F is also uniformly monotone then

(2.3) E(u) > m‖u − u∗‖2
V (u ∈ V ).

We note that if F is a potential operator and φ is a potential of F , then an-

other possible error functional has the form Ê(u) := J(u) − J(u∗), where J(u) :=

φ(u)+〈l, u〉. If the above monotonicity properties are assumed, then the correspond-

ing statements on E also hold for Ê, which can be verified via the corresponding

convexity of φ. However, in this paper it will be more convenient to use the er-

ror functional E. We also note that E and Ê are just the same (up to a constant

multiplier 2) for linear problems.

2.3. Error estimates in normed spaces via convex functionals

A thorough study of error estimation for nonlinear variational problems is given

in the book [40], which our paper also builds on. Here we briefly outline a setting

from this book and some results.

In addition to the Banach space V , let us introduce another Banach space Y ,

assumed to be reflexive. We also introduce a linear operator Λ: V → Y , for which

there exist constants c2 > c1 > 0 such that

(2.4) c1‖u‖V 6 ‖Λu‖Y 6 c2‖u‖V (u ∈ V ).

Then Λ has an adjoint operator Λ∗ : Y ∗ → V ∗ satisfying

(2.5) 〈y∗, Λu〉 = 〈Λ∗y∗, u〉 (y∗ ∈ Y ∗, u ∈ V ).
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In [40, Chap. 7], functionals J : V → R are considered in the form

J(u) := G(Λu) + f(u) (u ∈ V ),

where G : Y → R and f : V → R are given uniformly convex functionals, and error

estimates are given with expressions based on duality theory.

More explicit estimates are found for the special case

(2.6) J(u) := G(Λu) + 〈l, u〉 (u ∈ V ),

in which l ∈ V ∗, further, Y is assumed to be a Hilbert space and G has the form

(2.7) G(y) =
1

2
〈Ay, y〉 + Φ(y) (y ∈ Y ),

where A : Y → Y is an invertible bounded self-adjoint linear operator and Φ: Y → R

is a convex continuous functional. Denoting by u∗ the minimizer of J , it is proved

in [40, Sec. 7.7] that

(2.8)
∣∣∣
∣∣∣
∣∣∣1
2
(Λ(u∗ − u))

∣∣∣
∣∣∣
∣∣∣
2

6 (1 + β)DG(Λu, y∗) +
(
1 +

1

β

)
|Λ∗y∗ + l|2,

where

|||y||| := 〈Ay, y〉1/2

is the A-norm, β > 0 is an arbitrary constant,

(2.9) |Λ∗y∗ + l| := sup
w∈V
w 6=0

〈Λ∗y∗ + l, w〉

|||Λw|||
,

and

DG(Λu, y∗) = G(Λu) + sup
y∈Y

(〈y∗, y〉 − G(y)) − 〈y∗, Λu〉.

R em a r k 2.1. It is pointed out in [40, Sec. 7.7] that the estimate (2.8) is not

sharp, and finding the best upper bound can only be expected from a further analysis

of the particular problem considered.

An important special case of the above is formed by linear equations, i.e. when

Φ ≡ 0 and G is a quadratic functional to be minimized. Then, by [40, Chap. 6], an

estimate similar to (2.8) holds:

(2.10)
1

2
|||Λ(u∗ − u)|||2 6 (1 + β)D(Λu, y∗) +

(
1 +

1

β

)1

2
|Λ∗y∗ + l|2,
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where

D(Λu, y∗) =
1

2
〈A(Λu) − y∗, Λu − A−1y∗〉.

Accordingly,

(2.11) |||Λ(u∗ − u)|||2 6 (1 + β)〈A(Λu) − y∗, Λu − A−1y∗〉 +
(
1 +

1

β

)
|Λ∗y∗ + l|2.

Note that here the choice y∗ = AΛu∗ is known to be optimal, since it provides

equality if β → ∞, using that here Λ∗y∗ + l = 0. We also note that in this special

case, for F (u) := J ′(u), (2.2) coincides with |||Λ(u∗ − u)|||2.

Returning to the nonlinear case (2.6), the minimizer u∗ of J is the solution of the

equation

(2.12) 〈J ′(u), v〉 = 〈G′(Λu), Λv〉 + 〈l, v〉 = 0 (v ∈ V )

or N(u) = 0 where N = J ′. It is important to note here that for a twice Gâteaux

differentiable Φ, formula (2.7) implies

(2.13) 〈G′′(y)p, p〉 = 〈Ap, p〉 + 〈Φ′′(y)p, p〉 > 〈Ap, p〉 = |||p|||2 (y, p ∈ Y ).

The twice Gâteaux differentiability of J (i.e. the Gâteaux differentiability of N)

is not a strong requirement and is satisfied in many practical cases; further, the

corresponding condition (2.13) (up to a constant multiplier) is rather close to uniform

convexity. Therefore, the assumption

〈G′′(y)p, p〉 > m‖p‖2
Y (y, p ∈ Y )

(with m > 0) and the corresponding estimate (2.8) are a proper starting point for

our search for sharp estimates. In fact, our goal is to obtain such an estimate as an

extension of the more explicit formula (2.11).

2.4. Integral mean operators

Let Y be a Banach space and A : Y → Y ∗ an operator having a bihemicontinuous

symmetric Gâteaux derivative.

Definition 2.4. For any vectors y, z ∈ Y we define A′
[y,z] ∈ B(Y, Y ∗), that is, a

bounded linear operator A′
[y,z] : Y → Y ∗, by the formula

(2.14) A′
[y,z] :=

∫ 1

0

A′(y + t(z − y)) dt.
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This is an integral of a family of operators, understood via the corresponding

bilinear forms:

(2.15) 〈A′
[y,z]p, q〉 =

∫ 1

0

〈A′(y + t(z − y))p, q〉dt (p, q ∈ Y ).

The unique existence of A′
[y,z] (i.e., that this definition is correct) is ensured by the

fact that

(2.16)

∫ 1

0

〈A′(y + t(z − y))p, q〉dt 6
(

max
t∈[0,1]

‖A′(y + t(z − y))‖
)
‖p‖Y ‖q‖Y

(where the maximum exists by the continuity of the mapping t 7→ A′(y+t(z−y)) and

of the operator norm), which means that the right-hand side of (2.15) is a bounded

bilinear form in p and q. Then we obtain by the definition of Y ∗ that this bilinear

form can be represented as the bilinear form of a bounded linear operator from Y

to Y ∗.

The following properties are direct consequences of the above definition:

Proposition 2.2. For any y, z ∈ Y

(i) the operator A′
[y,z] is symmetric , i.e.,

(2.17) 〈A′
[y,z]p, q〉 = 〈A′

[y,z]q, p〉 (p, q ∈ Y );

(ii) A′
[y,z] = A′

[z,y];

(iii) A(z) − A(y) = A′
[y,z](z − y).

3. A sharp global error estimate in normed spaces

In what follows, our goal is to find upper bounds for E(u). We follow the setting

of [28], [40]. Namely, we let u ∈ V be arbitrary and look for a bound involving some

other vector parameters.

3.1. Basic properties

We study the operator equation (1.1) in the Banach space V in the framework

of subsection 2.3, in particular, for simplicity, property (2.4) can be replaced by the

simplified version (3.2) (which is achieved just by redefining the norm of V by the

equivalent norm ‖Λu‖Y ).

Following subsection 2.3, let J : V → R be a functional of the form

(3.1) J(u) := G(Λu) + 〈l, u〉 (u ∈ V )

under the following conditions:
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A s s um p t i o n s 3.1.

(i) Y is another Banach space and Λ: V → Y is a linear operator for which

(3.2) ‖Λu‖Y = ‖u‖V (u ∈ V ),

(ii) G : Y → R is a functional having a bihemicontinuous symmetric second Gâteaux

derivative (according to Definition 2.2),

(iii) there exists a constant m > 0 such that

(3.3) 〈G′′(y)p, p〉 > m‖p‖2
Y (y, p ∈ Y ),

(iv) the operator F : V → V ∗ has the form

(3.4) 〈F (u), v〉 = 〈G′(Λu), Λv〉 (u, v ∈ V ).

Proposition 3.1. Under Assumptions 3.1, for any l ∈ V ∗ the operator equa-

tion (1.1) has a unique solution u∗ ∈ V .

P r o o f. The assumptions yield that F has a bihemicontinuous symmetric Gâ-

teaux derivative that satisfies

(3.5) 〈F ′(u)v, v〉 = 〈G′′(Λu)Λv, Λv〉 > m‖Λv‖2
Y = m‖v‖2

V (u, v ∈ V ).

Then Theorem 2.1 implies well-posedness for (1.1). �

We note that the solution u∗ of (1.1) is the unique minimizer of J . However,

from now on, our calculations will involve the operator G′ in (3.4) rather than the

functional G. Hence, we study below the solution of equation (1.1) directly, instead

of using the corresponding minimization problem.

3.2. Operator formulation and a preliminary estimate

We will replace the minimization problem for (3.1) by the corresponding operator

equation, which is a more detailed form of (1.1) for this case. For this purpose, we

introduce the operator

(3.6) A := G′.

Then Assumptions 3.1 are equivalent to
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A s s um p t i o n s 3.2.

(i) Y is another Banach space and Λ: V → Y is a linear operator for which

(3.7) ‖Λu‖Y = ‖u‖V (u ∈ V );

(ii) the operator A : Y → Y ∗ has a bihemicontinuous symmetric Gâteaux derivative

(according to Definition 2.2);

(iii) there exists a constant m > 0 such that

(3.8) 〈A′(y)p, p〉 > m‖p‖2
Y (y, p ∈ Y );

(iv) the operator F : V → V ∗ has the form

(3.9) 〈F (u), v〉 = 〈A(Λu), Λv〉 (u, v ∈ V ).

Assumptions (ii)–(iii) imply in particular that A is bijective, i.e. A−1 : Y ∗ → Y

exists. By (3.9), equation (1.1) can be written as

(3.10) 〈A(Λu), Λv〉 + 〈l, v〉 = 0 (v ∈ V )

which has a unique solution u∗ ∈ V for any l ∈ V ∗ by Proposition 3.1.

We will need some further related properties. First, Proposition 2.2 (i) and (3.8)

imply:

Proposition 3.2. Under Assumptions 3.2, for any y, z ∈ Y the mapping p, q 7→

〈A′
[y,z]p, q〉 is an inner product on Y .

Proposition 3.3. Under Assumptions 3.2, the following formulas hold:

(i) E(u) = 〈A′
[Λu∗,Λu]Λ(u − u∗), Λ(u − u∗)〉 (u ∈ V ),

(ii) E(u) > m‖u − u∗‖2
V = m‖Λ(u − u∗)‖2

Y (u ∈ V ),

(iii) ‖A(z) − A(y)‖Y ∗ > m‖z − y‖Y (y, z ∈ Y ).

P r o o f. (i) Using (3.9) and Proposition 2.2 (iii) for z = Λu and y = Λu∗,

E(u) = 〈F (u) − F (u∗), u − u∗〉 = 〈A(Λu) − A(Λu∗), Λ(u − u∗)〉(3.11)

= 〈A′
[Λu∗,Λu]Λ(u − u∗), Λ(u − u∗)〉.

(ii) Estimate (3.5) implies that F is uniformly monotone, hence (2.3) and (3.7)

yield the required statement.

(iii) Estimate (3.8) implies

(3.12) 〈A(z) − A(y), z − y〉 > m‖z − y‖2
Y (y, z ∈ Y ),

whence we obtain the required statement by using the Cauchy-Schwarz inequality.

�
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For the V ∗-norm of a linear functional l ∈ V ∗, we introduce the notation of [40]:

(3.13) |l| := ‖l‖V ∗ (l ∈ V ∗).

Here (3.7) yields

(3.14) |l| = sup
w∈V

〈l, w〉

‖w‖V
= sup

w∈V

〈l, w〉

‖Λw‖Y
,

i.e. we have an analogue of (2.9).

Now we let y∗ ∈ Y ∗ be an arbitrary vector. We give a preliminary estimate, which

is a starting point for our study.

Lemma 3.1. Let Assumptions 3.2 hold and let u∗ ∈ V be the solution of (1.1).

Let u ∈ V and y∗ ∈ Y ∗ be arbitrary, let z∗ := A−1(y∗). Then

(3.15) E(u) 6 |Λ∗y∗ + l|m−1/2E(u)1/2 + 〈A′
[z∗,Λu](Λu − z∗), Λ(u − u∗)〉.

P r o o f. We have

(3.16) E(u) = 〈F (u) + l, u − u∗〉 = 〈Λ∗y∗ + l, u − u∗〉 + 〈F (u) − Λ∗y∗, u − u∗〉.

For the first term, we use (3.13) and Proposition 3.3 (ii) to obtain

(3.17) |〈Λ∗y∗ + l, u − u∗〉| 6 |Λ∗y∗ + l| ‖u− u∗‖V 6 |Λ∗y∗ + l|m−1/2E(u)1/2.

The second term equals

〈F (u) − Λ∗y∗, u − u∗〉(3.18)

= 〈A(Λu) − y∗, Λ(u − u∗)〉 = 〈A(Λu) − A(z∗), Λ(u − u∗)〉

= 〈A′
[z∗,Λu](Λu − z∗), Λ(u − u∗)〉,

where (2.5), (3.9), and Proposition 2.2 (iii) have been used. �

The right-hand side of (3.15) becomes computable if the factor Λ(u− u∗) is elim-

inated.

3.3. The sharp error estimate

A sharp estimation requires a further assumption on the Lipschitz continuity of

the derivative of the nonlinear operator. This will be our main result. We amend

Assumptions 3.2 by additional conditions:
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A s s um p t i o n s 3.3.

(i) There exists a subspaceW ⊂ Y with a new norm ‖·‖W such that A
′ is Lipschitz

continuous as an operator from Y to B(W, Y ∗).

(ii) There exists a constant M > 0 such that

(3.19) 〈A′(y)p, p〉 6 M‖p‖2
Y (y, p ∈ Y ).

Assumption 3.3 (i) means that there exists a constant L > 0 such that

(3.20) ‖A′(z) − A′(y)‖B(W,Y ∗) 6 L‖z − y‖Y (y, z ∈ Y ),

or in more detailed form,

(3.21) |〈(A′(z) − A′(y))w, p〉| 6 L‖z − y‖Y ‖w‖W ‖p‖Y (y, z, p ∈ Y, w ∈ W ).

Lemma 3.2. Let Assumption (3.3) (i) hold. Then the operators defined in (2.14)

satisfy for all y, v, z ∈ Y

(3.22) ‖A′
[z,v] − A′

[y,v]‖B(W,Y ∗) 6
L

2
‖z − y‖Y .

P r o o f. We have

‖A′
[z,v] − A′

[y,v]‖B(W,Y ∗) 6

∫ 1

0

‖A′(z + t(v − z)) − A′(y + t(v − y))‖B(W,Y ∗) dt

6 L

∫ 1

0

(1 − t)‖z − y‖Y dt =
L

2
‖z − y‖Y .

�

In more detailed form (as in (3.21)), inequality (3.22) means that

(3.23) |〈(A′
[z,v] − A′

[y,v])w, p〉| 6
L

2
‖z − y‖Y ‖w‖W ‖p‖Y (y, v, z, p ∈ Y, w ∈ W ).

R em a r k 3.1. For our error estimate in a normed space, there is no restriction

on the relation of the norms ‖ · ‖W and ‖ · ‖Y . In practice the norm ‖ · ‖W will be

stronger, i.e., the range of the values ‖w‖W /‖w‖Y (where w ∈ W ) will run from a

positive constant to +∞, see Section 4.

Assumption 3.3 (ii) implies that the upper analogue of Proposition 3.3 (iii) holds:

(3.24) ‖A(z) − A(y)‖Y ∗ 6 M‖z − y‖Y (y, z ∈ Y ).

Further, we will need the following inequality:
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Lemma 3.3. Let Assumptions 3.2–3.3 hold and let u∗ ∈ V be the solution of (1.1).

Let y∗ ∈ Y ∗ be arbitrary and z∗ := A−1(y∗). Then for any h ∈ V

(3.25) ‖z∗ − Λu∗‖Y 6
M

m
‖z∗ − Λh‖Y +

1

m
|Λ∗y∗ + l|.

P r o o f. Let w∗ ∈ V satisfy F (w∗) = Λ∗y∗. By (3.9), w∗ is the solution of the

equation

(3.26) 〈A(Λw∗), Λv〉 = 〈Λ∗y∗, v〉 (v ∈ V ).

We have

(3.27) ‖z∗ − Λu∗‖Y 6 ‖z∗ − Λw∗‖Y + ‖Λ(w∗ − u∗)‖Y .

Here (3.26) implies

〈A(Λw∗), Λv〉 = 〈y∗, Λv〉 = 〈A(z∗), Λv〉 (v ∈ V ),

that is

(3.28) 〈A(z∗) − A(Λw∗), Λv〉 = 0 (v ∈ V ).

Using (3.12), (3.28), and (3.24), we obtain for any h ∈ V that

m‖z∗ − Λw∗‖2
Y 6 〈A(z∗) − A(Λw∗), z∗ − Λw∗〉 = 〈A(z∗) − A(Λw∗), z∗ − Λh〉

6 M‖z∗ − Λw∗‖Y ‖z∗ − Λh‖Y ,

that is,

(3.29) ‖z∗ − Λw∗‖Y 6
M

m
‖z∗ − Λh‖Y .

Further, using (3.7), (3.12), (3.26), and the fact that u∗ solves (3.10) we conclude

that

m‖w∗ − u∗‖2
V = m‖Λ(w∗ − u∗)‖2

Y 6 〈A(Λw∗) − A(Λu∗), Λw∗ − Λu∗〉

= 〈Λ∗y∗ + l, w∗ − u∗〉 6 |Λ∗y∗ + l| ‖w∗ − u∗‖V ,

hence

(3.30) ‖w∗ − u∗‖V 6
1

m
|Λ∗y∗ + l|.

Then (3.27), (3.29), and (3.30) give the desired estimate. �

Now we can prove our main result.
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Theorem 3.1. Let Assumptions 3.2–3.3 hold and let u∗ ∈ V be the solution

of (1.1). Let u ∈ V be an approximation of u∗ such that Λu ∈ W . Then for

arbitrary y∗ ∈ Y ∗ such that z∗ := A−1(y∗) ∈ W and for arbitrary h ∈ V ,

E(u) 6 EST(u; y∗, h) :=
(
m−1/2|Λ∗y∗ + l| +

L

2
m−3/2 D(u; y∗, h)(3.31)

+
(
〈A(Λu) − y∗, Λu − A−1(y∗)〉

+
L

2m
D(u; y∗, h)‖Λu − A−1(y∗)‖Y

)1/2)2

,

where

(3.32) D(u; y∗, h) := (M‖A−1(y∗) − Λh‖Y + |Λ∗y∗ + l|)‖Λu − A−1(y∗)‖W .

P r o o f. Lemma 3.1 implies

(3.33) E(u) 6 |Λ∗y∗ + l|m−1/2E(u)1/2 + 〈A′
[z∗,Λu](Λu − z∗), Λ(u − u∗)〉,

and our further goal is to accurately estimate the second term. First, we observe

that

〈A′
[z∗,Λu](Λu − z∗), Λ(u − u∗)〉(3.34)

= 〈(A′
[z∗,Λu] − A′

[Λu∗,Λu])(Λu − z∗), Λ(u − u∗)〉

+ 〈A′
[Λu∗,Λu](Λu − z∗), Λ(u − u∗)〉.

By virtue of (3.23), the first term of (3.34) satisfies

〈(A′
[z∗,Λu] − A′

[Λu∗,Λu])(Λu − z∗), Λ(u − u∗)〉(3.35)

6
L

2
‖z∗ − Λu∗‖Y ‖Λu − z∗‖W ‖Λ(u − u∗)‖Y ,

where ‖z∗ − Λu∗‖Y fulfils (3.25) and ‖Λ(u − u∗)‖Y 6 m−1/2E(u)1/2 by Proposi-

tion 3.3 (ii), hence

〈(A′
[z∗,Λu] − A′

[Λu∗,Λu])(Λu − z∗), Λ(u − u∗)〉(3.36)

6
L

2
m−3/2(M‖z∗ − Λh‖Y + |Λ∗y∗ + l|)‖Λu − z∗‖W E(u)1/2.

The second term of (3.34) can be estimated via the Cauchy-Schwarz inequality:

〈A′
[Λu∗,Λu](Λu − z∗), Λ(u − u∗)〉(3.37)

6 〈A′
[Λu∗,Λu](Λu − z∗), Λu − z∗〉1/2

× 〈A′
[Λu∗,Λu]Λ(u − u∗), Λ(u − u∗)〉1/2.
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Proposition 3.3 (i) states that the second factor of (3.37) equals E(u)1/2. For the

first factor,

〈A′
[Λu∗,Λu](Λu − z∗), Λu − z∗〉(3.38)

= 〈A′
[z∗,Λu](Λu − z∗), Λu − z∗〉

+ 〈(A′
[Λu∗,Λu] − A′

[z∗,Λu])(Λu − z∗), Λu − z∗〉.

Here Proposition 2.2 (iii) yields

〈A′
[z∗,Λu](Λu − z∗), Λu − z∗〉 = 〈A(Λu) − A(z∗), Λu − z∗〉(3.39)

= 〈A(Λu) − y∗, Λu − A−1(y∗)〉

and (3.23) and (3.25) imply

〈(A′
[Λu∗,Λu] − A′

[z∗,Λu])(Λu − z∗), Λu − z∗〉(3.40)

6
L

2
‖Λu∗ − z∗‖Y ‖Λu − z∗‖W ‖Λu − z∗‖Y

6
L

2m
(M‖z∗ − Λh‖Y + |Λ∗y∗ + l|)‖Λu − z∗‖W ‖Λu − z∗‖Y .

Summing up, (3.33), (3.34), (3.36), (3.38), (3.39), and (3.40) yield

E(u)1/2
6 m−1/2|Λ∗y∗ + l| +

L

2
m−3/2(M‖z∗ − Λh‖Y + |Λ∗y∗ + l|)‖Λu − z∗‖W

+
(
〈A(Λu) − y∗, Λu − A−1(y∗)〉

+
L

2m
(M‖z∗ − Λh‖Y + |Λ∗y∗ + l|)‖Λu− z∗‖W ‖Λu − z∗‖Y

)1/2

= m−1/2|Λ∗y∗ + l| +
L

2
m−3/2D(u; y∗, h)

+
(
〈A(Λu) − y∗, Λu − A−1(y∗)〉 +

L

2m
D(u; y∗, h)‖Λu − z∗‖Y

)1/2

.

�

The repeated application of the elementary inequality (a + b)2 6 (1 + α)a2 +

(1 + 1/α)b2 (where α > 0) yields
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Corollary 3.1. Under the assumptions and notation of Theorem 3.1, for any

constants β > 0, γ > 0 we have

E(u) 6 EST(u; y∗, h, β, γ)(3.41)

:= (1 + β)(1 + γ)m−1|Λ∗y∗ + l|2

+ (1 + β)
(
1 +

1

γ

)L2

4
m−3 D(u; y∗, h)2

+
(
1 +

1

β

)(
〈A(Λu) − y∗, Λu − A−1(y∗)〉

+
L

2m
D(u; y∗, h)‖Λu − z∗‖Y

)

where D(u; y∗, h) is defined in (3.32).

R em a r k 3.2. It may be convenient to reformulate Theorem 3.1 for z∗ = A−1(y∗)

in order to avoid the computation of A−1. Then for arbitrary z∗ ∈ W and for

arbitrary h ∈ V ,

E(u) 6 ẼST(u; z∗, h)(3.42)

:=
(
m−1/2|Λ∗A(z∗) + l| +

L

2
m−3/2D̃(u; z∗, h)

+
(
〈A(Λu) − A(z∗), Λu − z∗〉 +

L

2m
D̃(u; z∗, h)‖Λu − z∗‖Y

)1/2)2

,

where

(3.43) D̃(u; z∗, h) := (M‖z∗ − Λh‖Y + |Λ∗A(z∗) + l|)‖Λu − z∗‖W .

R em a r k 3.3. If A is a linear operator then A′ is constant, hence its Lipschitz

constant is L = 0. In this case all terms containing h vanish, and we have in (3.41)

EST(u; y∗, h, β, γ) = (1 + β)(1 + γ)m−1|Λ∗y∗ + l|2

+
(
1 +

1

β

)
〈A(Λu) − y∗, Λu − A−1y∗〉,

that is,

ÊST(u; y∗, h, β) := EST(u; y∗, h, β, 0)(3.44)

= (1 + β)m−1|Λ∗y∗ + l|2

+
(
1 +

1

β

)
〈A(Λu) − y∗, Λu − A−1y∗〉,

which is nothing but (2.11). (The factor m−1 is not present in (2.11) since it is

included in the norm ||| · |||.) This shows that our estimate is a direct extension

of (2.11) for nonlinear problems.
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Now we can turn to the problem of sharpness.

Proposition 3.4. Estimates (3.31) and (3.41) are sharp in the following sense:

denoting A(W ) := {A(v) : v ∈ W}, we have

min
y∗∈A(W ),

h∈V

EST(u; y∗, h) = E(u), inf
y∗∈A(W ),

h∈V,
β,γ>0

EST(u; y∗, h, β, γ) = E(u)

provided Λu∗ ∈ W .

P r o o f. Let us choose

(3.45) y∗ := A(Λu∗) and h := u∗.

Then z∗ = A−1(y∗) = Λu∗ ∈ W . Consequently, y∗ satisfies the assumption of Theo-

rem 3.1. Here y∗ = A(Λu∗) satisfies Λ∗y∗ + l = 0, similarly to the linear case (see af-

ter (2.11)). Hence, the first term in both EST(u; y∗, h) and EST(u; y∗, h, β, γ) is zero

in this case, further, A−1(y∗)−Λh = Λu∗−Λu∗ = 0, thereforeD(u; A(Λu∗), Λu∗) = 0

and thus the terms containing D(u; y∗, h) are also zero in this case. That is,

EST(u; A(Λu∗), Λu∗) = 〈A(Λu) − A(Λu∗), Λu − Λu∗〉 = E(u)

where (3.11) has been used. Similarly,

EST(u; A(Λu∗), Λu∗, β, γ) =
(
1 +

1

β

)
〈A(Λu) − A(Λu∗), Λu − Λu∗〉

=
(
1 +

1

β

)
E(u),

hence

inf
y∗∈Y ∗,

h∈V,
β,γ>0

EST(u; y∗, h, β, γ) 6 inf
β>0

(
1 +

1

β

)
E(u) = E(u).

�

R em a r k 3.4 (Finding the optimal h in a Hilbert space). In practice, y∗ is

obtained as an approximation of the optimal unknown value A(Λu∗) (cf. (3.45)).

For given y∗, one can determine the optimal h via projection when Y is a Hilbert

space. (In this case 〈·, ·〉 means the inner product.) This is achieved as follows. Let

z∗ := A−1(y∗) and let hopt be the solution of the problem

(3.46) 〈Λhopt, Λv〉 = 〈z∗, Λv〉 (v ∈ V ),

313



i.e., hopt is the orthogonal projection of z
∗ on the range of Λ. Then for all h ∈ V

z∗ − Λh = (z∗ − Λhopt + (Λhopt − Λh),

where (3.46) for v := hopt − h shows that the terms on the right are orthogonal.

Therefore,

‖z∗ − Λhopt‖Y 6 ‖z∗ − Λh‖Y .

That is, hopt provides the smallest value of ‖z∗ − Λh‖Y in (3.43).

R em a r k 3.5 (The Lipschitz condition for scalar nonlinearities). The following

class of operators A is an important example of the type discussed above, which

occurs in many practical models (see Section 4) and has the Lipschitz property from

Assumption 3.3 (i).

Let E be a Euclidean space with a scalar product [·, ·], and let Y be the function

space L2(Ω, E), i.e.,

Y := {p : Ω → E : the function [p, p] ∈ L2(Ω)}.

Then Y is a Hilbert space with the inner product 〈p, q〉 =
∫
Ω[p, q], hence Y is a

Banach space as well and Y ∗ = Y . Then we define the operator A : Y → Y as

A(p) := a([p, p])p, or equivalently (in a test function form)

(3.47) 〈A(p), q〉 =

∫

Ω

(a([p, p])[p, q]) (p, q ∈ Y ),

where a : R+ → R
+ is a scalar C2 function with the following properties: there exist

constants M > m > 0 such that

(3.48) 0 < m 6 a(t) 6 M, 0 < m 6
d

dt
(a(t2)t) 6 M (t > 0),

further, there exists a constant L1 > 0 such that

(3.49)
∣∣∣ d2

dt2
(a(t2)t)

∣∣∣ 6 L1 (t > 0).

Let

(3.50) L := max{L1, 3L2}, where L2 := sup
t>0

d

dt
(a(t2)).

Then (3.8) implies that A has a bihemicontinuous symmetric Gâteaux derivative

satisfying

(3.51) m‖p‖2
Y 6 〈A′(y)p, p〉 6 M‖p‖2

Y (y, p ∈ Y )
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(see, e.g., [13]), that is, Assumptions 3.2 (ii)–(iii) and Assumption 3.3 (ii) hold. Fur-

ther, let

W := {p ∈ Y : [p, p] ∈ L∞(Ω)}, ‖p‖W := ‖|p|E‖L∞(Ω),

where |x|E := [x, x]1/2 (x ∈ E). Then, as proved in [24], A′ is Lipschitz continuous as

an operator from Y to B(W, Y ∗), with the Lipschitz constant L from (3.50). That

is, for all p, q, s ∈ Y , r ∈ W we have

(3.52) |〈(A′(p) − A′(q))r, s〉| 6 L‖p− q‖Y ‖r‖W ‖s‖Y ,

which is (3.21), that is, Assumption 3.3 (i) holds as well.

We underline that (3.49) is a natural condition for functions satisfying (3.48). (The

latter does not imply (3.49) but only due to some pathological counterexamples.) In

particular, if (d2/dt2)(a(t2)t) is monotone for sufficiently large t, then it is elementary

to verify that (3.48) implies (3.49).

The above results (3.51) and (3.52) obviously remain valid under natural gener-

alizations of the conditions (3.48)–(3.49). First, one can allow dependence on x: we

let a : Ω × R
+ → R

+ be a scalar-valued function that is measurable and bounded

with respect to the variable x ∈ Ω and C2 in the variable t ∈ R, and satisfies

0 < m 6 a(x, t) 6 M, 0 < m 6
∂

∂t
(a(x, t2)t) 6 M (x ∈ Ω, t > 0),(3.53)

∣∣∣ ∂2

∂t2
(a(x, t2)t)

∣∣∣ 6 L (x ∈ Ω, t > 0).(3.54)

The operatorA, where a([p, p]) in (3.47) is replaced by a(x, [p, p]), then satisfies (3.51)

and (3.52). Further, the sum of such operators also inherits this property. For

instance, the results hold for

(3.55) 〈A(p), q〉 =

∫

Ω

(a(x, [p, p])[p, q] + b(x, {p, p}){p, q}) (p, q ∈ Y ),

where [·, ·] and {·, ·} are two different semi-scalar products on E , such that the sum

[x, y] + {x, y} for x, y ∈ E is already a scalar product on E ; further, a and b are

functions each satisfying (3.53)–(3.54). Finally, it is enough to require a to be C2

except for finitely many points.
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4. Sharp global error estimates for nonlinear elliptic problems

This section is the main part of the paper, where we apply the previous abstract

results to obtain sharp global error estimates for various concrete nonlinear elliptic

problems. The problems considered include second order problems with both the

Dirichlet and the mixed boundary conditions, fourth order problems and second

order systems. The restrictions are that they are in divergence form and consist

of the principal part only: however, as will be pointed out, we thus cover many

important real-life models.

To avoid extra length, we detail the exposition for second order Dirichlet problems

and only sketch the analogous results for the other types of problems considered.

4.1. Second order Dirichlet problems

We consider the problem

(4.1)

{
− div f(∇u) = g,

u|∂Ω = 0

under the following assumptions:

A s s um p t i o n s 4.1.

(i) Ω ⊂ R
d is a bounded domain with a piecewise C2 boundary, locally convex at

the corners.

(ii) f ∈ C1(Rd,Rd), the Jacobians f ′(η) := ∂f(η)/∂η are symmetric and there exist

constants M > m > 0 such that

(4.2) m|ξ|2 6 f ′(η)ξ · ξ 6 M |ξ|2 (η, ξ ∈ R
d).

(iii) f ′ : R
d → R

d×d is Lipschitz continuous with a Lipschitz constant L.

(iv) g ∈ L2(Ω).

Let H1
0 (Ω) denote the usual Sobolev space with the inner product

(4.3) 〈u, v〉H1
0

:=

∫

Ω

∇u · ∇v,

further, let

H(div) := {y ∈ L2(Ω)d : div y ∈ L2(Ω)}.

We will also use the space L2(Ω)d with the usual inner product 〈y, z〉L2(Ω)d :=
∫
Ω

y ·z.
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Assumptions (ii) and (iv) imply that problem (4.1) has a unique weak solution

u∗ ∈ H1
0 (Ω), i.e., such that it satisfies

(4.4)

∫

Ω

f(∇u∗) · ∇v −

∫

Ω

gv = 0 (v ∈ H1
0 (Ω)).

We consider an approximate solution u ∈ H1
0 (Ω) and measure the error by the

functional

E(u) :=

∫

Ω

(f(∇u) − f(∇u∗)) · (∇u −∇u∗)(4.5)

=

∫

Ω

f(∇u) · (∇u −∇u∗) −

∫

Ω

g(u − u∗).

We note that by (2.3),

‖u − u∗‖2
H1

0
6 m−1E(u).

4.1.1. The error estimation

Now we formulate and prove our main result on the error estimation for (4.1) for

the approximate solution u.

Theorem 4.1. Let u ∈ W 1,∞(Ω). Then for arbitrary y∗ ∈ H(div)∩L∞(Ω)d and

arbitrary h ∈ H1
0 (Ω),

E(u) 6 EST(u; y∗, h)(4.6)

:=
(
m−1/2CΩ‖div y∗ + g‖L2(Ω) +

L

2
m−3/2D(u; y∗, h)

+
(
〈f(∇u) − y∗,∇u − f−1(y∗)〉L2(Ω)d

+
L

2m
D(u; y∗, h)‖∇u − f−1(y∗)‖L2(Ω)d

)1/2)2

,

where

D(u; y∗, h) := (M‖f−1(y∗) −∇h‖L2(Ω)d + CΩ‖div y∗ + g‖L2(Ω))(4.7)

× ‖∇u − f−1(y∗)‖L∞(Ω)d .

P r o o f. Let V := H1
0 (Ω) and Y := L2(Ω)d. We will use Theorem 3.1, to which

end we must verify that Assumptions 3.2–3.3 hold for the corresponding spaces and

operators.
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First, Assumption 3.2 (i) is valid for the operator Λ := ∇, since (4.3) just yields

that (3.7) holds. Now let A : L2(Ω)d → L2(Ω)d be defined by

(4.8) A(y) := f(y) (or, more precisely, f ◦ y),

that is, outer composition with f . Such an operator is often called a Nemyckĭı

operator (see, e.g., [52]), and it follows in a standard way [13], [52] from our condi-

tion f ∈ C1(Rd,Rd) and from the assumed symmetry of the Jacobians that A has a

bihemicontinuous symmetric Gâteaux derivative according to Definition 2.2, i.e., As-

sumption 3.2 (ii) holds. The Gâteaux derivative of A satisfies

(4.9) 〈A′(y)p, q〉L2(Ω)d =

∫

Ω

f ′(y)p · q (y, p, q ∈ L2(Ω)d),

hence by (4.2) we have

(4.10) m‖p‖2
L2(Ω)d 6 〈A′(y)p, p〉L2(Ω)d 6 M‖p‖2

L2(Ω)d (y, p ∈ L2(Ω)d).

The left-hand side of (4.10) coincides with Assumption 3.2 (iii). Finally, defining the

operator F : H1
0 (Ω) → H−1(Ω) via

(4.11) 〈F (u), v〉 ≡

∫

Ω

f(∇u) · ∇v (u, v ∈ H1
0 (Ω)),

we obtain the equality (3.9), required for Assumption 3.2 (iv) to hold.

To verify Assumption 3.3 (i), let us define W := L∞(Ω)d with the standard norm

‖y‖L∞(Ω)d := ess supΩ|y|. For the required Lipschitz continuity of A′ from L2(Ω)d

to B(L∞(Ω)d, L2(Ω)d) we must prove (3.21) for (4.8). In fact, we have imposed in

Assumption 4.1 (iii) the Lipschitz continuity of f ′ with a constant L > 0, i.e.,

(4.12) ‖f ′(ξ) − f ′(η)‖ 6 L|ξ − η| (ξ, η ∈ R
d).

Therefore,

|〈(A′(z) − A′(y))w, p〉| =

∣∣∣∣
∫

Ω

(f ′(z) − f ′(y))w · p

∣∣∣∣(4.13)

6 L

∫

Ω

|z − y||w||p|

6 L‖z − y‖L2(Ω)d‖w‖L∞(Ω)d‖p‖L2(Ω)d

(y, z, p ∈ L2(Ω)d, w ∈ L∞(Ω)d),

which is the desired estimate. Assumption 3.3 (ii) for (4.8) coincides with the right-

hand side of (4.10).

318



It is left to check the remaining assumptions of Theorem 3.1. Defining the linear

functional l : H1
0 (Ω) → R as

(4.14) 〈l, v〉 ≡ −

∫

Ω

gv (v ∈ H1
0 (Ω))

and using (4.11), the weak formulation (4.4) of our problem becomes

〈F (u∗), v〉 + 〈l, v〉 = 0,

i.e. u∗ is the solution of (1.1) indeed. We have chosen u to satisfy u ∈ W 1,∞(Ω),

hence u ∈ V = H1
0 (Ω) and Λu = ∇u ∈ W = L∞(Ω)d. Further, we have assumed

y∗ ∈ W = L∞(Ω)d, and the left-hand side of (4.2) implies trivially that f−1 carries

bounded sets into bounded sets (since it grows at most linearly with a factor 1/m),

therefore z∗ := A−1(y∗) = f−1(y∗) ∈ L∞(Ω)d = W . Finally, h ∈ H1
0 (Ω) = V . That

is, all the assumptions of Theorem 3.1 hold, therefore (3.31) is valid for our problem.

It remains to show that the general estimate (3.31) for our problem becomes

estimate (4.6). Here, using y∗ ∈ H(div), we obtain

〈Λ∗y∗, v〉 = 〈y∗, Λv〉 =

∫

Ω

y∗ · ∇v = −

∫

Ω

(div y∗)v (v ∈ H1
0 (Ω)),

hence Λ∗y∗ = − div y∗. Then, by (3.14),

|Λ∗y∗ + l| = sup
‖v‖

H1
0
=1

|〈Λ∗y∗ + l, v〉|

= sup
‖v‖

H1
0
=1

∣∣∣∣−
∫

Ω

(div y∗ + g)v

∣∣∣∣

6 sup
‖v‖

H1
0
=1

‖div y∗ + g‖L2(Ω)‖v‖L2(Ω)

6 CΩ‖div y∗ + g‖L2(Ω)

(where CΩ > 0 comes from the Friedrichs inequality), see also [40]. Inserting the

latter into (3.31) and (3.32) and replacing V , Y , W , Λ and A by H1
0 (Ω), L2(Ω)d,

L∞(Ω)d, ∇ and f , respectively, we obtain (4.6). �

R em a r k 4.1. Following Remark 3.2, it is convenient to reformulate Theorem 4.1

for z∗ := f−1(y∗) in order to avoid the computation of f−1. Then, letting u ∈

W 1,∞(Ω) be any approximate solution, for arbitrary z∗ ∈ L∞(Ω)d such that f(z∗) ∈
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H(div), and for arbitrary h ∈ H1
0 (Ω), we have

E(u) 6 ẼST(u; z∗, h)(4.15)

:=
(
m−1/2CΩ‖div f(z∗) + g‖L2(Ω) +

L

2
m−3/2D̃(u; z∗, h)

+
(
〈f(∇u) − f(z∗),∇u − z∗〉L2(Ω)d

+
L

2m
D̃(u; z∗, h)‖∇u − z∗‖L2(Ω)d

)1/2)2

,

where

D̃(u; z∗, h) :=
(
M‖z∗ −∇h‖L2(Ω)d + CΩ‖div f(z∗) + g‖L2(Ω)

)
(4.16)

× ‖∇u − z∗‖L∞(Ω)d .

We note that one can further estimate (4.6) using quadratic terms as in Corol-

lary 3.1, which we leave to the reader. Now we state the sharpness of the estimate:

Proposition 4.1. Estimate (4.6) is sharp, that is,

min
y∗∈H(div)∩L∞(Ω)d,

h∈H1
0
(Ω)

EST(u; y∗, h) = E(u).

P r o o f. By [33], the weak solution of (4.1) satisfies u∗ ∈ C1,α(Ω) with some

0 < α < 1, hence ∇u∗ ∈ L∞(Ω)d = W . Therefore, we can apply Proposition 3.4 to

obtain the desired statement. �

We note that by (3.45) the optimal values for “free” parameters in the estimate

are

(4.17) y∗ := f(∇u∗) and h := u∗.

The practical approximations of these will be discussed in subsection 4.1.2.

R em a r k 4.2. Our result is a direct extension of earlier sharp error estimates ob-

tained for linear problems first in [43] by means of the duality theory (see also [40]),

and later in [44] (via the Helmholtz decomposition) and in [28] (via integral identi-

ties). Namely, if we have the linear equation

− div(A∇u) = g
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for some symmetric and uniformly positive definite matrix A in (4.1), which corre-

sponds to the case f(η) := Aη, then we can use Remark 3.3. Now the Lipschitz

constant is L = 0, i.e. the terms containing L vanish, and (3.44) yields

E(u) 6 (1 + β)m−1‖div y∗ + g‖2
L2(Ω) +

(
1 +

1

β

)
〈A∇u − y∗,∇u −A−1y∗〉L2(Ω)d .

4.1.2. Practical considerations

Finite element solution. The most important practical case is when finite el-

ement approximation is used to find an approximate solution. In general, let Vh be

a given FEM subspace and uh ∈ Vh the corresponding FEM approximation of the

exact solution u∗. Then our error measure is

(4.18) E(uh) = 〈F (uh) − F (u∗), uh − u∗〉.

Here uh is a continuous piecewise polynomial, hence the condition uh ∈ W 1,∞(Ω) in

Theorem 4.1 is satisfied. If we choose y∗ to be any continuous piecewise polynomial

function, e.g. a function from another FEM subspace, and an arbitrary w ∈ H1
0 (Ω),

then y∗ ∈ H(div) ∩ L∞(Ω)d, hence Theorem 4.1 can be applied, which gives

E(uh) 6 EST(uh; y∗, w)(4.19)

:=
(
m−1/2CΩ‖div y∗ + g‖L2(Ω) +

L

2
m−3/2 D(uh; y∗, w)

+
(
〈f(∇uh) − y∗,∇uh − f−1(y∗)〉L2(Ω)d

+
L

2m
D(uh; y∗, w)‖∇uh − f−1(y∗)‖L2(Ω)d

)1/2)2

,

where

D(uh; y∗, w) := (M‖f−1(y∗) −∇w‖L2(Ω)d + CΩ‖div y∗ + g‖L2(Ω))(4.20)

× ‖∇uh − f−1(y∗)‖L∞(Ω)d .

We note that it is useful to replace f−1(y∗) by z∗ as in (4.15)–(4.16) to avoid the

computation of f−1. The expressions obtained are directly computable integrals.

Determining optimal y∗ and w in EST(uh; y∗, w). By virtue of (4.17), the

optimal value of the parameter y∗ should be a sufficiently accurate approximation

of f(∇u∗). For finite element solutions, a common and “computationally cheap” way

to achieve this goal is to use an averaging procedure, i.e., to replace the unknown

function ∇u∗ (the gradient of the exact solution) by Gh(∇uh), where Gh is some
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averaging operator. For the case of linear finite elements, Gh(∇uh) is closer to ∇u∗

than∇uh by an order of magnitude, namely, the original approximation order ‖∇u∗−

∇uh‖L2 = O(h) can be thus improved to ‖∇u∗ − Gh(∇uh)‖L2 = O(h2) if u∗ is

sufficiently smooth, see [8] or [21, Part I] for details. Accordingly, we can define

(4.21) y∗ := f(Gh(∇uh)), z∗ = f−1(y∗) = Gh(∇uh)

as a first candidate for the parameter y∗ (or z∗).

R em a r k 4.3. The value (4.21) for the parameter y∗ (or z∗) can still give a too

rough bound in general, in which case we normally execute a minimization process

for y∗, see [40, Section 6.10] or [31], [18] for more details.

Next, according to Remark 3.4, the optimal w for this z∗ is given as the solution

of the following linear auxiliary problem: find wopt ∈ H1
0 (Ω) such that

(4.22)

∫

Ω

∇wopt · ∇v =

∫

Ω

z∗ · ∇v (v ∈ H1
0 (Ω)),

that is, the weak solution of the Poisson problem

(4.23)

{
−∆wopt = − div z∗,

wopt|∂Ω = 0.

This means that for a given y∗, the optimal estimate for the second parameter w

is found by solving a kind of adjoint or auxiliary equation; however, the latter is

linear, hence its numerical solution costs much less than that of the original one. For

piecewise linear FEM, if (4.23) is solved numerically on the same mesh as used for uh,

then its right-hand side − div z∗ = − div Gh(∇uh) is constant on each element, hence

it requires minimal numerical integration and is therefore a cheap auxiliary problem.

On the other hand, using a finer (or just different) mesh for (4.23) than the one

used for uh may considerably increase the accuracy of the estimate, similarly to the

adjoint problems for linear equations [19], [27] (see also [47]), with low extra cost

due to the linearity of (4.23).

Calculating the required constants. The constants used in estimate (4.6)

are CΩ, m, M , and L. The only one depending on the domain is CΩ, which can be

easily estimated from above (it is sufficient for the estimation purposes) as in [35,

p. 8]. Further, the three remaining constants m, M and L come from the given

nonlinearity, see Assumptions 4.1 (ii)–(iii), where we note that the crucial point in

our sharp estimates is the existence of L, i.e., the condition of Lipschitz continuity of
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the derivative of f . Based on Remark 3.5, one can see that this Lipschitz condition

usually means no restriction in practice, since it is satisfied for most real problems.

Namely, problems of the type (4.1) in real models are generally of the following

special form, involving a scalar nonlinearity:

(4.24)

{
− div(a(|∇u|2)∇u) = g,

u|∂Ω = 0

(which corresponds to f(η) = a(|η|2)η in (4.1)), where a : R
+ → R

+ is a scalar

C2 function with properties (3.48)–(3.49). Such nonlinearities form the main exam-

ples for (4.1), arising, e.g., in elasto-plastic torsion [23], or in electromagneticity, see

the presentation for nonlinear Maxwell equations in [30] and for nonlinear magne-

tostatic field in [11]. One may even have explicit formulae for the function a, such

as

(4.25) a(t) =
1

µ0

(
α + (1 − α)

t8

t8 + β

)
(t > 0),

which characterizes the reluctance of stator sheets in the cross-sections of an electrical

motor [30], or

(4.26) a(t) =
(
1 − (c − d)

1

t2 + c

)
(t > 0),

which describes the magnetostatic field [11]; the constants in these formulas are given

positive characteristic physical values. Using Remark 3.5, condition (3.49) implies

the Lipschitz continuity for f . It has also been pointed out in Remark 3.5 that

condition (3.49) follows from the standard elliptic property (3.48) except for some

unrealistic special cases.

Summing up, it follows that the bounds m and M and the Lipschitz constant L,

needed to calculate E(u), can be determined from lower or upper bounds, respec-

tively, for the scalar functions in (3.48)–(3.49). These only require an elementary

numerical calculation. Moreover, if the parameters y∗ and w are close to the optimal

choice, then (using Proposition 3.4) all terms containing these constants (as well

as CΩ) in EST(uh; y∗, w) are close to zero, hence the global constants need not be

estimated from above too accurately.

4.2. Other problems

We sketch the results, analogous to the above, for some other nonlinear elliptic

problems. The detailed exposition is found in the preprint version [26].
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4.2.1. Second order mixed problems

Let us first consider second order problems with mixed boundary conditions. Here

we also allow dependence of the nonlinearity f on x, which was not included in (4.1)

for simplicity. That is,

(4.27)





− div f(x,∇u) = g,

u|ΓD
= 0,

f(x,∇u) · ν|ΓN
= γ

(where ν denotes the outer normal unit vector). Here Assumptions 4.1 are amended

with the following conditions: ΓD, ΓN are disjoint open subsets of ∂Ω such that ∂Ω =

ΓD ∪ ΓN and ΓD 6= ∅, further, γ ∈ L2(ΓN ); finally, in assumption (ii), the conditions

on f ′(η) are replaced in an obvious way with those for f ′(x, η) := ∂f(x, η)/∂η.

The treatment of this problem uses the Sobolev space

(4.28) H1
D(Ω) := {u ∈ H1(Ω): u|ΓD

= 0 in trace sense}

with the inner product 〈u, v〉H1
D

:=
∫
Ω ∇u · ∇v; further, let

H(div, ΓN ) := {y ∈ L2(Ω)d : div y ∈ L2(Ω), y · ν ∈ L2(ΓN )}.

We now use the estimates

(4.29) ‖v‖L2(Ω) 6 C′
Ω‖∇v‖L2(Ω)d , ‖v‖L2(ΓN ) 6 CΓN

‖∇v‖L2(Ω)d (v ∈ H1
D(Ω))

with some suitable constants C′
Ω, CΓN

> 0, for the proofs, see [37].

To formulate the main result, we note that by Assumption 4.2.1 (ii), for all fixed

x ∈ Ω, the function f(x, ·) is invertible on R
d with respect to η. We will denote

by f−1 the inverse with respect to η, i.e.

(4.30) f(x, η) = ξ ⇒ f−1(x, ξ) := η.

Then one can prove the main results similarly to the above:

Theorem 4.2. Let u ∈ W 1,∞(Ω). Then for arbitrary y∗ ∈ H(div, ΓN) ∩ L∞(Ω)d

and arbitrary h ∈ H1
D(Ω),

E(u) 6 EST(u; y∗, h)(4.31)

:=
(
m−1/2C′

Ω‖div y∗ + g‖L2(Ω) + m−1/2CΓN
‖y∗ · ν − γ‖L2(ΓN )

+
L

2
m−3/2D(u; y∗, h)

+
(
〈f(x,∇u) − y∗,∇u − f−1(x, y∗)〉L2(Ω)d

+
L

2m
D(u; y∗, h)‖∇u − f−1(x, y∗)‖L2(Ω)d

)1/2)2
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where

D(u; y∗, h) := (M‖f−1(x, y∗) −∇h‖L2(Ω)d + C′
Ω‖div y∗ + g‖L2(Ω)(4.32)

+ CΓN
‖y∗ · ν − γ‖L2(ΓN ))‖∇u − f−1(x, y∗)‖L∞(Ω)d .

Turning to the sharpness problem, Proposition 3.4 yields

Proposition 4.2. Estimate (4.31) is sharp, that is,

(4.33) min
y∗∈H(div,ΓN )∩L∞(Ω)d,

h∈H1
0
(Ω)

EST(u; y∗, h) = E(u)

provided the exact solution satisfies u∗ ∈ W 1,∞(Ω).

R em a r k 4.4. Analogues of Theorem 4.2 can be proved similarly if (4.27) is

replaced by one of the following problems:

(a) Neumann problem. Allowing ΓD = ∅ in Assumption 4.2.1 (i), we have

(4.34)

{
− div f(x,∇u) = g,

f(x,∇u) · ν|∂Ω = γ.

Then Theorem 4.2 remains true if we substitute the factorized space V := Ḣ1(Ω) :=

{u ∈ H1(Ω):
∫
Ω u = 0} instead of H1

D(Ω) and replace ΓN by ∂Ω in the formulas. In

particular, the resulting constant C∂Ω to satisfy the second inequality in (4.29) for

all v ∈ Ḣ1(Ω) is the smallest positive eigenvalue of −∆ with Neumann boundary

conditions.

(b) Interface problems. Let Γint be a piecewise smooth surface lying in the interior

of Ω, and let us consider the problem

(4.35)

{
− div f(x,∇u) = g,

u|ΓD
= 0, f(x,∇u) · ν|ΓN

= γN , f(x,∇u) · ν|Γint
= γint,

where the assumptions for the mixed problem are modified so that γN ∈ L2(ΓN) and

γint ∈ L2(Γint). The weak form of this problem is the same as for the mixed problem

if ΓN is replaced by Γ := ΓN ∪ Γint, see [25] for a related setting. Defining γ ∈ L2(Γ)

so that its restrictions to ΓN and Γint are γN and γint, respectively, Theorem 4.2

remains true if we replace ΓN by Γ in the formulas.
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In practice, to determine suitable y∗ and w in EST(uh; y∗, w), first y∗ should be

some approximation of f(x,∇u∗). For finite element solutions, using averaging as

in (4.21), we can first let

(4.36) y∗ := f(x, Gh(∇uh)), z∗ = f−1(x, y∗) = Gh(∇uh),

where Gh is some averaging operator and f−1 is understood with respect to η as

in (4.30). Averaging for mixed boundary conditions is discussed, e.g., in [21, Part II].

More accurate error bounds can be obtained by suitable further bound minimization

with respect to y∗ (or z∗) as mentioned in Remark 4.3.

Then by Remark 3.4, the optimal w for this z∗ to set in EST(uh; y∗, w) is given

as the solution of a linear auxiliary problem, which is the modification of (4.22) for

mixed boundary conditions. This can be solved on a suitably chosen mesh, either

the same as that used for uh or a finer/different mesh, as discussed in Section 4.1.

The constants used can be obtained easily for most of the practical cases, using

a scalar form of the nonlinearity as in (4.24). Some examples are the x-dependent

nonlinearity in magnetic potential:

a(x, t) =





1

µ0

(
α + (1 − α)

t8

t8 + β

)
if x ∈ Ω1, t > 0,

α if x ∈ Ω \ Ω1,

where α > 0 is a constant magnetic reluctance [15], [30], or that describing air density

in a subsonic potential flow, see, e.g., [3]:

a(t) = ̺∞

(
1 +

1

5
(M2

∞ − t)
)5/2

(t > 0),

where M∞ is the Mach number at infinity. In the corresponding mixed problem,

ΓD is the wind inblow part and ΓN consists of the other sides of the wind tunnel sec-

tion. Altogether, the constants can be therefore determined by elementary numerical

calculation.

4.2.2. Fourth order problems

In this subsection we study 4th order Dirichlet problems. The concise presentation

requires some basic notation: let D2u denote the Hessian of a function u : Ω → R.

If u ∈ H2(Ω), we define the elementwise matrix product and the corresponding

Frobenius norm in the standard way as

(4.37) P : Q :=

d∑

i,k=1

PikQik, |P |F := (P : P )1/2 (P, Q ∈ R
d×d),
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further, for a matrix-valued function P : Ω → R
d×d we let

div2P :=

d∑

i,k=1

∂2Pik

∂xi∂xk

provided that these derivatives exist.

Now we can formulate the problems considered, defined via a matrix-valued non-

linearity B, in the form

(4.38)





div2 B(x, D2u) = g,

u|∂Ω =
∂u

∂ν

∣∣∣
∂Ω

= 0,

on a bounded domain Ω ⊂ R
d with a piecewise C1 boundary, with g ∈ L2(Ω) as

before, under the following assumptions on the nonlinearity B:

(i) The matrix-valued function B : Ω × R
d×d → R

d×d is measurable and bounded

with respect to the variable x ∈ Ω and C2 in the matrix variable Θ ∈ R
d×d.

The Jacobian arrays

B′(x, Θ) :=
∂B(x, Θ)

∂Θ
=

{∂Brs(x, Θ)

∂Θik

}d

i,k,r,s=1
∈ R

(d×d)2

are symmetric, i.e. ∂Brs/∂Θik = ∂Bik/∂Θrs for all i, k, r, s, and there exist

constants M > m > 0 such that

(4.39) m|Φ|2F 6 B′(x, Θ)Φ: Φ 6 M |Φ|2F (x ∈ Ω; Θ, Φ ∈ R
d×d).

(ii) B′ : Ω × R
d×d → R

(d×d)2 is Lipschitz continuous in the matrix variable Θ ∈

R
d×d, with a Lipschitz constant L.

In the treatment of this problem we follow the previous sections. Now we use the

Lebesgue space

(4.40) L2(Ω)d×d := {P : Ω → R
d×d : Pik ∈ L2(Ω) for all i, k = 1, . . . , d}

with the inner product 〈P, Q〉L2(Ω)d×d :=
∫
Ω

P : Q, and the Sobolev space

(4.41) H2
0 (Ω) :=

{
u ∈ H2(Ω): u|∂Ω =

∂u

∂ν

∣∣∣
∂Ω

= 0 in trace sense
}

with the inner product 〈u, v〉H2
0

:= 〈D2u, D2v〉L2(Ω)d×d =
∫
Ω D2u : D2v. Further, let

H(div2) := {P ∈ L2(Ω)d×d : div2 P ∈ L2(Ω)}.
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The actual counterpart of the Friedrichs inequality is

(4.42) ‖v‖L2(Ω) 6 C̃Ω‖D
2v‖L2(Ω)d×d (v ∈ H2

0 (Ω))

for a suitable constant C̃Ω > 0. Analogously to (4.30), we will denote by B−1 the

inverse with respect to Θ, i.e.

(4.43) B(x, Θ) = Φ ⇒ B−1(x, Φ) := Θ,

where B−1 exists by virtue of the assumptions on B. Then one can prove the main

results similarly to the above:

Theorem 4.3. Let u ∈ W 2,∞(Ω). Then for arbitrary Y ∗ ∈ H(div2) ∩ L∞(Ω)d×d

and arbitrary h ∈ H2
0 (Ω),

E(u) 6 EST(u; Y ∗, h)(4.44)

:=
(
m−1/2C̃Ω‖div2 Y ∗ − g‖L2(Ω) +

L

2
m−3/2D(u; Y ∗, h)

+
(
〈B(x, D2u) − Y ∗, D2u − B−1(x, Y ∗)〉L2(Ω)d×d

+
L

2m
D(u; Y ∗, h)‖D2u − B−1(x, Y ∗)‖L2(Ω)d×d

)1/2)2

,

where

D(u; Y ∗, h) :=
(
M‖B−1(x, Y ∗) − D2h‖L2(Ω)d×d + C̃Ω‖div2 Y ∗ − g‖L2(Ω)

)
(4.45)

× ‖D2u − B−1(x, Y ∗)‖L∞(Ω)d×d .

R em a r k 4.5. Following [40, Chap. 6.6], the term C̃Ω‖div2 Y ∗−g‖L2(Ω) in (4.44)

can be replaced by

ĈΩ‖div Y ∗ − η∗‖L2(Ω)d×d + C̃Ω‖div η∗ − g‖L2(Ω)

for some new parameter function η∗ ∈ H(div). In this case the requirement Y ∗ ∈

H(div2) can be weakened to Y ∗ ∈ H(div) (understood row-wise).

Note that our result is a direct extension of earlier sharp error estimates obtained

for linear fourth order problems [14], [39], [40]. (This is seen using Remark 3.3 in a

similar way to Remark 4.2.) In our case, Proposition 3.4 yields
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Proposition 4.3. Estimate (4.44) is sharp, that is,

(4.46) min
Y ∗∈H(div2)∩L∞(Ω)d×d,

h∈H2
0
(Ω)

EST(u; Y ∗, h) = E(u)

provided the exact solution satisfies u∗ ∈ W 2,∞(Ω).

In practice for FEM, in order to have an approximate solution uh ∈ H2
0 (Ω), one

uses C1-elements (i.e. uh ∈ C1 and uh is piecewise polynomial), see, e.g., [10]. In

this case we automatically have u ∈ W 2,∞(Ω), which was required for Theorem 4.3

to hold. (Another common FEM approach is to use mixed variables to have less

smoothness for uh. In this case one may expect to reformulate the terms contain-

ing D2u in (4.44) via the mixed variables in a similar vein as in Remark 4.5; however,

this is out of the scope of the present paper.) Next, following (3.45), Y ∗ should be

an approximation of B(x, D2u∗). For finite element solutions, using averaging as

before, we can first let

(4.47) Y ∗ := B(x, Gh(D2uh)), Z∗ = B−1(x, Y ∗) = Gh(D2uh),

where Gh is an averaging operator that defines a C1-approximation of D2uh, and

B−1 is understood with respect to Θ as in (4.43). More accurate error bounds can

be obtained by suitable further bound minimization with respect to Y ∗ (or Z∗) as

mentioned in Remark 4.3. Then by Remark 3.4, the optimal w for this Z∗ to set

in EST(uh; Y ∗, w) is the solution of the corresponding linear biharmonic auxiliary

problem with the right-hand side div2 Z∗. Note that Z∗ need not be in H(div2): in

general div2 Z∗ can be understood in the distributional sense, which exactly means

that we need to use the weak form, and thus the weaker condition Y ∗ ∈ H(div)

(or equivalently Z∗ ∈ H(div)) can be used. Altogether, one can define w as the

numerical solution of the biharmonic auxiliary problem on a suitably chosen mesh,

either the same as used for uh or a finer mesh, as discussed in Section 4.1.

The most important real-life model that uses fourth order equations like (4.38)

describes the elasto-plastic bending of a clamped thin plane plate Ω ⊂ R
2, see,

e.g., [34]. This problem reads

(4.48)





div2(g(E(D2u))D̃2u) = α,

u|∂Ω =
∂u

∂ν

∣∣∣
∂Ω

= 0,

where

D̃2u :=
1

2
(D2u + ∆u · I), E(D2u) :=

1

2
(|D2u|2F + (∆u)2)
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and g is a scalar material function satisfying (3.48)–(3.49) (with g substituted for a).

This problem leads to an operator like (3.47), see more details in [13].

4.2.3. Second order elasticity systems

Symmetric second order systems arise in the description of the elastic behaviour

of a body. We follow the presentation of [7], [38] to describe the elasticity of a body

Ω ⊂ R
3 with nonlinear behaviour of the material.

The involved physical quantities are the displacement vector u : Ω → R
3, the

strain tensor ε : Ω → R
3×3 and the stress tensor σ : Ω → R

3×3. The basic system of

equations is

(4.49) − div σi = ϕi in Ω, σi · ν = τi on ΓN , ui = 0 on ΓD (i = 1, 2, 3)

where σi = (σi1, σi2, σi3) (i = 1, 2, 3) is the ith row of the matrix σ, the functions ϕ :

Ω → R
3 and τ : ΓN → R

3 describe the body and boundary force vectors, respectively,

and ∂Ω = ΓN ∪ ΓD is a disjoint measurable subdivision and ΓD 6= ∅.

The problem (4.49) can be formulated as a second order system in terms of the

displacement u. First, the strain tensor ε = ε(u) is determined by the displacement

via the relation ε(u) = 1
2 (∇u + ∇ut) where ∇ut(x) denotes the transpose of the

matrix ∇u(x) ∈ R
3×3 for x ∈ Ω. The connection between strain and stress is given

by a matrix-valued function T as follows. For any Θ ∈ R
3×3 let volΘ = 1

3 tr Θ · I

and dev Θ = Θ − volΘ, where tr Θ =
3∑

i=1

Θii is the trace of Θ and I is the identity

matrix. Using this notation, we have

(4.50) σ(x) = T (x, ε(u(x)))

with T : Ω × R
3×3 → R

3×3 given by

(4.51) T (x, Θ) = 3k(x, |volΘ|2) volΘ + 2µ(x, |dev Θ|2) dev Θ (x ∈ Ω, Θ ∈ R
3×3),

where k(x, s) is the bulk modulus of the material and µ(x, s) is Lamé’s coefficient.

(Further properties of k and µ are given below in (4.53).) Then, substituting (4.50)

into (4.49), we obtain the system

(4.52)





− div Ti(x, ε(u)) = ϕi in Ω,

Ti(x, ε(u)) · ν = τi on ΓN ,

ui = 0 on ΓD





(i = 1, 2, 3).
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The functions k, µ : Ω × R
+ → R are measurable and bounded with respect to x

and C1 with respect to the variable t ∈ R
+. Further, they satisfy

0 < m 6 µ(x, t) <
3

2
k(x, t) 6 M,(4.53)

0 < m 6
∂

∂t
(k(x, t2)t) 6 M, 0 < m 6

∂

∂t
(µ(x, t2)t) 6 M

with constants M > m0 independent of (x, t), as described in [7]. We impose as an

additional condition that k and µ are also piecewise C2 (i.e. C2 except for finitely

many isolated points, which in practice typically separate the domain of linear and

nonlinear behaviour), further, that there exists a constant L > 0 such that

(4.54)
∣∣∣ ∂2

∂t2
(k(x, t2)t)

∣∣∣ 6 L,
∣∣∣ ∂2

∂t2
(µ(x, t2)t)

∣∣∣ 6 L (x ∈ Ω, t > 0).

We note that some concrete measurements or explicit expressions on k and µ are

given, e.g., in [2], [38], [40], and k is often considered a constant. With the notation

of (4.37), (4.39), (4.51), and (4.53) imply the analogue of (4.39):

(4.55) m|Φ|2F 6 T ′(x, Θ)Φ: Φ 6 M |Φ|2F (x ∈ Ω; Θ, Φ ∈ R
3×3).

This property implies well-posedness in H1
D(Ω)3 in view of the famous Korn’s in-

equality

(4.56) κ

∫

Ω

|∇u|2 6

∫

Ω

|ε(u)|2 6

∫

Ω

|∇u|2 (u ∈ H1
D(Ω)3)

(where κ > 0), see more details, e.g., in [7], [13], [38].

In the treatment of error estimation for the elasticity problem, we follow the

previous sections. Now we use the Lebesgue space

(4.57) L2(Ω)3×3
symm := {P : Ω → R

3×3 : Pik = Pki ∈ L2(Ω) for all i, k = 1, 2, 3}

with the inner product 〈P, Q〉L2(Ω)3×3 :=
∫
Ω P : Q, using notation (4.37). Further,

we endow the space H1
D(Ω)3 with the inner product

(4.58) 〈u, v〉ε := 〈ε(u), ε(v)〉L2(Ω)3×3 =

∫

Ω

ε(u) : ε(v),

which is equivalent to the standard inner product owing to (4.56). Inequalities (4.29)

and (4.56) then imply

(4.59) ‖v‖L2(Ω)3 6 κ−1/2C′
Ω‖v‖ε, ‖v‖L2(ΓN )3 6 κ−1/2CΓN

‖v‖ε (v ∈ H1
D(Ω)3).
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We define L∞(Ω)3×3
symm analogously to (4.57), and finally let

H(div,R3; ΓN) := {P ∈ L2(Ω)3×3
symm : div P ∈ L2(Ω)3, P · ν ∈ L2(ΓN )3}.

We will use notation T−1 in the sense of (4.43).

Theorem 4.4. Let u ∈ W 1,∞(Ω)3. Then for arbitrary Y ∗ ∈ H(div,R3; ΓN ) ∩

L∞(Ω)3×3
symm and arbitrary h ∈ H1

D(Ω)3,

E(u) 6 EST(u; Y ∗, h)(4.60)

:=
(
(κm)−1/2C′

Ω‖div Y ∗ + ϕ‖L2(Ω)3

+ (κm)−1/2CΓN
‖Y ∗ · ν − τ‖L2(ΓN )3 +

L

2
m−3/2D(u; Y ∗, h)

+
(
〈T (x, ε(u)) − Y ∗, ε(u) − T−1(x, Y ∗)〉L2(Ω)3×3

+
L

2m
D(u; Y ∗, h)‖ε(u) − T−1(x, Y ∗)‖L2(Ω)3×3

)1/2)2

,

where

D(u; Y ∗, h)(4.61)

:=
(
M‖T−1(x, Y ∗) − ε(h)‖L2(Ω)3×3 + κ−1/2C′

Ω‖div Y ∗ + ϕ‖L2(Ω)3

+ κ−1/2CΓN
‖Y ∗ · ν − τ‖L2(ΓN )3

)
‖ε(u) − T−1(x, Y ∗)‖L∞(Ω)3×3 .

Our result is a direct extension of earlier sharp error estimates obtained for linear

elasticity problems [40], [36]. (This is seen by using Remark 3.3 in a way similar to

Remark 4.2.) Further, quasi-sharp error estimates for nonlinear elasticity problems

have been obtained earlier in [46]. Now Proposition 3.4 yields

Proposition 4.4. Estimate (4.60) is sharp, that is,

(4.62) min
Y ∗∈H(div,R3;ΓN )∩L∞(Ω)

3×3
symm,

h∈H1
D

(Ω)3

EST(u; Y ∗, h) = E(u)

provided that the exact solution satisfies u∗ ∈ W 1,∞(Ω)3.

In practice, for finite element solutions, all three coordinate functions of the

FEM approximation uh ∈ Vh ⊂ H1
D(Ω)3 are continuous piecewise polynomials, hence

the condition uh ∈ W 1,∞(Ω)3 in Theorem 4.4 is satisfied. If we choose Y ∗ to be a

symmetric matrix function whose entries are also continuous piecewise polynomial
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functions, e.g., functions from another FEM subspace, and arbitrary w ∈ H1
D(Ω)3,

then Y ∗ ∈ H(div,R3; ΓN ) ∩ L∞(Ω)3×3
symm, hence Theorem 4.4 can be applied. Next,

by virtue of (3.45), Y ∗ should be an approximation of T (x, ε(u∗)). For finite element

solutions, using averaging as before, we can first let

(4.63) Y ∗ := T (x, Gh(ε(uh))), Z∗ = T−1(x, Y ∗) = Gh(ε(uh)).

Here Gh is an averaging operator, based on [21] where averaging is discussed in

the context of elasticity problems, and T−1 is understood with respect to Θ as

in (4.21). More accurate error bounds can be obtained by a suitable further bound

minimization with respect to Y ∗ (or Z∗) as mentioned in Remark 4.3. Then by

Remark 3.4, the optimal w for this Z∗ to set in EST(uh; Y ∗, w) is the solution of the

following linear auxiliary problem: find wopt ∈ H1
D(Ω)3 such that

(4.64)

∫

Ω

ε(wopt) : ε(v) =

∫

Ω

Z∗ : ε(v) (v ∈ H1
D(Ω)3).

Hence one can define w as the numerical solution of (4.64) on a suitable mesh

(either the same as used for uh or a finer mesh, as discussed in Section 4.1). Regarding

the required constants, estimates for C′
Ω and CΓN

can be done similarly to [35], [45],

several explicit values and estimates for Korn’s constant κ are given in [22], and

finally, as pointed out at the end of Remark 3.5, the bounds m and M and the

Lipschitz constant L can be calculated numerically from (4.53)–(4.54).
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