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1. Introduction

Investigation of partial multiplace functions by algebraic methods plays an impor-

tant role in modern mathematics where we consider various operations on sets of

functions which are naturally defined. The basic operation for n-place functions is

a superposition (composition) O of n + 1 such functions, but there are some other

naturally defined operations which are also worth considering. In this paper we con-

sider binary Mann’s compositions ⊕
1
, . . . ,⊕

n
for partial n-place functions introduced

in [4], which have many important applications for the studies of binary and n-ary

operations. Algebras of n-place functions closed with respect to these compositions

were investigated, for example, in [11] and [16].
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2. Preliminaries and notations

Let An be the n-th Cartesian product of a set A. Any partial mapping from An

into A is called a partial n-place function. The set of all such mappings is denoted

by F (An, A). On F (An, A) we define the Menger superposition (composition) of n-

place functions O : (f, g1, . . . , gn) 7→ f [g1 . . . gn] and n binary compositions ⊕
1
, . . . ,⊕

n

putting

f [g1 . . . gn](a1, . . . , an) = f(g1(a1, . . . , an), . . . , gn(a1, . . . , an)),(1)

(f ⊕
i
g)(a1, . . . , an) = f(a1, . . . , ai−1, g(a1, . . . , an), ai+1, . . . , an),(2)

for all f, g, g1, . . . , gn ∈ F (An, A) and (a1, . . . , an) ∈ An, where the left- and the

right-hand sides of (1) and (2) are defined or not defined simultaneously. Since, as

it is not difficult to verify, each composition ⊕
i
is an associative operation, algebras

of the form (Φ;⊕
1
, . . . ,⊕

n
) and (Φ; O,⊕

1
, . . . ,⊕

n
), where Φ ⊂ F (An, A), are called

respectively (2, n)-semigroups and Menger (2, n)-semigroups of n-place functions.

According to the general convention used in the theory of n-ary systems, the

sequence xi, xi+1, . . . , xj , where i 6 j, can be written as x
j
i (for i > j it is the empty

symbol). With this convention (1) and (2) can be written as

f [gn
1 ](an

1 ) = f(g1(a
n
1 ), . . . , gn(an

1 )),

(f ⊕
i
g)(an

1 ) = f(ai−1
1 , g(an

1 ), an
i+1).

An algebra (G; o) with one (n + 1)-ary operation o satisfying the identity

o(o(xn
0 ), yn

1 ) = o(x0, o(x1, y
n
1 ), . . . , o(xn, yn

1 ))

is called aMenger algebra of rank n (cf. [1], [10]). Such operation is called superasso-

ciative and by many authors is written as o(xn
0 ) = x0[x

n
1 ]. Such notation is motivated

by the fact that the composition O of n-place functions is, as it is not difficult to see,

an (n + 1)-ary superassociative operation. In this convention the above identity has

the form

(3) x0[x
n
1 ][yn

1 ] = x0[x1[y
n
1 ] . . . xn[yn

1 ] ],

where x0[x
n
1 ][yn

1 ] must be read as (x0[x
n
1 ])[yn

1 ].

It is clear that an arbitrary semigroup is a Menger algebra of rank 1. Some prop-

erties of Menger algebras can be characterized by its diagonal semigroup (see [10]),

i.e., the semigroup (G, ⋆), where x ⋆ y = o(x, y, . . . , y).
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Let {⊕
1
, . . . ,⊕

n
} be the collection of associative binary operations defined on G.

According to [11] and [16], an algebra (G;⊕
1
, . . . ,⊕

n
) is called a (2, n)-semigroup. By

a Menger (2, n)-semigroup we mean an algebra (G; o,⊕
1
, . . . ,⊕

n
), where (G; o) is a

Menger algebra of rank n and (G;⊕
1
, . . . ,⊕

n
) is a (2, n)-semigroup. Any homomor-

phism of a (Menger) (2, n)-semigroup onto some (Menger) (2, n)-semigroup of n-place

functions is called a representation by n-place functions. A representation is faithful

if it is an isomorphism (cf. [10]).

All expressions of the form (. . . ((x ⊕
i1

y1)⊕
i2

y2) . . .) ⊕
is

ys, where ⊕
ik

are operations

from the collection {⊕
1
, . . . ,⊕

n
} and x, y1, . . . , xs ∈ G, are written as x ⊕

i1
y1 ⊕

i2
. . .⊕

is

ys

or, in the abbreviated form, as x
is

⊕
i1

ys
1. The symbol µi(

is

⊕
i1

xs
1), in the case i =

ik and i 6= ip for all p < k 6 s, denotes the element xik

is

⊕
ik+1

xs
k+1. In any

other case it is the empty symbol. For example, µ1(⊕
2
x⊕

2
y⊕

3
z⊕

1
u⊕

3
v) = u⊕

3
v,

µ2(⊕
2
x⊕

2
y⊕

3
z⊕

1
u⊕

3
v) = x⊕

2
y⊕

3
z⊕

1
u⊕

3
v, µ3(⊕

2
x⊕

2
y⊕

3
z⊕

1
u⊕

3
v) = z⊕

1
u⊕

3
v. The

symbol µ4(⊕
2
x⊕

2
y⊕

3
z⊕

1
u⊕

3
v) is empty.

In [11] it is proved that a (2, n)-semigroup (G;⊕
1
, . . . ,⊕

n
) has a faithful represen-

tation by n-place functions if and only if it satisfies the implication1

(4)

n
∧

i=1

(

µi(
is

⊕
i1

xs
1) = µi(

jk

⊕
j1

yk
1 )

)

−→ g
is

⊕
i1

xs
1 = g

jk

⊕
j1

yk
1

for all g, x1, . . . , xs, y1, . . . , yk ∈ G. A Menger (2, n)-semigroup has a faithful repre-

sentation if and only if it satisfies (4) and

(x⊕
i
y)[zn

1 ] = x[zi−1
1 y[zn

1 ] zn
i+1],(5)

x[yn
1 ]⊕

i
z = x[(y1⊕

i
z) . . . (yn⊕

i
z)],(6)

x
is

⊕
i1

ys
1 = x[µ1(

is

⊕
i1

ys
1) . . . µn(

is

⊕
i1

ys
1)],(7)

where {i1, . . . , is} = {1, . . . , n} and i = 1, . . . , n. In the sequel, any (Menger) (2, n)-

semigroup satisfying the condition (4) (respectively, (4), (5), (6) and (7)) will be

called representable.

1 We use the following notation: s-negation, ∧-conjunction, ∨-disjunction, →-implication,
↔-equivalence, ∀-universal quantifier, ∃-existential quantifier.
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Let Φ be some set of n-place functions, i.e., Φ ⊂ F (An, A). Consider the following

three binary relations on Φ:

χΦ = {(f, g) ∈ Φ× Φ | pr1 f ⊂ pr1 g},

γΦ = {(f, g) ∈ Φ× Φ | pr1 f ∩ pr1 g 6= ∅},

πΦ = {(f, g) ∈ Φ× Φ | pr1 f = pr1 g},

where pr1 f is the domain of f, called respectively: inclusion of domains, co-

definability and equality of domains.

Abstract characterizations of such relations for semigroups of transformations were

studied in [7], [8], [9] and for Menger algebras of n-place functions in [12], [13], [14].

We characterize these relations in (2, n)-semigroups and in Menger (2, n)-semigroups

of n-place functions.

Consider a representable (Menger) (2, n)-semigroup (G;⊕
1
, . . . ,⊕

n
) (respectively,

(G; o,⊕
1
, . . . ,⊕

n
)) and its representation P by n-place functions. On the set G we

define three binary relations:

χP = {(g1, g2) | pr1 P (g1) ⊂ pr1 P (g2)},

γP = {(g1, g2) | pr1 P (g1) ∩ pr1 P (g2) 6= ∅},

πP = {(g1, g2) | pr1 P (g1) = pr1 P (g2)}.

It is not difficult to see that χP is a quasi-order, i.e., χP is reflexive and transitive

relation, and πP is an equivalence such that πP = χP ∩ χ−1
P , where χ−1

P = {(b, a) |

(a, b) ∈ χP }.

Let (Pi)i∈I be a family of representations of a representable (2, n)-semigroup

(G;⊕
1
, . . . ,⊕

n
) (respectively, representable Menger (2, n)-semigroup (G; o,⊕

1
, . . . ,⊕

n
))

by n-place functions defined on sets (Ai)i∈I respectively, where the sets Ai are pair-

wise disjoint. The sum of (Pi)i∈I is the mapping P : g 7→ P (g), denoted by
∑

i∈I

Pi,

where P (g) is an n-place function on A =
⋃

i∈I

Ai, such that P (g) =
⋃

i∈I

Pi(g) for

every g ∈ G. The sum of any family of representations by n-place functions is also

a representation by n-place functions and

(8) χP =
⋂

i∈I

χPi
, γP =

⋃

i∈I

γPi
, πP =

⋂

i∈I

πPi
.

Let 0 be a zero of a (2, n)-semigroup (G;⊕
1
, . . . ,⊕

n
) (respectively, Menger (2, n)-

semigroup (G; o,⊕
1
, . . . ,⊕

n
)), i.e., 0⊕

i
g = g⊕

i
0 = 0 (respectively, 0⊕

i
g = g⊕

i
0 = 0

and 0[gn
1 ] = g[gi−1

1 0 gn
i+1] = 0) for all i = 1, . . . , n and g, g1, . . . , gn ∈ G. We say that

1018



a binary relation ̺ ⊂ G×G is 0-reflexive, if (g, g) ∈ ̺ for all g ∈ G\{0}. A symmetric

relation ̺ which is reflexive if 0 ∈ pr1 ̺, and 0-reflexive if 0 6∈ pr1 ̺, is called a 0-quasi-

equivalence. If G does not contains a zero, then by a 0-quasi-equivalence relation we

understand a reflexive and symmetric binary relation.

A binary relation ∆ on a Menger (2, n)-semigroup (G; o,⊕
1
, . . . ,⊕

n
) is called:

• l-regular, if

x∆ y −→ x[zn
1 ]∆y[zn

1 ],(9)

x∆ y −→ x⊕
i
z∆y⊕

i
z(10)

for all i = 1, . . . , n and x, y, z, z1, . . . , zn ∈ G,

• l-cancellative, if

x[zn
1 ]∆y[zn

1 ] −→ x∆ y,(11)

x⊕
i
z∆y⊕

i
z −→ x∆ y(12)

for all i = 1, . . . , n and x, y, z, z1, . . . , zn ∈ G,

• v-negative, if

x[yn
1 ]∆yi, i = 1, . . . , n,(13)

x
is

⊕
i1

zs
1∆µj(

is

⊕
i1

zs
1)(14)

for all x, y1, . . . , yn, z1, . . . , zs ∈ G and j ∈ {i1, . . . , is}.

In the case of (2, n)-semigroups these relations are defined by (10), (12) and (14),

respectively.2

3. Projection representable relations on Menger (2, n)-semigroups

Let G = (G; o,⊕
1
, . . . ,⊕

n
) be a representable Menger (2, n)-semigroup and let χ,

γ and π be binary relations on G. We say that the triplet (χ, γ, π) is (faithful)

projection representable for G if there exists a (faithful) representation P of G by

n-place functions for which χ = χP , γ = γP and π = πP . Analogously we define

projection representable pairs and separate relations.

In the sequel, instead of (g1, g2) ∈ χ, (g1, g2) ∈ γ and (g1, g2) ∈ π we will write

g1 ⊏ g2, g1⊤g2 and g1 ≡ g2, respectively.

2 If ∆ is a quasi-order relation, then the condition (13) is equivalent to condition

(∀x)(∀y)(∀u)(∀w)(∀i)((x, u[w|iy]) ∈ ∆ −→ (x, y) ∈ ∆),

where u, x, y ∈ G, w ∈ Gn, i ∈ {1, . . . , n} and u[w|iy] = u[wi−1
1 ywn

i+1] (see [10]).
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Theorem 1. A triplet (χ, γ, π) of binary relations on G is projection representable

for a representable Menger (2, n)-semigroup G if and only if the following conditions

are satisfied:

(a) χ is an l-regular and v-negative quasi-order,

(b) γ is an l-cancellative 0-quasi-equivalence,

(c) π = χ ∩ χ−1 and

(15) h1⊤h2 ∧ h1 ⊏ g1 ∧ h2 ⊏ g2 −→ g1⊤g2

for all h1, h2, g1, g2 ∈ G.

P r o o f. Necessity. Let (Φ; O,⊕
1
, . . . ,⊕

n
) be a Menger (2, n)-semigroup of n-place

functions determined on the set A. Let us show that the triplet (χΦ, γΦ, πΦ) satisfies

all the conditions of the theorem.

At first we prove the condition (a). The relation χΦ is obviously a quasi-order. Let

f, g, h1, . . . , hn ∈ Φ and (f, g) ∈ χΦ, i.e., pr1 f ⊂ pr1 g. Suppose that ā ∈ pr1 f [hn
1 ]

for some ā ∈ An. Then {f [hn
1 ](ā)} 6= ∅, i.e., {f(h1(ā), . . . , hn(ā))} 6= ∅. Thus

(h1(ā), . . . , hn(ā)) ∈ pr1 f and, consequently, (h1(ā), . . . , hn(ā)) ∈ pr1 g. Therefore

{g(h1(ā), . . . , hn(ā))} 6= ∅, whence {g[hn
1 ](ā)} 6= ∅, i.e., ā ∈ pr1 g[hn

1 ]. So, pr1 f [hn
1 ] ⊂

pr1 g[hn
1 ], which implies (f [hn

1 ], g[hn
1 ]) ∈ χΦ. Similarly we can prove that for all

f, g, h ∈ Φ and i = 1, . . . , n, from (f, g) ∈ χΦ it follows that (f ⊕
i
h, g⊕

i
h) ∈ χΦ. This

means that the relation χΦ is l-regular. The proof of the v-negativity is analogous.

To prove (b) let Θ be a zero of a Menger (2, n)-semigroup (Φ; O,⊕
1
, . . . ,⊕

n
). If

Θ 6= ∅, then pr1 Θ 6= ∅, whence (Θ, Θ) ∈ γΦ. Thus Θ ∈ pr1 γΦ. So, in this case γΦ is

reflexive. For Θ = ∅ we have pr1 Θ = ∅. Therefore Θ 6∈ pr1 γΦ, i.e., (f, f) ∈ γΦ for

every f 6= Θ. Hence γΦ is Θ-reflexive. Since γΦ is symmetric, the above means that

γΦ is a Θ-quasi-equivalence. If Φ does not contain a zero, then γΦ is a reflexive and

symmetric binary relation.

Suppose now that (f [hn
1 ], g[hn

1 ]) ∈ γΦ for some f, g ∈ Φ, h1, . . . , hn ∈ Φ. Then

pr1 f [hn
1 ] ∩ pr1 g[hn

1 ] 6= ∅, i.e., there exists ā ∈ An such that ā ∈ pr1 f [hn
1 ] and

ā ∈ pr1 g[hn
1 ]. Therefore {f [hn

1 ](ā)} 6= ∅ and {g[hn
1 ](ā)} 6= ∅. Thus {f(h1(ā), . . . ,

hn(ā))} 6= ∅ and {g(h1(ā), . . . , hn(ā))} 6= ∅, which shows that (h1(ā), . . . , hn(ā)) ∈

pr1 f ∩ pr1 g. So, (f, g) ∈ γΦ. Analogously, for f, g, h ∈ Φ, i = 1, . . . , n, from

(f ⊕
i
h, g⊕

i
h) ∈ γΦ it follows that (f, g) ∈ γΦ. So, γΦ is l-cancellative.

Since in (c) the first condition is obvious, we prove (15) only. For this let (h1, h2) ∈

γΦ, (h1, g1) ∈ χΦ and (h2, g2) ∈ χΦ for some h1, h2, g1, g2 ∈ Φ. Then pr1 h1∩pr1 h2 6=

∅, pr1 h1 ⊂ pr1 g1 and pr1 h2 ⊂ pr1 g2, whence ∅ 6= pr1 h1 ∩ pr1 h2 ⊂ pr1 g1 ∩ pr1 g2.

Thus pr1 g1 ∩ pr1 g2 6= ∅, i.e., (g1, g2) ∈ γΦ, which proves (15) and completes the

proof of the necessity of the conditions formulated in the theorem. �
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To prove the sufficiency of these conditions we must introduce some additional

constructions. Consider the triplet (χ, γ, π) of binary relations on a representable

Menger (2, n)-semigroup G = (G; o,⊕
1
, . . . ,⊕

n
) satisfying all the conditions of the

theorem. Let e1, . . . , en be pairwise different elements not belonging to G. For all

x1, . . . , xs ∈ G, i = 1, . . . , n, and operations ⊕
i1

, . . . ,⊕
is

defined on G, we denote by

µ∗

i (
is

⊕
i1

xs
1) an element of G

∗ = G ∪ {e1, . . . , en} such that

µ∗

i (
is

⊕
i1

xs
1) =







µi(
is

⊕
i1

xs
1) if i ∈ {i1, . . . , is},

ei if i 6∈ {i1, . . . , is}.

Consider the set A∗ = Gn ∪ A0 ∪ {(e1, . . . , en)}, where A0is the collection of all

n-tuples (x1, . . . , xn) ∈ (G∗)n for which there exists y1, . . . , ys ∈ G and i1, . . . , in ∈

{1, . . . , n} such that xi = µ∗

i (
is

⊕
i1

ys
1). Let (h1, h2) ∈ G2 be fixed. For each g ∈ G we

define a partial n-place function P(h1,h2)(g) : A∗ → G such that

xn
1 ∈ pr1 P(h1,h2)(g)←→















































h1 ⊏ g[xn
1 ] ∨ h2 ⊏ g[xn

1 ] if xn
1 ∈ Gn,

h1 ⊏ g ∨ h2 ⊏ g if xn
1 = en

1 ,

h1 ⊏ g
is

⊕
i1

ys
1 ∨ h2 ⊏ g

is

⊕
i1

ys
1 if xi = µ∗

i (
is

⊕
i1

ys
1),

i = 1, . . . , n, for

some ys
1 ∈ Gsand

i1 . . . , is ∈ {1, . . . , n}.

For xn
1 ∈ pr1 P(h1,h2)(g) we put

(16) P(h1,h2)(g)(xn
1 ) =















































g[xn
1 ] if xn

1 ∈ Gn,

g if xn
1 = en

1 ,

g
is

⊕
i1

ys
1 if xi = µ∗

i (
is

⊕
i1

ys
1),

i = 1, . . . , n, for

some ys
1 ∈ Gs and

i1 . . . , is ∈ {1, . . . , n}.

Let us show that P(h1,h2) is a representation of G by n-place functions.
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Proposition 1. The function P(h1,h2)(g) is single-valued.

P r o o f. Let xn
1 ∈ pr1 P(h1,h2)(g), where g, h1, h2 ∈ G are fixed. Since for

xn
1 ∈ Gn and xn

1 = en
1 the value of P(h1,h2)(g)(xn

1 ) is uniquely determined, we verify

only the case when xi = µ∗

i (
is

⊕
i1

ys
1), i = 1, . . . , n, for some ys

1 ∈ Gs. If for some

zk
1 ∈ Gk and j1, . . . , jk ∈ {1, . . . , n} we have also xi = µ∗

i (
jk

⊕
j1

zk
1 ), i = 1, . . . , n, then

µi(
is

⊕
i1

ys
1) = µi(

jk

⊕
j1

zk
1 ) for every i = 1, . . . , n, which, according to (4), implies g

is

⊕
i1

ys
1 =

g
jk

⊕
j1

zk
1 . This means that also in this case P(h1,h2)(g)(xn

1 ) is uniquely determined.

Thus, the function P(h1,h2)(g) is single-valued. �

Proposition 2. For all g, g1, . . . , gn, h1, h2 ∈ G we have

P(h1,h2)(g[gn
1 ]) = P(h1,h2)(g)[P(h1,h2)(g1) . . . P(h1,h2)(gn)].

P r o o f. Let g, g1, . . . , gn ∈ G and xn
1 ∈ pr1 P(h1,h2)(g[gn

1 ]). If xn
1 ∈ Gn, then

h1 ⊏ g[gn
1 ][xn

1 ] ∨ h2 ⊏ g[gn
1 ][xn

1 ],

whence, applying the superassociativity, we obtain

(17) h1 ⊏ g[g1[x
n
1 ] . . . gn[xn

1 ]] ∨ h2 ⊏ g[g1[x
n
1 ] . . . gn[xn

1 ]].

This together with the v-negativity of χ implies

(18) h1 ⊏ gi[x
n
1 ] ∨ h2 ⊏ gi[x

n
1 ], i = 1, . . . , n.

¿From (17) it follows that (g1[x
n
1 ], . . . , gn[xn

1 ]) ∈ pr1 P(h1,h2)(g), from (18) that xn
1 ∈

pr1 P(h1,h2)(gi), i = 1, . . . , n. So, if xn
1 ∈ Gn, then

(19) xn
1 ∈ pr1 P(h1,h2)(g[gn

1 ])←→







(g1[x
n
1 ], . . . , gn[xn

1 ]) ∈ pr1 P(h1,h2)(g),
n
∧

i=1

xn
1 ∈ pr1 P(h1,h2)(gi).

Analogously we can verify that

(20) en
1 ∈ pr1 P(h1,h2)(g[gn

1 ])←→







(g1, . . . , gn) ∈ pr1 P(h1,h2)(g),
n
∧

i=1

en
1 ∈ pr1 P(h1,h2)(gi).
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Now let xi = µ∗

i (
is

⊕
i1

ys
1), i = 1, . . . , n, for some i1, . . . , is ∈ {1, . . . , n} and ys

1 ∈ Gs.

Then xn
1 ∈ pr1 P(h1,h2)(g[gn

1 ]) implies

h1 ⊏ g[gn
1 ]

is

⊕
i1

ys
1 ∨ h2 ⊏ g[gn

1 ]
is

⊕
i1

ys
1,

which, by (6), is equivalent to

(21) h1 ⊏ g[(g1

is

⊕
i1

ys
1) . . . (gn

is

⊕
i1

ys
1)] ∨ h2 ⊏ g[(g1

is

⊕
i1

ys
1) . . . (gn

is

⊕
i1

ys
1)].

¿From this, applying the v-negativity of χ, we obtain

(22) h1 ⊏ gi

is

⊕
i1

ys
1 ∨ h2 ⊏ gi

is

⊕
i1

ys
1

for every i = 1, . . . , n.

The condition (21) is equivalent to (g1

is

⊕
i1

ys
1, . . . , gn

is

⊕
i1

ys
1) ∈ pr1 P(h1,h2)(g). The

condition (22) shows that xn
1 ∈ pr1 P(h1,h2)(gi) for every i = 1, . . . , n, where xi =

µ∗

i (
is

⊕
i1

ys
1), i = 1, . . . , n. So,

(23) xn
1 ∈ pr1 P(h1,h2)(g[gn

1 ])←→











(g1

is

⊕
i1

ys
1, . . . , gn

is

⊕
i1

ys
1) ∈ pr1 P(h1,h2)(g),

n
∧

i=1

xn
1 ∈ pr1 P(h1,h2)(gi),

where xi = µ∗

i (
is

⊕
i1

ys
1), i = 1, . . . , n.

Let xn
1 ∈ pr1 P(h1,h2)(g[gn

1 ]). If xn
1 ∈ Gn, then, according to (16) and (19), we have

P(h1,h2)(g[gn
1 ])(xn

1 ) = g[gn
1 ][xn

1 ] = g[g1[x
n
1 ] . . . gn[xn

1 ]]

= P(h1,h2)(g)(g1[x
n
1 ], . . . , gn[xn

1 ])

= P(h1,h2)(g)
(

P(h1,h2)(g1)(x
n
1 ), . . . , P(h1,h2)(gn)(xn

1 )
)

= P(h1,h2)(g)
[

P(h1,h2)(g1) . . . P(h1,h2)(gn)
]

(xn
1 ).

Similarly, we can prove that

P(h1,h2)(g[gn
1 ])(en

1 ) = P(h1,h2)(g)
[

P(h1,h2)(g1) . . . P(h1,h2)(gn)
]

(en
1 )

for en
1 ∈ pr1 P(h1,h2)(g[gn

1 ]).
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If xn
1 ∈ pr1 P(h1,h2)(g[gn

1 ]), where xi = µ∗

i (
is

⊕
i1

ys
1), i = 1, . . . , n, for some ys

1 ∈ Gs,

i1, . . . , is ∈ {1, . . . , n}, then, according to (16) and (23), we obtain

P(h1,h2)(g[gn
1 ])(xn

1 ) = g[gn
1 ]

is

⊕
i1

ys
1 = g[(g1

is

⊕
i1

ys
1) . . . (gn

is

⊕
i1

ys
1)]

= P(h1,h2)(g)(g1

is

⊕
i1

ys
1, . . . , gn

is

⊕
i1

ys
1)

= P(h1,h2)(g)
(

P(h1,h2)(g1)(x
n
1 ), . . . , P(h1,h2)(gn)(xn

1 )
)

= P(h1,h2)(g)
[

P(h1,h2)(g1) . . . P(h1,h2)(gn)
]

(xn
1 ).

The proof of Proposition 2 is complete. �

Proposition 3. For all g1, g2, h1, h2 ∈ G and i = 1, . . . , n we have

P(h1,h2)(g1⊕
i
g2) = P(h1,h2)(g1)⊕

i
P(h1,h2)(g2).

P r o o f. Let xn
1 ∈ pr1 P(h1,h2)(g1⊕

i
g2). If x

n
1 ∈ Gn, then

h1 ⊏ (g1⊕
i
g2)[x

n
1 ] ∨ h2 ⊏ (g1⊕

i
g2)[x

n
1 ],

which, by (5), is equivalent to

(24) h1 ⊏ g1[x
i−1
1 g2[x

n
1 ]xn

i+1] ∨ h2 ⊏ g1[x
i−1
1 g2[x

n
1 ]xn

i+1].

This, according to the v-negativity of χ, implies

(25) h1 ⊏ g2[x
n
1 ] ∨ h2 ⊏ g2[x

n
1 ].

The condition (24) means that (xi−1
1 , g2[x

n
1 ], xn

i+1) ∈ pr1 P(h1,h2)(g1). From (25) we

obtain xn
1 ∈ pr1 P(h1,h2)(g2). So, for xn

1 ∈ Gn we have

(26) xn
1 ∈ pr1 P(h1,h2)(g1⊕

i
g2)←→

{

(xi−1
1 , g2[x

n
1 ], xn

i+1) ∈ pr1 P(h1,h2)(g1),

xn
1 ∈ pr1 P(h1,h2)(g2).

Consider now the case when xn
1 = en

1 . In this case en
1 ∈ pr1 P(h1,h2)(g1⊕

i
g2)means,

by (17), that

(27) h1 ⊏ g1⊕
i
g2 ∨ h2 ⊏ g1⊕

i
g2.
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Because g1⊕
i
g2 ⊏ µi(⊕

i
g2) = g2, by the v-negativity of χ, the above condition gives

(28) h1 ⊏ g2 ∨ h2 ⊏ g2.

But µ∗

i (⊕
i
g2) = µi(⊕

i
g2) = g2 and µ∗

k(⊕
i
g2) = ek for k ∈ {1, . . . , n} \ {i}, so, (27)

implies (ei−1
1 , g2, e

n
i+1) ∈ pr1 P(h1,h2)(g1). On the other hand, from (28) it follows

that en
1 ∈ pr1 P(h1,h2)(g2). Therefore

(29) en
1 ∈ pr1 P(h1,h2)(g1⊕

i
g2)←→

{

(ei−1
1 , g2, e

n
i+1) ∈ pr1 P(h1,h2)(g1),

en
1 ∈ pr1 P(h1,h2)(g2).

In the third case when xi = µ∗

i (
is

⊕
i1

ys
1), i = 1, . . . , n, for some ys

1 ∈ Gs, i1, . . . , is ∈

{1, . . . , n}, from xn
1 ∈ pr1 P(h1,h2)(g1⊕

i
g2) we conclude that

(30) h1 ⊏ (g1⊕
i
g2)

is

⊕
i1

ys
1 ∨ h2 ⊏ (g1⊕

i
g2)

is

⊕
i1

ys
1.

Since χ is v-negative, we have (g1⊕
i
g2)

is

⊕
i1

ys
1 ⊏ µi(⊕

i
g2

is

⊕
i1

ys
1) = g2

is

⊕
i1

ys
1, which means

that (30) can be written in the form

(31) h1 ⊏ g2

is

⊕
i1

ys
1 ∨ h2 ⊏ g2

is

⊕
i1

ys
1.

But µ∗

i (⊕
i
g2

is

⊕
i1

ys
1) = µi(⊕

i
g2

is

⊕
i1

ys
1) = g2

is

⊕
i1

ys
1 and µ∗

k(⊕
i
g2

is

⊕
i1

ys
1) = µ∗

k(
is

⊕
i1

ys
1) for k ∈

{1, . . . , n}\{i}. This, together with the condition (30), proves (xi−1
1 , g2

is

⊕
i1

ys
1, x

n
i+1) ∈

pr1 P(h1,h2)(g1). Similarly, from (31) we can deduce xn
1 ∈ pr1 P(h1,h2)(g2). Therefore

xn
1 ∈ pr1 P(h1,h2)(g1⊕

i
g2)←→







(xi−1
1 , g2

is

⊕
i1

ys
1, x

n
i+1) ∈ pr1 P(h1,h2)(g1)

xn
1 ∈ pr1 P(h1,h2)(g2),

where xi = µ∗

i (
is

⊕
i1

ys
1), i = 1, . . . , n.

Let xn
1 ∈ pr1 P(h1,h2)(g1⊕

i
g2). If xn

1 ∈ Gn, then, according to (16) and (26), we

have

P(h1,h2)(g1⊕
i
g2)(x

n
1 ) = (g1⊕

i
g2)[x

n
1 ] = g1[x

i−1
1 g2[x

n
1 ]xn

i+1]

= P(h1,h2)(g1)
(

xi−1
1 , g2[x

n
1 ], xn

i+1

)

= P(h1,h2)(g1)
(

xi−1
1 , P(h1,h2)(g2)(x

n
1 ), xn

i+1

)

= P(h1,h2)(g1)⊕
i
P(h1,h2)(g2)(x

n
1 ).
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If xn
1 = en

1 , then, analogously as in the previous case, using (16) and (29) we obtain

P(h1,h2)(g1⊕
i
g2)(e

n
1 ) = P(h1,h2)(g1)⊕

i
P(h1,h2)(g2)(e

n
1 ).

Similarly, in the case when xi = µ∗

i (
is

⊕
i1

ys
1), i = 1, . . . , n, for some ys

1 ∈ Gs,

i1, . . . , is ∈ {1, . . . , n}, we have

P(h1,h2)(g1⊕
i
g2)(x

n
1 ) = (g1⊕

i
g2)

is

⊕
i1

ys
1

= P(h1,h2)(g1)(x
i−1
1 , g2

is

⊕
i1

ys
1, x

n
i+1)

= P(h1,h2)(g1)
(

xi−1
1 , P(h1,h2)(g2)(x

n
1 ), xn

i+1

)

= P(h1,h2)(g1)⊕
i
P(h1,h2)(g2)(x

n
1 ).

This completes our proof of Proposition 3. �

Basing on these propositions we are able to prove the sufficiency of the conditions

of Theorem 1.

Sufficiency. Let the triplet (χ, γ, π) of binary relations on a representable Menger

(2, n)-semigroup G = (G; o,⊕
1
, . . . ,⊕

n
) satisfy all the conditions of the theorem. Then,

as it follows from Propositions 1–3, for all h1, h2 ∈ G, the mapping P(h1,h2) is a rep-

resentation of G by n-place functions. Consider the family of representations P(h1,h2)

such that (h1, h2) ∈ γ. Let P be the sum of this family, i.e., P =
∑

(h1,h2)∈γ

P(h1,h2). Of

course, P is a representation of G by n-place functions. Let us show that χ = χP ,

γ = γP and π = πP .

Let (g1, g2) ∈ χP . Then, according to (8), we have
3 (g1, g2) ∈ χ(h1,h2) for all

(h1, h2) ∈ γ, i.e.,

(∀(h1, h2) ∈ γ)
(

pr1 P(h1,h2)(g1) ⊂ pr1 P(h1,h2)(g2)
)

,

which is equivalent to

(∀(h1, h2) ∈ γ)(∀xn
1 )

(

xn
1 ∈ pr1 P(h1,h2)(g1) −→ xn

1 ∈ pr1 P(h1,h2)(g2)
)

.

¿From this, for xn
1 = en

1 , we obtain

(∀(h1, h2) ∈ γ)
(

en
1 ∈ pr1 P(h1,h2)(g1) −→ en

1 ∈ pr1 P(h1,h2)(g2)
)

,

3 χ(h1,h2) denotes this quasi-order which corresponds to the representation P(h1,h2). Anal-

ogously are defined γ(h1,h2) and π(h1,h2).
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which means that

(∀(h1, h2) ∈ γ) (h1 ⊏ g1 ∨ h2 ⊏ g1 −→ h1 ⊏ g2 ∨ h2 ⊏ g2) .

Let g1 6= 0. Then g1⊤g1 and the above implication gives g1 ⊏ g1 −→ g1 ⊏ g2. This

proves (g1, g2) ∈ χ because χ is reflexive. If g1 = 0, then 0 = 0[g2 . . . g2] ⊏ g2, by the

v-negativity of χ. Hence (0, g2) ∈ χ. So, (g1, g2) ∈ χ, i.e., χP ⊂ χ.

Conversely, let (g1, g2) ∈ χ, (h1, h2) ∈ γ and xn
1 ∈ pr1 P(h1,h2)(g1). If xn

1 ∈ Gn,

then h1 ⊏ g1[x
n
1 ] ∨ h2 ⊏ g1[x

n
1 ]. Since the l-regularity of χ together with g1 ⊏ g2

implies g1[x
n
1 ] ⊏ g2[x

n
1 ], from the above we conclude that h1 ⊏ g2[x

n
1 ] ∨ h2 ⊏ g2[x

n
1 ],

i.e., xn
1 ∈ pr1 P(h1,h2)(g2). Similarly, in the case xn

1 = en
1 , from en

1 ∈ pr1 P(h1,h2)(g1)

it follows that en
1 ∈ pr1 P(h1,h2)(g2). In the case when xi = µ∗

i (
is

⊕
i1

ys
1), i = 1, . . . , n,

for some ys
1 ∈ Gs, i1, . . . , is ∈ {1, . . . , n}, applying the l-regularity of χ to g1 ⊏ g2,

we obtain g1

is

⊕
i1

ys
1 ⊏ g2

is

⊕
i1

ys
1, whence, in view of h1 ⊏ g1

is

⊕
i1

ys
1 ∨ h2 ⊏ g1

is

⊕
i1

ys
1,

we obtain h1 ⊏ g2

is

⊕
i1

ys
1 ∨ h2 ⊏ g2

is

⊕
i1

ys
1. Therefore xn

1 ∈ pr1 P(h1,h2)(g2), which

proves pr1 P(h1,h2)(g1) ⊂ pr1 P(h1,h2)(g2) for all (h1, h2) ∈ γ. Thus (g1, g2) ∈ χP , i.e.,

χ ⊂ χP . Consequently, χ = χP . This, together with the condition (c) formulated in

the theorem, gives π = χ ∩ χ−1 = χP ∩ χ−1
P = πP . So, π = πP .

Now let (g1, g2) ∈ γP . Then, according to (8), we have (g1, g2) ∈ γ(h1,h2) for some

(h1, h2) ∈ γ, i.e.,

(∃(h1, h2) ∈ γ)
(

pr1 P(h1,h2)(g1) ∩ pr1 P(h1,h2)(g2) 6= ∅
)

,

which is equivalent to

(∃(h1, h2) ∈ γ)(∃xn
1 )

(

xn
1 ∈ pr1 P(h1,h2)(g1) ∧ xn

1 ∈ pr1 P(h1,h2)(g2)
)

.

This, for xn
1 ∈ Gn, implies h1 ⊏ g1[x

n
1 ] ∨ h2 ⊏ g1[x

n
1 ] and h1 ⊏ g2[x

n
1 ] ∨ h2 ⊏

g2[x
n
1 ]. From the above, in view of h1⊤h2 and (15), we obtain g1[x

n
1 ]⊤g2[x

n
1 ], whence,

applying the l-cancellativity of γ, we get g1⊤g2, i.e., (g1, g2) ∈ γ.

In the similar way, we can see that in the case of xn
1 = en

1 the condition (g1, g2) ∈ γ

also holds.

If xi = µ∗

i (
is

⊕
i1

ys
1), i = 1, . . . , n, for some ys

1 ∈ Gs, i1, . . . , is ∈ {1, . . . , n}, then

h1 ⊏ g1

is

⊕
i1

ys
1 ∨ h2 ⊏ g1

is

⊕
i1

ys
1 and h1 ⊏ g2

is

⊕
i1

ys
1 ∨ h2 ⊏ g2

is

⊕
i1

ys
1, whence, by h1⊤h2

and (15), we obtain g1

is

⊕
i1

ys
1⊤g2

is

⊕
i1

ys
1. This gives g1⊤g2 because γ is l-cancellative.

In this way we have proved that in any case γP ⊂ γ.
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Conversely, let (g1, g2) ∈ γ. Since χ is reflexive, g1 ⊏ g1 and g2 ⊏ g2, whence

g1 ⊏ g1 ∨ g2 ⊏ g1 and g1 ⊏ g2 ∨ g2 ⊏ g2. Consequently, e
n
1 ∈ pr1 P(g1,g2)(g1) and

en
1 ∈ pr1 P(g1,g2)(g2). Thus (g1, g2) ∈ γ(g1,g2) ⊂ γP , i.e., γ ⊂ γP . So, γ = γP .

This completes the proof of the theorem. �

Problem 1. Find the necessary and sufficient conditions under which the triplet

(χ, γ, π) of binary relations will be faithful projection representable for a representable

Menger (2, n)-semigroup.

Deleting from Theorem 1 the equality π = χ ∩ χ−1 we obtain the necessary and

sufficient conditions under which the pair (χ, γ) of binary relations is projection

representable for a representable Menger (2, n)-semigroup. Furthermore, all parts of

the proof of this theorem connected with these two relations are valid. So, we have

the following

Theorem 2. A pair (χ, γ) of binary relations on G is projection representable

for a representable Menger (2, n)-semigroup G if and only if χ is an l-regular and

v-negative quasi-order, γ is an l-cancellative 0-quasi-equivalence and the implication

(15) is satisfied.

Problem 2. Find the necessary and sufficient conditions under which the pair

(χ, γ) of binary relations will be faithful projection representable for a representable

Menger (2, n)-semigroup.

Let G = (G; o,⊕
1
, . . . ,⊕

n
) be a representable Menger (2, n)-semigroup. Let us

consider on G the set Tn(G) of mappings t : x 7→ t(x) defined as follows:

(a) x ∈ Tn(G), i.e., Tn(G) contains the identity transformation of G,

(b) if i ∈ {1, . . . , n}, a, b1, . . . , bi−1, bi+1, . . . , bn ∈ G and t(x) ∈ Tn(G), then

a[bi−1
1 t(x)bn

i+1] ∈ Tn(G),

(c) Tn(G) contains those and only those mappings which are defined by (a) and

(b).

Let us consider on G two binary relations δ1 and δ2 defined in the following way:

1. (g1, g2) ∈ δ1 ←→ g1 = t(g2) for some t ∈ Tn(G),

2. (g1, g2) ∈ δ2 ←→















g1 = (x
is

⊕
i1

ys
1)[z] and g2 = µi(

is

⊕
i1

ys
1)[z] for some

x ∈ G, ys
1 ∈ Gs, z ∈ Gn, i, i1, . . . , is ∈ {1, . . . , n},

where the symbol [z] can be empty.

It is not difficult to see that δ1 and δ2 are l-regular relations, additionally δ1 is a

quasi-order. Moreover, a binary relation ̺ ⊂ G × G is v-negative if and only if it

contains δ1 and δ2.
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Let π be an l-regular equivalence on a representable Menger (2, n)-semigroup G .

Denote by χ(π) the binary relation ft(fR(δ2)◦δ1◦π), where fR and ft are respectively

the reflexive and the transitive closure operations (cf. [6]), and ◦ is the composition

of relations,4 i.e.,

(32) χ(π) = ft(fR(δ2) ◦ δ1 ◦ π) =

∞
⋃

n=1

((δ2 ∪△G) ◦ δ1 ◦ π)
n

.

Since π, δ1 and fR(δ2) are reflexive l-regular relations, χ(π) is an l-regular quasi-order

containing π, δ1 and δ2. So, χ(π) is a v-negative quasi-order.

Proposition 4. χ(π) is the smallest l-regular and v-negative quasi-order contain-

ing π, i.e., χ(π) ⊂ χ, where χ is any l-regular and v-negative quasi-order containing

π.

P r o o f. Let χ be an arbitrary l-regular and v-negative quasi-order containing π.

Then δ1 ⊂ χ and δ2 ⊂ χ, because χ is v-negative. Thus, π ⊂ χ, δ1 ⊂ χ and fR(δ2) ⊂

χ, whence fR(δ2)◦δ1◦π ⊂ χ3 ⊂ χ. From this, applying the transitivity of χ, we obtain

(fR(δ2)◦δ1◦π)n ⊂ χn ⊂ χ for every natural n. Therefore
∞
⋃

n=1
((δ2 ∪△G) ◦ δ1 ◦ π)n ⊂

χ, i.e., χ(π) ⊂ χ. �

Theorem 3. A pair (γ, π) of binary relations on a representable Menger (2, n)-

semigroup G is projection representable if and only if

(a) γ is an l-cancellative 0-quasi-equivalence,

(b) π is an l-regular equivalence such that χ(π) ∩ (χ(π))−1 ⊂ π,

(c) the following condition

(33) h1⊤h2 ∧ h1 ⊏π g1 ∧ h2 ⊏π g2 −→ g1⊤g2,

where h ⊏π g means (h, g) ∈ χ(π), is satisfied for all g1, g2, h1, h2 ∈ G.

P r o o f. Let P be such representation on a representable Menger (2, n)-

semigroup G for which γ = γP and π = πP . Then, by Proposition 3, we have

χ(π) ⊂ χP , whence χ(π) ∩ (χ(π))−1 ⊂ χP ∩ χ−1
P = πP = π.

Assume now that the premise of (33) is satisfied. Then (h1, h2) ∈ γ, (h1, g1) ∈ χ(π)

and (h2, g2) ∈ χ(π). Consequently, (h1, h2) ∈ γP , (h1, g1) ∈ χP and (h2, g2) ∈ χP ,

4 Recall that σ ◦ ̺ = {(a, c) | (∃b)(a, b) ∈ ̺ ∧ (b, c) ∈ σ}, fR(̺) = ̺ ∪△A, ft(̺) =
∞⋃

n=1
̺n,

where ̺n = ̺ ◦ ̺ ◦ . . . ◦ ̺
︸ ︷︷ ︸

n

, ̺, σ are binary relations on A, and △A = {(a, a) | a ∈ A}.
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i.e., pr1 P (h1) ∩ pr1 P (h2) 6= ∅, pr1 P (h1) ⊂ pr1 P (g1) and pr1 P (h2) ⊂ pr1 P (g2),

whence pr1 P (g1) ∩ pr1 P (g2) 6= ∅. So, (g1, g2) ∈ γP = γ, which means that the

condition (33) is satisfied. The necessity is proved.

To prove the sufficiency, assume that the pair (γ, π) of binary relations satisfies all

the conditions of the theorem and consider the triplet (χ(π), γ, π). Then π = π−1 ⊂

(χ(π))−1, because π ⊂ χ(π). Therefore π ⊂ χ(π) ∩ (χ(π))−1, which, together with

the condition (b), gives π = χ(π)∩ (χ(π))−1 . This means that the triplet (χ(π), γ, π)

satisfies all the conditions of Theorem 1. So, (χ(π), γ, π), and consequently, (γ, π) is

projection representable. The sufficiency is proved. �

Problem 3. Find the necessary and sufficient conditions under which the pair

(γ, π) of binary relations will be faithful projection representable.

Applying the method of mathematical induction to (32) we can prove the following

proposition.

Proposition 5. The condition (g1, g2) ∈ χ(π), where g1, g2 ∈ G, means that the

system of conditions

g1 = x0 ∧ g2 = xn,

n−1
∧

i=0

























xi ≡ ti((yi

ksi

⊕
k1i

zsi

1i
)[wi]),

xi+1 = µki
(

ksi

⊕
k1i

zsi

1i
)[wi]













∨ xi ≡ ti(xi+1)



































(34)

is valid for some n ∈ N, xi, yi, zi ∈ G, wi ∈ Gn, ti ∈ Tn(G), ki ∈ {1, . . . , n}.

In the sequel the formula

n
∧

i=m





















xi ≡ ti((yi

ksi

⊕
k1i

zsi

1i
)[wi]),

xi+1 = µki
(

ksi

⊕
k1i

zsi

1i
)[wi]











∨ xi ≡ ti(xi+1)











will be denoted by M(m, n).

The inclusion χ(π) ∩ (χ(π))−1 ⊂ π means that for all g1, g2 ∈ G we have

(g1, g2) ∈ χ(π) ∧ (g2, g1) ∈ χ(π) −→ g1 ≡ g2,

which, according to Proposition 5, can be written as the system of conditions

(An,m)n,m∈N, where

An,m : M(0, n− 1) ∧ M(n + 1, n + m) ∧ x0 = xn+m −→ x0 ≡ xn.
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The system (An,m)n,m∈N is equivalent to the system (An)n∈N, where

An : M(0, n− 1) ∧ x0 = xn −→ x0 ≡ x1.

Consider now the implication (33). According to (34) the condition (h1, g1) ∈ χ(π)

means that

(35) h1 = x0 ∧ M(0, n− 1) ∧ xn = g1

for some xi, yi, zki
, ti, ki, wi. Similarly, the condition (h2, g2) ∈ χ(π) means that

(36) h2 = xn+1 ∧ M(n + 1, n + m) ∧ xn+m+1 = g2

for some xi, yi, zki
, ti, ki, wi. So, (33) can be written as the system (Bn,m)n,m∈N of

conditions

Bn,m : x0⊤xn+1 ∧ M(0, n− 1) ∧ M(n + 1, n + m) −→ xn⊤xn+m+1.

In this way we have proved

Theorem 4. A pair (γ, π) of binary relations on a representable Menger (2, n)-

semigroup G is projection representable if and only if

(a) γ is an l-cancellative 0-quasi-equivalence,

(b) π is an l-regular equivalence,

(c) the conditions (An)n∈N and (Bn,m)n,m∈N are satisfied.

Theorem 5. A pair (χ, π) of binary relations is (faithful) projection representable

for a representable Menger (2, n)-semigroup G if and only if χ is an l-regular and

v-negative quasi-order such that π = χ ∩ χ−1.

P r o o f. The necessity of these conditions follows from the proof of Theorem 1.

To prove their sufficiency, for every element g ∈ G we define an n-place function

Pa(g) : A∗ → G, where a ∈ G, putting

(37) Pa(g)(xn
1 ) =







































g[xn
1 ] if a ⊏ g[xn

1 ] and xn
1 ∈ Gn,

g if a ⊏ g and xn
1 = en

1 ,

g
is

⊕
i1

ys
1 if a ⊏ g

is

⊕
i1

ys
1 and xi = µ∗

i (
is

⊕
i1

ys
1),

i = 1, . . . , n, for some ys
1 ∈ Gs,

i1, . . . , is ∈ {1, . . . , n}.
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Since, for h1 = h2 = a ∈ G, the function P(h1,h2)(g) defined by (16) coincides with the

function Pa(g), from Propositions 1 – 3 it follows that the mapping Pa : g 7→ Pa(g)

is a representation of G by n-place functions. Further, analogously as in the proof

of Theorem 1, we can prove that P0 =
∑

a∈G

Pa is a representation of G for which

χ = χP0
and π = πP0

. So, the pair (χ, π) is projection representable for G .

Let us show that (χ, π) is faithful projection representable. In [11] it is proved

that each representable Menger (2, n)-semigroup has a faithful representation by n-

place functions. Let Λ be such representation. Then obviously χΛ = G × G and

πΛ = G×G.

Consider the representation P = Λ + P0. Since Λ is a faithful representation, P

is also faithful. Moreover χP = χΛ ∩ χP0
= G × G ∩ χ = χ and πP = πΛ ∩ πP0

=

G×G ∩ π = π. So, (χ, π) is faithful projection representable for G . �

In the same manner, using the construction (37), we can prove the following

theorem.

Theorem 6. A binary relation χ is (faithful) projection representable for a rep-

resentable Menger (2, n)-semigroup if and only if it is an l-regular, v-negative quasi-

order.

Theorem 7. A binary relation π is (faithful) projection representable for a rep-

resentable Menger (2, n)-semigroup if and only if it is an l-regular equivalence such

that χ(π) ∩ (χ(π))−1 ⊂ π.

P r o o f. Consider the pair (χ(π), π) of binary relations, where χ(π) is defined

by (32). In a similar way as in the proof of Theorem 3, we can prove that this

pair satisfies all the conditions of Theorem 5, whence we conclude the validity of

Theorem 7. �

Since, as it was showed above, the inclusion χ(π) ∩ (χ(π))−1 ⊂ π is equivalent to

the system of conditions (An)n∈N, the last theorem can be rewritten in the form:

Theorem 8. A binary relation π is (faithful) projection representable for a rep-

resentable Menger (2, n)-semigroup if and only if it is an l-regular equivalence and

the system of conditions (An)n∈N is satisfied.

Consider on a Menger (2, n)-semigroup G the binary relation χ0 defined in the

following way:

(38) χ0 = ft(fR(δ2) ◦ δ1) =

∞
⋃

n=1

((δ2 ∪△G) ◦ δ1)
n

,

where ft and fR are reflexive and transitive closure operations.
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Proposition 6. χ0 is the least l-regular and v-negative quasi-order on G .

The proof of this proposition is analogous to the proof of Proposition 3.

Theorem 9. A binary relation γ is projection representable for a representable

Menger (2, n)-semigroup if and only if it is an l-cancellative 0-quasi-equivalence and

the following implication

(39) h1⊤h2 ∧ h1 ⊏0 g1 ∧ h2 ⊏0 g2 −→ g1⊤g2

is satisfied for all h1, h2, g1, g2 ∈ G, where h ⊏0 g means (h, g) ∈ χ0.

P r o o f. The necessity of (39) can be proved analogous as the necessity of (33)

in the proof of Theorem 3. To prove the sufficiency we consider the pair (χ0, γ). By

Proposition 6, this pair satisfies all demands of Theorem 2, whence we conclude the

validity of Theorem 9. �

Problem 4. Find the necessary and sufficient conditions under which γ will be

faithful projection representable.

Basing on the formula (38) we can prove the following proposition:

Proposition 7. ¿From (g1, g2) ∈ χ0, where g1, g2 ∈ G, it follows that the system

of conditions

g1 = x0 ∧ g2 = xn ∧
n−1
∧

i=0





















xi = ti((yi

ksi

⊕
k1i

zsi

1i
)[wi]),

xi+1 = µki
(

ksi

⊕
k1i

zsi

1i
)[wi]











∨ xi = ti(xi+1)











is valid for n ∈ N, xi, yi, zi ∈ G, wi ∈ Gn, ti ∈ Tn(G), ki ∈ {1, . . . , n}.

Denoting by N(m, n) the formula

n
∧

i=m





















xi = ti((yi

ksi

⊕
k1i

zsi

1i
)[wi]),

xi+1 = µki
(

ksi

⊕
k1i

zsi

1i
)[wi]











∨ xi = ti(xi+1)











,

and using the same argumentation as in the proof of Theorem 4, we can prove that

the implication (39) is equivalent to the system of conditions (Cn,m)n,m∈N, where

Cn,m : x0⊤xn+1 ∧ N(0, n− 1) ∧ N(n + 1, n + m) −→ x0⊤xn+m+1.

So, the following theorem is true:
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Theorem 10. A binary relation γ is projection representable for a representable

Menger (2, n)-semigroup if and only if it is an l-cancellative 0-quasi-equivalence and

the system of conditions (Cn,m)n,m∈N is satisfied.

4. Projection representable relations on (2, n)-semigroups

Let χ, γ and π be three binary relations on a (2, n)-semigroup (G;⊕
1
, . . . ,⊕

n
).

Similarly as in the case of Menger (2, n)-semigroups we say that the triplet (χ, γ, π) is

(faithful) projection representable for a (2, n)-semigroup (G;⊕
1
, . . . ,⊕

n
) if there exists

such (faithful) representation P of (G;⊕
1
, . . . ,⊕

n
) by n-place functions for which χ =

χP , γ = γP and π = πP . Analogously we define the projection representable pairs

and separate relations.

It is not difficult to verify that our Theorem 1 formulated for representable Menger

(2, n)-semigroups is also valid for representable (2, n)-semigroups. The proof of this

version of Theorem 1 is analogous to the proof of the previous version, but in the proof

of the sufficiency instead of the representation P we must consider the representation

P •, which is the sum of the family of representations (P •

(h1,h2)
)(h1,h2)∈γ , where for

every g ∈ G P •

(h1,h2)
(g) : A∗

0 → G, (A∗

0 = A0 ∪ {(e1, . . . , en)}, see page 6) is a partial

n-place function such that

xn
1 ∈ pr1 P •

(h1,h2)
(g)←→







































h1 ⊏ g ∨ h2 ⊏ g if xn
1 = en

1 ,

h1 ⊏ g
is

⊕
i1

ys
1 ∨ h2 ⊏ g

is

⊕
i1

ys
1 if xi = µ∗

i (
is

⊕
i1

ys
1),

i = 1, . . . , n, for

some ys
1 ∈ Gs and

i1 . . . , is ∈ {1, . . . , n}

and

P •

(h1,h2)
(g)(xn

1 ) =



























g if xn
1 = en

1 ,

g
is

⊕
i1

ys
1 if xi = µ∗

i (
is

⊕
i1

ys
1),

i = 1, . . . , n, for some ys
1 ∈ Gs

and i1 . . . , is ∈ {1, . . . , n}.

Also Theorem 2 is valid for (2, n)-semigroups. Moreover, problems analogous to

Problem 1 and Problem 2 can be posed for (2, n)-semigroups, too.
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Theorem 3 will be valid for (2, n)-semigroups if we replace the relation χ(π) by

the relation

(40) χ•(π) = ft(fR(δ2) ◦ π) =

∞
⋃

n=1

((δ2 ∪△G) ◦ π)
n

,

i.e., if we delete δ1 from the formula (32).

Proposition 5 for (2, n)-semigroups has the following form:

Proposition 8. The condition (g1, g2) ∈ χ•(π), where g1, g2 ∈ G, means that the

system of conditions

g1 = x0 ∧ g2 = xn ∧
n−1
∧

i=0





















xi ≡ yi

ksi

⊕
k1i

zsi

1i
,

xi+1 = µki
(

ksi

⊕
k1i

zsi

1i
)











∨ xi ≡ xi+1











is valid for some n ∈ N, xi, yi, zi ∈ G, ki ∈ {1, . . . , n}.

Denoting by X(m, n) the formula

n
∧

i=m





















xi ≡ yi

ksi

⊕
k1i

zsi

1i
,

xi+1 = µki
(

ksi

⊕
k1i

zsi

1i
)











∨ xi ≡ xi+1











and using the same argumentation as in the proof of Theorem 4, we can prove

Theorem 11. A pair (γ, π) of binary relations on a representable (2, n)-semigroup

is projection representable if and only if γ is an l-cancellative 0-quasi-equivalence, π

is an l-regular equivalence, and the systems of conditions A•

n and B•

n,m, where

A•

n : X(0, n− 1) ∧ x0 = xn −→ x0 ≡ x1,

B•

n,m : x0⊤xn+1 ∧ X(0, n− 1) ∧ X(n + 1, n + m) −→ xn⊤xn+m+1

are satisfied.

Theorem 5 is valid for (2, n)-semigroups too, but in the proof, the representation

Pa defined by (37) must be replaced by the representation P •

a , where

P •

a (g)(xn
1 ) =



























g if a ⊏ g and x1 = en
1 ,

g
is

⊕
i1

ys
1 if a ⊏ g

is

⊕
i1

ys
1 and xi = µ∗

i (
is

⊕
i1

ys
1),

i = 1, . . . , n, for some ys
1 ∈ Gs,

and i1, . . . , is ∈ {1, . . . , n}.
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For (2, n)-semigroups Theorem 6 has the same form as for Menger (2, n)-

semigroup, in Theorem 7 the relation χ(π) must be replaced by χ•(π), and in

Theorem 8 instead of An we must use A•

n.

Further, using the same argumentation as in the proof of Proposition 4 we can

prove that the relation

χ•

0 = ft(fR(δ2)) =
∞
⋃

n=1

(δ2 ∪△G)n
,

where ft and fR are the reflexive and the transitive closure operations, is the least

l-regular and v-negative quasi-order on a given (2, n)-semigroup. Using this rela-

tion, we can prove the analog of Theorem 10 for (2, n)-semigroups. The analog of

Problem 4 can be posed too.

Proposition 7 for (2, n)-semigroups has the following form:

Proposition 9. The condition (g1, g2) ∈ χ•

0, where g1, g2 ∈ G, means that the

system of conditions

g1 = x0 ∧ g2 = xn ∧
n−1
∧

i=0





















xi = yi

ksi

⊕
k1i

zsi

1i
,

xi+1 = µki
(

ksi

⊕
k1i

zsi

1i
)











∨ xi = xi+1











is valid for n ∈ N, xi, yi, zi ∈ G.

Further, denoting by B(m, n) the formula

n
∧

i=m





















xi = yi

ksi

⊕
k1i

zsi

1i
,

xi+1 = µki
(

ksi

⊕
k1i

zsi

1i
)











∨ xi = xi+1











and using the same argumentation as in the proof of Theorem 10, we can prove

Theorem 12. A binary relation γ is projection representable for a representable

(2, n)-semigroup if and only if it is an l-cancellative 0-quasi-equivalence and the

system of conditions (C•

n,m)n,m∈N, where

C•

n,m : x0⊤xn+1 ∧ B(0, n− 1) ∧ B(n + 1, n + m) −→ x0⊤xn+m+1

is satisfied.
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