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Abstract. A graph G is a minimal claw-free graph (m.c.f. graph) if it contains no K1,3
(claw) as an induced subgraph and if, for each edge e of G, G− e contains an induced claw.
We investigate properties of m.c.f. graphs, establish sharp bounds on their orders and the
degrees of their vertices, and characterize graphs which have m.c.f. line graphs.
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1. Introduction

Graphs which do not contain a star on four vertices (claw) as an induced subgraph

have received much attention, especially since the publication of the excellent survey

paper [3] in 1997. This class of graphs includes, among others, line graphs, interval

graphs, middle graphs, inflations of graphs and graphs with independence number

equal to 2. Recently, Chudnovsky and Seymour found a structural characterization

of claw-free graphs; that is, they defined certain classes of “basic” claw-free graphs

and then showed that all claw-free graphs can be obtained by applying certain “ex-

pansion” operations. See [2].

In this paper we consider graphs which are (edge-) minimal with respect to the

property of being claw-free. This was motivated by questions about cycles in claw-

free graphs, but we think this class has some interest in its own right.

If G is a graph, we will denote its vertex set by V (G) and its edge set by E(G).

The order of G is n(G) = |V (G)|. For a vertex v, N(v) is its neighbourhood and

Support by the South African National Research Foundation is gratefully acknowledged.
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N [v] = {v} ∪N(v). We refer to the (induced) star K1,3 as a claw with the vertex of

degree 3 as its centre.

Definition 1. Let G be a claw-free graph without isolated vertices. If the re-

moval of any edge of G produces a graph which is not claw-free, then G is a minimal

claw-free graph, briefly denoted as an m.c.f. graph.

That not every claw-free graph contains an m.c.f. graph as a subgraph may be

seen, for example, by considering the line graph of K4 (which we denote by L (K4)):

it is obviously claw-free but one can repeatedly remove its edges until an empty graph

is obtained without creating a claw. On the other hand, the line graph of K(3, 3)

(equivalent to the cartesian product K3 × K3) is an m.c.f. graph.

We mention that a closely related concept, minimal line graphs, was considered

by Sumner [8]. A graph is a minimal line graph if it is a line graph, but removal of

any edge results in a graph that is not a line graph. Sumner proved that a graph G

is a minimal line graph if and only if the following four conditions hold:

(i) every edge of G lies in a triangle,

(ii) every vertex of G has degree at least three,

(iii) if an edge e lies on a triangle whose vertices have an even degree sum, then e

lies on another triangle,

(iv) each 4-clique of G has at least two vertices adjacent to vertices outside the

4-clique.

Condition (i) clearly holds for m.c.f. graphs, and we will see that condition (ii)

also holds for m.c.f. graphs.

In this paper we look at bounds on the minimum, average and maximum degrees

of an m.c.f. graph. In particular, we show that an m.c.f. graph has minimum degree

at least 3, average degree at least 4, and maximum degree at most n(G) − 3. We

then look at the relationship between m.c.f. graphs and line graphs. For example,

a 4-regular graph is m.c.f. if and only if it is the line graph of a (K4 − e)-free cubic

graph.

2. Examples

We start with some examples. The 5-regular icosahedron on 12 vertices is an m.c.f.

graph. Indeed, if we delete one, two or three vertices from the same triangle, then

the result is still an m.c.f. graph. The latter graph is depicted in Figure 1. (This is

not a line graph.) An exhaustive computer search has shown that the smallest order

of an m.c.f. graph is 9; apart from the above graph there are two others, namely the

line graphs of the two cubic graphs of order 6.
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Figure 1. The m.c.f. graph I9

A special family of m.c.f. graphs is the bow-tie graphs. We will denote by B the

set of all 4-regular graphs in which the neighbourhood of each vertex has exactly two

edges and these edges are independent (so a vertex and its neighbours induce the

bow-tie K1 + 2K2). Such a graph is claw-free, but the removal of any edge produces

two claws. The family B can also be defined as the line graphs of cubic triangle-free

graphs. The cartesian product K3 × K3 is the smallest member.

3. Degree bounds

We will need the following concept.

Definition 2. We will call a near-claw NC(xy; c, t) as an induced subgraph

obtained with vertex set {x, y, c, t} and edge set {xy, xc, yc, tc}. The vertex c is the

centre of the near-claw. See Figure 2.

x

y

c t

Figure 2. The near-claw NC(xy; c, t)

It is immediate that G is an m.c.f. graph if and only if every edge xy in G lies

in a near-claw NC(xy; c, t). Hence every edge of an m.c.f. graph is contained in a

triangle.

3.1. Maximum degree.

Theorem 1. Let G be an m.c.f. graph. Then the maximum degree ∆(G) 6

n(G) − 3.
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P r o o f. Consider any vertex x. Let y be a neighbour of x. Then there exists

a near-claw NC(xy; c, t) with t non-adjacent to x but adjacent to c. Further, there

exists a near-claw NC(xc; c′, t′), where t′ non-adjacent to x and c. Hence there are

at least two vertices non-adjacent to x. It follows that ∆(G) 6 n − 3. �

The bound is sharp, as we now show. Let A and B be the cycles a0, a1, a2, a3, a0

and b0, b1, b2, b3, b0 respectively. G is formed from A∪B by adding a vertex u adjacent

to every vertex in A ∪B; adding vertices w1 and w2, with N(w1) = V (A), N(w2) =

V (B); as well as the edges aibi and aibi+1 for i = 0, 1, . . . , 3 (addition modulo 4). It

can be verified that G is an m.c.f. graph of order 11 with ∆(G) = deg u = 8 = 11−3.

See Figure 3.

Figure 3. An m.c.f. graph with maximum ∆

One can obtain an infinite family of m.c.f. graphs with ∆ = n − 3 by duplicating

u as follows. The duplication of a vertex u in G, means the addition to G of a new

vertex v, adjacent to u and all vertices in NG(u) (so that N [u] = N [v]). Clearly, G

is claw-free if and only if G′ is claw-free.

Lemma 1. Let G be a claw-free graph and suppose G′ is formed by duplicating

u to v. Then G′ is an m.c.f. graph if and only if G is an m.c.f. graph.

P r o o f. (⇒) Assume G′ is an m.c.f. graph.

Let e = ab ∈ E(G); then G′ contains a near-claw NC(ab; c, t) and v /∈ {a, b}. If

NC(ab; c, t) is contained in G, then G − e contains a claw.

Otherwise, suppose vertex v is on NC(ab; c, t); hence v ∈ {c, t}. If v = c, then

u /∈ {a, b}, since otherwise, if u = a, then vt ∈ E(G′) and ut /∈ E(G′), contradicting

the assumption that N [u] = N [v]. Hence if v = c, then NC(ab; u, t) is contained in

G. On the other hand, if v = t, then, as N [u] = N [v], NC(ab; c, u) is contained in

G. Hence G is an m.c.f. graph.

(⇐) Assume G is an m.c.f. graph.
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Clearly the removal of any edge of G′ not incident with v produces a claw. So we

need only to consider the edges incident with v. Let v′ ∈ V (G′) such that v′ ∈ N(v)

but v′ 6= u, and let e1 = vv′ ∈ E(G′). So there exists the edge uv′ ∈ E(G) contained

in, say, the near-claw NC(uv′; w, x) in G; then vv′ is contained in the near-claw

NC(vv′; w, x) in G′, whence removal of vv′ creates a claw.

Consider the edge e2 = uv ∈ V (G′). By Theorem 1, there exists a vertex, say w ∈

V (G′)−N [u], that is adjacent to some vertex in N(u), say v′. Then wv /∈ E(G′) and

v′ ∈ N(v). Moreover, since uv′, vv′, v′w ∈ E(G′) and uw, vw /∈ E(G′), {v′, u, v, w}

induces a claw in G′ − e2. Hence G′ is m.c.f.. �

3.2. Minimum degree.

Theorem 2. Let G be an m.c.f. graph. Then the minimum degree δ(G) > 3.

P r o o f. Since every edge of G lies in a triangle, δ(G) > 2. Now suppose that

G contains a vertex v0 of degree 2, adjacent to v1 and v2, where v1v2 ∈ E(G). Let

B = (N(v1)∩N(v2))−{v0} and for i = 1, 2 Ai = N(vi)− (B ∪ {v0, v3−i}). Since v1

and v2 are not centres of claws, A1 ∪B and A2 ∪B induce complete subgraphs of G.

The edge v0v1 is contained in a near-claw with v2 as centre, say NC(v0v1; v2, v3),

and v0v2 is contained in a near-claw NC(v0v2; v1, v4); so v2v3, v1v4 ∈ E(G) and

v1v3, v2v4 /∈ E(G) and thus v3 ∈ A2 and v4 ∈ A1. The edge v1v2 is contained in

a near-claw NC(v1v2; v5, v6), where v1v5, v2v5 ∈ E(G) and v1v6, v2v6 /∈ E(G); so

v5 ∈ B, v6 /∈ N(v1) ∪ N(v2).

Let x ∈ A2, y ∈ A1; then since 〈{v5, v1, x, v6}〉 is not a claw and v1x, v1v6 /∈ E(G),

it follows that xv6 ∈ E(G); similarly as 〈{v5, v2, y, v6}〉 is not a claw, it follows that

yv6 ∈ E(G). Hence v6 is adjacent to every vertex in A1∪A2. By the same argument

it follows that

(∗) if w ∈ N(B) − (N [v1] ∪ N [v2]) then w is adjacent to all of A1 ∪ A2.

The edge v5v6 is contained in a near-claw NC(v5v6; c, t), say. If c ∈ N(v2),

then as v5 is adjacent to every vertex in (N(v1) ∪ N(v2)) − {v0}, it follows that

t /∈ N(v1) ∪ N(v2); hence as 〈N(v2) − {v0, v1}〉 is complete, v2t /∈ E(G). Also,

v2v6, v6t /∈ E(G) while c is adjacent to v2, v6 and t; so 〈{c, v2, v6, t}〉 is a claw, a

contradiction. So c /∈ N(v2). It follows similarly that c /∈ N(v1).

So c = v7 and t = v8, where v7 /∈ N [v1] ∪ N [v2], and v5v7, v6v7 ∈ E(G), while

v5v8, v6v8 /∈ E(G). Note that, v1v8 /∈ E(G), since otherwise 〈{v1, v0, v5, v8}〉 is a

claw and, similarly, v2v8 /∈ E(G). By (∗), v7 is adjacent to every vertex in A1 ∪ A2.

That for x ∈ A2, xv8 /∈ E(G) follows from the observation that 〈{x, v2, v6, v8}〉

is not a claw. So v8 is non-adjacent to each vertex in A2 and, similarly in A1.
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Furthermore, xy ∈ E(G) for x ∈ A2, y ∈ A1, since 〈{v7, x, y, v8}〉 is not a claw. See

Figure 4.

v0

v1 v2

v4 v3

v5

v6 v7

v8

Figure 4. An induced subgraph

In conjunction with the fact that A1 and A2 induce complete graphs, we obtain

that

(†) 〈A1 ∪ A2 ∪ B〉 is complete.

The edge v2v3 is contained in a near claw, say, NC(v2v3; v9, t). Clearly, v9 /∈ B,

since otherwise v3 and t would be adjacent by (∗). Hence v9 ∈ A2.

Consider t. Since t is not adjacent to v3, but adjacent to v9, we have t /∈ N [v1] ∪

N [v2] ∪ {v6, v7, v8}, say, t = v10 with v9v10 ∈ E(G), v3v10 /∈ E(G).

By (†), v4v9 ∈ E(G). Hence v4v10 ∈ E(G) since otherwise 〈{v9, v2, v4, v10}〉 is a

claw. But then 〈{v4, v1, v3, v10}〉 is a claw, a contradiction. �

By Theorem 2, we have the following results.

Corollary 1. Let G be an m.c.f. graph. Then the vertices of degree 3 form an

independent set.

P r o o f. Suppose that u, v are vertices of degree 3 in G such that uv ∈ E(G).

If N [u] = N [v], let G′ = G− {v}. Then G′ is m.c.f., but has a vertex of degree 2,

which contradicts Theorem 2.

If the vertices u and v have different neighbourhoods, then since every edge lies in

a triangle, N(u) ∪ N(v) induces the graph K1 + P4, where u and v are the interior

vertices on P4. Let G′ be the graph obtained by adding a vertex w adjacent only to

u and v. Then G′ is claw-free. The removal of the edge uw produces a claw centred
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at v, and the removal of the edge vw produces a claw centred at u and G′−e contains

an induced claw for each e ∈ E(G). So G′ is a minimal claw-free graph with a vertex

of degree 2, which contradicts Theorem 2.

Hence uv /∈ E(G), and the result follows. �

Corollary 2. Let G be an m.c.f. graph. Then ∆(G) > 4.

P r o o f. An immediate consequence of Theorem 2 and Corollary 1. �

3.3. Average degree.

We now look at the minimum number of edges in an m.c.f. graph. We will need

the following results.

Lemma 2. If an m.c.f. graph G contains a vertex v of degree 3, then v has a

neighbour of degree at least 5.

P r o o f. Suppose to the contrary that no neighbour of v has degree exceeding

4; then it follows from Theorem 2 and Corollary 1 that the neighbours of v, say

v1, v2, v3, all have degree equal to 4. The edge vv1 is contained in a near-claw,

say NC(vv1; v2, t1), so that t1 ∈ V (G) − N [v], t1v2 ∈ E(G) and t1v1 /∈ E(G). A

near-claw NC(v2t1; c2, t2) exists in G; here c2 = v3 or c2 is a new vertex.

If c2 = v3, then v2v3, t1v3 ∈ E(G) and t2 is a new vertex such that v3t2 ∈ E(G),

but v2t2, t1t2 /∈ E(G). Since deg v3 = 4, it follows that v3v1 /∈ E(G). A near-claw

NC(vv3, c3, t3) exists in G, where c3 = v2. But deg v2 = 4, so t3 ∈ {t1, v1}, a

contradiction, as vv1, v3t1 ∈ E(G). Hence c2 6= v3.

Thus c2 is a new vertex. Then v2c2, t1c2 ∈ E(G) and N(v2) = {v, v1, t1, c2}; hence

the centre, c3, of a near-claw NC(vv3; c3, t3) must be v1 and so v1v3 ∈ E(G). A

near-claw NC(v1v2; c4, t4) exists in G, where c4 ∈ {v, c2}. If c4 = v, then t4 =

v3, a contradiction, as v1v3 ∈ E(G). Hence c4 = c2 and v1c2 ∈ E(G). A near-

claw NC(vv2; c5, t5) exists in G, where c5 = v1 and t5 ∈ {v3, c2}, which yields a

contradiction, as vv3, v2c2 ∈ E(G).

It follows that at least one neighbour of v is of degree exceeding 4. �

Lemma 3. Let G be an m.c.f. graph. If v is a vertex of degree 3 in G with only

one neighbour of degree at least 5, say v3, then v3 has no other neighbour of degree 3.

P r o o f. Say v’s neighbours are vertices v1, v2 and v3, with deg v1 = deg v2 = 4.

We show first that v1v3, v2v3 ∈ E(G) and v1v2 /∈ E(G).

The edge vv3 is contained in a near-claw, with say v1 as centre, NC(vv3; v1, t1),

where t1 6= v2, and so v1v3 ∈ E(G). Suppose v1v2 ∈ E(G); then the edge v1t1
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is contained in a near-claw which must have centre v2 because deg v1 = 4—

say NC(v1t1; v2, t2) where t2 6= {v, v3}, so that t2 is a new vertex. However,

〈{v2, v, t1, t2}〉 ∼= K1,3, a contradiction; and so v1v2 /∈ E(G). Since vv2 is contained

in a near-claw which must have centre v3, v2v3 ∈ E(G).

Further, consider this near-claw NC(vv2; v3, x1). Since v3 is not the centre of

a claw, it follows that v1x1 ∈ E(G). Similarly, there is a vertex x2 such that

v2x2, v3x2 ∈ E(G) but v1x2 /∈ E(G). Again because v3 is not the centre of a claw, it

follows that x1x2 ∈ E(G). That is, the set W = {v, v1, x1, x2, v2} induces a 5-cycle.

Now suppose v3 has another neighbour m of degree 3. If m /∈ W , then it has

only two neighbours in W , and thus is part of a claw centered at v3. If m ∈ W , say

m = x1, then v1 has no other neighbour, by the lack of claw centered at v1. But

then v1 has degree 3, a contradiction of Corollary 1. �

Theorem 3. Let G be an m.c.f. graph. Then G has at least 2n(G) edges.

P r o o f. Let T denote the set of vertices of degree 3 and let U denote the set

of vertices of degree at least 5. Define H as the bipartite subgraph of G with vertex

set T ∪ U and edge set all edges with one end in T and one end in U .

By Lemma 2, in H every vertex of T has degree at least 1. Let A denote the

vertices of T with degree 1 in H . By Lemma 3, the neighbours of A have degree 1 in

H ; let X = N(A). So every vertex in T −A has degree at least 2 in H . On the other

hand, since T is independent in G (by Corollary 1) and G is claw-free, every vertex

in U − X has degree at most 2 in H . Thus |T − A| 6 |U − X | and so |T | 6 |U |.

Now, let di denote the number of vertices of degree i in G. Then

∑

i

idi = 4n +
∑

i

(i − 4)di > 4n + |U | − |T | > 4n,

as required. �

That this result is sharp follows from the bow-tie graphs B. We will show later

that 4-regular m.c.f. graphs are always line graphs (Theorem 6).

Perhaps surprisingly, there is a unique nonregular m.c.f. graph with average de-

gree 4. We omit the laborious proof.

Theorem 4. If G is a connected m.c.f. graph with average degree 4 but is not

4-regular, then G = I9.
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4. Minimal claw-free line graphs

All line graphs are claw-free, but not all line graphs are m.c.f.. For example, the

line graph of K3,3 is m.c.f., but the line graph of K4 is not. Theorem 5 characterizes

those line graphs that are m.c.f..

Definition 3. Let G be a graph with edges x, y ∈ E(G) so that x and y are

incident. If a subgraph of G that is not necessarily induced in G, is isomorphic to

the graph shown in Figure 5 (with x, y as pendant edges), then it is called an F -graph

of (x, y).

x

y

c

t

Figure 5. An F -graph for (x, y)

Lemma 4. The line graph L (G) of a graph G is m.c.f. if and only if for every

pair of incident edges x and y, G contains an F -graph of (x, y).

P r o o f. There is only one graph up to isomorphism whose line graph is isomor-

phic to a near-claw NC(xy; c, t), namely the F -graph of (x, y). Thus, G contains an

F -graph of (x, y) if and only if its line graph contains a near-claw NC(xy; c, t). �

Theorem 5. Let L (G) be the line graph of graph G. The following statements

are equivalent:

(i) L (G) is m.c.f.

(ii) No vertex v of G has neighbours u, w with

(∗∗). for all z ∈ N(v) − {u, w} : N(z) = {v} or N(z) = {u, v, w}

Note that property (∗∗) holds if and only if degG v = 2, or NG[v] = {x1, . . . ,

xk, y1, . . . , yl, u, v} induces the graph shown in Figure 6, where degG xi = 1 and

degG yj = 3 (where, possibly k = 0 or l = 0) and where uw might or might not be

an edge.
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x1 x2 xk

u w

y1

y2 yl

v

· · ·

· · ·

Figure 6. 〈NG[v]〉 if v has property (∗∗)

P r o o f. Assume that G contains a vertex v that has property (∗∗). Let w, u ∈

N(v), and let x = uv and y = vw be edges in G. Since for any vertex z ∈ N(v) −

{u, w}, z is only adjacent to vertices in NG[v], G cannot contain an F -subgraph of

(x, y). Thus by Lemma 4, L (G) is not m.c.f..

Assume that G satisfies (ii). Consider any pair of incident edges, say x = uv and

y = vw. Let z ∈ N(v)−{u, w}; then, since G satisfies (ii), NG(z) 6= {v} or {u, w, v}.

Hence z is adjacent to some other vertex in G, besides v and thus degG z > 2.

However, since z does not have property (∗∗), degG z 6= 2 and therefore degG z > 3.

Since NG(z) 6= {u, v, w}, z must be adjacent to some new vertex, say t, in G. Then

the subgraph induced by the edges uv, vw, vz and zt in G is an F -subgraph of G,

and hence by Lemma 4, L (G) − xy contains a claw. Thus L (G) is m.c.f.. �

By Theorem 5, we have the following corollaries.

Corollary 3. If δ(G) > 4, then L (G) is m.c.f.

Corollary 4. If δ(G) > 3 and G contains no induced K4 − e or K4, then L (G)

is m.c.f..

For example, the line graph of every cubic (K4− e)-free graph is a 4-regular m.c.f.

graph. We now present a converse.

Theorem 6. G is a 4-regular m.c.f. graph if and only if G is the line graph of a

cubic (K4 − e)-free graph.

P r o o f. By the above corollary, one direction is true. So assume G is a 4-regular

m.c.f. graph.

Suppose G contains a clique {u, v, w, x}. Let a be the fourth neighbour of u. Since

ua is in a triangle, a is adjacent to some other vertex of the clique, say v. Similarly,
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the fourth neighbour b of w is also adjacent to x (possibly a = b). But then the

removal of ux does not create a claw, a contradiction. Hence G does not contain K4.

Since G is claw-free, by the characterization of line graphs by Van Rooij and

Wilf [9], it suffices to show that if H = K4 − e is an induced subgraph of G, then

at least one of the two triangles T of H is “even”: that is, every vertex in G has an

even number of neighbours on T .

So let H = K4 − e be an induced subgraph of G with vertex set {u, v, x, y} with

xy /∈ E(G). Let a be the fourth neighbour of u. Since there is no claw centered at

u, the vertex a is adjacent to at least one of x or y, say the former. By the lack of

K4’s, av /∈ E(G). The removal of edge xv creates a claw; so x and v have another

common neighbour b. Thus the triangle T = {u, v, x} is even: only a, y and b are

adjacent to T and each has exactly two neighbours on T . This shows that G is a line

graph.

Say G = L (G′). Since G does not contain K4, the graph G′ has maximum

degree 3, and is thus cubic.

Now, if G′ contains an induced K4−e, then let x and y be two edges of the K4−e

that do not lie in a common triangle: these do not lie in an F -graph. Since G is

m.c.f., G′ is (K4 − e)-free. �

5. Open questions

We list here some other thoughts and open questions.

1. What is the maximum degree in a regular m.c.f. graph? One can take

L (K(3, 3)) and duplicate each vertex: the result is approximately 5n/9-regular.

2. What is the maximum number of edges in an m.c.f. graph? There are m.c.f.

graphs with
(

n
2

)

− 2n−O(1) edges; for example, take the graph of Figure 3 and

repeatedly duplicate the vertex of maximum degree.

3. Which m.c.f. graphs are planar? The question of which line graphs are planar

was solved by Sedláček [7]. He showed that a line graph L(G) is planar iff G is

planar, the maximum degree of G is at most 4 and any degree-4 vertex of G is

a cut-vertex. It is known that a claw-free planar graph has maximum degree at

most 6 [5].

4. On defining m.c.f. graphs, there was a brief hope that it would be easier to

prove hamiltonicity results about m.c.f. graphs (perhaps generalizing results

about locally-connected claw-free graphs). However, it is an open question to

show the class B to be hamiltonian. Indeed via results of Ryjáček [6] and

the fifth author [4], the question of 4-connectedness implying hamiltonicity is

equivalent for (1) claw-free graphs; (2) m.c.f. graphs; (3) line graphs; and (4)
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bow-tie graphs. Nevertheless, there is a series of results that 2-connected, claw-

free and F -free for a particular graph F implies hamiltonicity (see [3]). Perhaps

one can improve these results for m.c.f. graphs.

5. What about subgraphs and supergraphs? We have seen claw-free graphs which

do not contain an m.c.f. graph. So one problem is to characterize the claw-free

graphs which contain no m.c.f. graph. Alternatively, characterize the claw-free

graphs where one can repeatedly remove edges and never reach an m.c.f. graph.

In the other direction: Is every claw-free graph an induced subgraph of an m.c.f.

graph?
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