
Czechoslovak Mathematical Journal

Wladimir G. Boskoff; Bogdan D. Suceavă
Barbilian’s metrization procedure in the plane yields either Riemannian or Lagrange
generalized metrics

Czechoslovak Mathematical Journal, Vol. 58 (2008), No. 4, 1059–1068

Persistent URL: http://dml.cz/dmlcz/140439

Terms of use:
© Institute of Mathematics AS CR, 2008

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/140439
http://dml.cz


Czechoslovak Mathematical Journal, 58 (133) (2008), 1059–1068

BARBILIAN’S METRIZATION PROCEDURE IN THE PLANE

YIELDS EITHER RIEMANNIAN OR LAGRANGE

GENERALIZED METRICS
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Abstract. In the present paper we answer two questions raised by Barbilian in 1960.
First, we study how far can the hypothesis of Barbilian’s metrization procedure can be
relaxed. Then, we prove that Barbilian’s metrization procedure in the plane generates
either Riemannian metrics or Lagrance generalized metrics not reducible to Finslerian or
Langrangian metrics.
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1. Introduction

Barbilian’s metrization procedure was introduced in its simplest form in 1934 in [2]

in order to generalize a construction inspired from the study of the Klein-Beltrami

model of non-Euclidean geometry. Later contributions on the topic of Barbilian

spaces include P. J.Kelly’s work [26] and major developments are due to D.Barbilian

himself [3], [4], [5], [6]. Recently, many citations of the work [2], originally published

in Časopis Mathematiky a Fysiky, have appeared, for example, in [7], [11], [13], [16],

[18], [19], [20], [21], [22], [23], [24], [25]. The history of this subject is presented in

[14], [15].

The following construction describes Barbilian’s metrization procedure in its most

general setting. It originates in [3] and it develops the idea from [2].

Consider two arbitrary sets K and J. The function f : K × J → R
∗
+ is called an

influence of the set K over J if for any A, B ∈ J the ratio gAB(P ) = f(P, A)/f(P, B)

has a maximumMAB ∈ R when P ∈ K. Note that gAB : K → R
∗
+. In [3] it is pointed
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out that if we assume the existence of max gAB(P ), when P ∈ K, then there also

exists mAB = min
P∈K

gAB(P ) = 1/MBA.

In the particular case when T is a topological space, K a compact subset in T ,

and J some arbitrary subset, then any function f : K × J → R
∗
+ continuous in the

first argument is an influence on J. It has been known since [3] that d : J × J → R+

given by

(1) d(A, B) = ln
max
P∈K

gAB(P )

min
P∈K

gAB(P )

is a semidistance, i.e.: (a) if A = B then d(A, B) = 0; (b) d is symmetric; (c) d

satisfies the triangle inequality.

The influence f : K × J → R
∗
+ is called effective if there is no pair (A, B) ∈ J × J

such that the ratio gAB(P ) = f(P, A)/f(P, B) is constant for all P ∈ K. In [3] it is

shown that if f : K × J → R
∗
+ is an effective influence, then (1) is a distance.

In [16] an extension of Barbilian’s metrization procedure is presented. The geo-

metric motivation for extending the procedure is the fact that in the case when K

is a circle in the plane and J is its interior, if we remove one point L from K, we

can not apply the classical Barbilian’s metrization procedure considering the influ-

ence of K − {L} over J. Suppose that K and J are arbitrary sets and that they

satisfy the general extremum requirement, that is for any A and B in J there exists

sup gAB(Q) < ∞, when Q ∈ K. As we have seen in the case of maximum, presented

above, if there exists sup
P∈K

gAB(P ) < ∞ then there exists inf
P∈K

gAB(P ) and it equals

[ sup
P∈K

gBA(P )]−1.

Theorem 1 [16]. Suppose that g satisfies the general extremum requirement.

Then the function ds : J × J → R+ given by

ds(A, B) = ln

sup
P∈K

gAB(P )

inf
P∈K

gAB(P )

is a semidistance on J.

For this extension of Barbilian’s metrization procedure we can drop the continuity

requirement for the influence function. This result is presented in Section 3.

For a historical account on Barbilian’s metrization procedure, see [14], [15]. Over

the years, the paper [2] has been cited many times (e.g. [7], [8], [9], [10], [12], [13],

[18], [19], [20], [21], [22], [23], [24], [25]). The geometric viewpoint is discussed in the

monograph [11].
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We aim in the present work at clarifying the role of Barbilian’s metrization proce-

dure in the context of its relations with various classes of metrics, such as for example

the Riemann, Finsler, Lagrange or generalized Lagrange metrics. To this goal, we

would like to remind here a few of the basic definitions.

In [17], p. 265, it is pointed out that the origin of Finsler geometry can be found

in B. Riemann’s historical Habilitation address, from 1854. More precisely, suppose

thatM is a real smooth finite dimensional manifold and let τ : TM → M its tangent

bundle. Let (U, (xi)) be a local chart on M ; our convention is that indices i, j, k, . . .

run from 1 to n = dimM and we are using Einstein’s convention on summation.

Associate to any section v ∈ τ−1(U) the coordinates (xi(τ(u))) and (yi) such that

for ∂i = ∂/∂xi. A change of coordinates (xi, yi) → (xi′ , yi′) on the smooth orientable

manifold TM is

(2) xi′ = xi′(x1, . . . , xn), yi′ = (∂jx
i′)yj , rank (∂jx

i′ ) = n.

A Finsler structure or Finsler function of M is a function F : TM → [0,∞),

(x, y) → F (x, y) with the properties

(i) F is smooth on the slit tangent bundle TM \ {0},

(ii) F is positively homogeneous of degree one in the y’s, that is F (x, λy) = λF (x, y),

for all λ > 0, and

(iii) the matrix

gij =
1

2

∂2F 2(x, y)

∂yi∂yj

is positive definite at every point of TM \ {0}.

The pair (M, F ) is called a Finsler manifold and one says that gij(x, y) is its

Finsler metric. Notice that by the positive homogeneity it follows that F 2(x, y) =

gij(x, y)yiyj . If gij(x, y) do not depend on y’s, the Finsler manifold (M, F ) becomes

a Riemannian manifold with the metric ds2 = gij(x) dxi dxj .

There are several generalizations of Finsler geometry (see [1], [27]). To us, for the

present paper, of interest are Lagrange and generalized Lagrange geometries.

It is said that a set of matrices gij(x, y) define a generalized Lagrange metric if

they satisfy the following three requirements:

(i) A change of coordinates (2) implies

gij(x, y) = (∂ix
i′ )(∂jx

j′ )gi′j′(x
′, y′).

(ii) Symmetry: gij(x, y) = gji(x, y).

(iii) Non-degeneracy: det(gij(x, y)) 6= 0.
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A generalized Lagrange metric is said to be a Lagrange metric if there exists a

smooth function L : TM → R (called a Lagrangian) such that

gij(x, y) =
1

2

∂2L(x, y)

∂yi∂yj
.

The pair (M, L) is called a Lagrange manifold. Every Finsler manifold is a par-

ticular Lagrange manifold with L = F 2. A necessary and sufficient condition for a

generalized Lagrange metric to be a Lagrange metric is that Cijk = 1
2∂gij/∂yk be

totally symmetric.

These definition are used in Section 4.

2. How general is Barbilian’s metrization procedure?

We have seen that Barbilian’s metrization procedure appeared as a generalization

of a configuration studied in the Klein-Beltrami model of hyperbolic geometry. Does

that mean that the procedure generates only hyperbolic distances? Barbilian ob-

tained in [3] the Poincaré metric in the disk. Too see this, consider R2 endowed with

the Euclidean distance ‖ · ‖. Then, in [3] it is shown that for any circle K in R2, and

for J the interior of K, by taking f(P, A) = ‖PA‖, Barbilian’s metrization procedure

yields the Poincaré metric in the disk. Barbilian pointed out that for various choices

of K, J and f a large array of distances could be obtained.

We show in this section that Euclidean and spherical distances can also be ob-

tainted by Barbilian’s metrization procedure.

Proposition 1. Barbilian’s metrization procedure yields the Euclidean distance

in the interior of disks in R
2.

P r o o f. In the spirit of the theory reminded above, consider K to be any circle

in R2 and J its interior. Let us take the function f(M, A) = e
1

2
‖MA‖, for allM ∈ K,

and A ∈ J. Clearly

gAB(M) = e
1

2
(‖MA‖−‖MB‖).

By the triangle inequality,
∣

∣‖MA‖−‖MB‖
∣

∣ 6 ‖AB‖, which shows that the maximum

and the minimum are attained and

max
M∈K

gAB(M) = e
1

2
‖AB‖, min

M∈K
gAB(M) = e−

1

2
‖AB‖.

Thus, the distance generated by Barbilian’s metrization procedure is

dB(A, B) = ln
max
M∈K

gAB(M)

min
M∈K

gAB(M)
= ln e‖AB‖ = ‖AB‖.

�
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Proposition 2. Barbilian’s metrization procedure yields the spherical distance

on a hemisphere in S2 ⊂ R
3.

P r o o f. As in the previous proposition, we take K to be a great circle on the

sphere and J one of the hemispheres bounded by K. Denote by (MA) the spherical

distance on S2. Then consider the influence f : K × J → R+ given by f(M, A) =

e
1

2
(MA). As in Proposition 1, we remark that

f(M, A)

f(M, B)
= e

1

2
[(MA)−(MB)].

By using the triangle inequality, we obtain the maximum and the minimum of the

ratio gAB(M), which yields dB(A, B) = (AB). �

The spaces obtained in Propositions 1 and 2 are not complete. They enjoy the

property that the sets K and J are geometrically related, more precisely that K is

a simple closed curve and J a region delimited by K. However, we can produce the

Euclidean metric in the whole plane as a complete space.

Proposition 3. Barbilian’s metrization procedure yields the Euclidean distance

in a plane (π) in R
3.

P r o o f. Consider a plane (δ) parallel to the plane (π) and take J = (π), K = (δ).

Let M ∈ K and A, B ∈ (π). Denote by Pr: (δ) → (π) the orthogonal projection on

(π), Pr(M) = M ′, and by ‖·‖ the Euclidean distance. Consider the influence function

f : K × J → R
∗
+, f(M, A) = exp o[ 12 · |(Pr× Id)(M, A) · |] = e

1

2
‖M ′A‖. We have

f(M, A)

f(M, B)
= e

1

2
[‖M ′A‖−‖M ′B‖].

Since−‖AB‖ 6 ‖M ′A‖−‖M ′B‖ 6 ‖AB‖,with equality whenM ′, A, B are collinear,

we see that the induced distance in J is dB(A, B) = ‖AB‖. �

Proposition 4. Barbilian’s metrization procedure yields the spherical distance

in a complete sphere in R
3.

P r o o f. Consider two concentric spheres S1 and S2 in R3, and let their common

center be O. We take S1 = K and S2 = J, and A, B ∈ J and M ∈ K. Denote

by {M ′} = OM ∩ J and define Pr to be the radial projection from S1 to S2 given

by Pr(M) = M ′. Denote by (·) the spherical distance, and consider the influence

function f : K × J → R
∗
+, f(M, A) = exp o[ 12 ((Pr× Id)(M, A))] = e

1

2
(M ′A). Then

the argument is concluded similarly as in the previous Proposition. �
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3. A discontinuous influence that yields a distance

It is known that the influence functions continuous in the first variable generate

semidistances and distances [3]. In this section we show by example that it is still

possible to obtain a distance by Barbilian’s metrization procedure if we have an

influence function f : K ×J → R
∗
+ which is not continuous. As far as we know, such

an example does not appear elsewhere in the literature. However, the origin of this

problem may be traced back to [3] and especially [5], where the problem is specifically

mentioned of how much the hypotheses of Barbilian’s metrization procedure can be

relaxed.

To this goal, consider K = the circle given by the equation x2 +y2 = 1 in the two-

dimensional real plane, and consider J the set delimited by K. Define the influence

f as follows. For any P ∈ K and A ∈ J ∩ {(x, y) ∈ R
2 : y > 0} let

f(P, A) = ‖PA‖ + 1.

For any P ∈ K and A ∈ J ∩ {(x, y) ∈ R
2 : y < 0} let

f(P, A) = ‖PA‖.

We claim that with this construction the function

gAB(P ) =
f(P, A)

f(P, B)
,

for any A, B ∈ J, admits supremum and infimum. This means that the general

extremum requirement is satisfied, in the terminology of [3], and therefore Barbilian’s

metrization procedure yields a semidistance. To see this last claim, consider A, B ∈

J . Then we have
f(P, A)

f(P, B)
6

‖PA‖ + 1

‖PB‖
<

3

‖PB‖
< ∞.

Furthermore, since the circle x2 + y2 = 1 is not included in the geometric locus

of the points P for which f(P, A)/f(P, B) = constant, the semidistance constructed

above is actually a distance.

This example shows that the continuity condition stated in [3] for the example

recalled in the first section is not essential. The essential condition is the so-called

general extremum requirement, more precisely the existence of a supremum and of

an infimum.

This analysis leads us to the weakest hypothesis necessary to have the construc-

tion from Barbilian’s metrization procedure. More precisely, if we consider K as
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the punctured circle, K = S1 − {p}, for some arbitrary point of x2 + y2 = 1, the

remaining set is not compact in the topology induced from R
2. If we use the previous

noncontinous influence on a noncompact set, and if we drop Barbilian’s original ex-

tremum requirement [3] regarding the existence of a maximum, replacing it with the

existence of a supremum, we obtain the most general extent of Barbilian’s metrization

procedure.

4. What classes of metrics

does Barbilian metrization procedure yield?

We mention here the following result, which is a particular form of the result from

[5], part 2, paragraph 7, and a version of the argument used by P.A.Hästö in [22],

in the proof of Lemma 3.5.

Lemma 1. Let K be a simple closed curve in R
2 and J the interior region

delimited byK. Consider the influence f(M, A) = ‖MA‖, where by ‖MA‖ we denote

the Euclidean distance. Consider

gAB(M) =
f(M, A)

f(M, B)
=

‖MA‖

‖MB‖

and consider the distance induced on J by the Barbilian’s metrization procedure,

dB(A, B). Suppose furthermore that for M ∈ K the extrema max gAB(M) and

min gAB(M) for any A and B in J are attained each in a unique point of K. Then:

(a) For any A ∈ J and any line d passing through A there exist exactly two circles

tangent to K and to d in A.

(b) The metric induced by the Barbilian distance has the form

(3) ds2 =
1

4

( 1

R
+

1

r

)2

(dx2
1 + dx2

2),

where R and r are the radii of the circles described in (a).

It would be interesting to understand what classes of metrics are generated by the

metric given by (3). We prove here the following classification result.

Theorem 2. Barbilian’s metrization procedure for K and J two subsets of the

Euclidean plane R2, and f(M, A) = ‖MA‖, yields either a Riemannian metric or a

Lagrange generalized metric not reducible to a Finslerian or a Lagrangian metric.
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P r o o f. According to Lemma 1, from a metric that has the form

ds2 =
1

4

( 1

R1
+

1

R2

)2

dσ2

we get ds2 = g11(dx2 + dy2), which means g11 = g22 and g12 = g21 = 0.

If g11 = g11(x, y), we obtain a Riemannian metric.

On the other hand, if g11 = g11(x, y, ẋ, ẏ), the metric is a Lagrange generalised

metric (see [27]).

The metric is reducible to a Lagrangian metric if and only if the Cartan tensor

Cijk = 1
2∂gij/∂xk is totally symmetric (see [27], section 4.1, Theorem 1.1). For us,

for k = 1 we have ∂/∂ẋ, and for k = 2 we have ∂/∂ẏ. Since

∂g11

∂ẏ
6=

∂g12

∂ẋ
= 0,

the symmetry of the Cartan tensor can never occur. Therefore, in this second case

the metric is irreducible to a Riemannian, Finslerian or Lagrangian metric. �

This theorem gives the final answer to a problem raised by Barbilian originally

in [5]. More precisely, we have seen what metrics can naturally be obtained by

Barbilian’s metrization procedure.

Let us discuss here two examples. For the beginning, consider R2 endowed with

the Euclidean distance ‖ · ‖. It is known from [3] that for any circle K of radius ̺ in

R
2, and for J the interior region delimited by K, a Barbilian distance is obtained in

J by taking the influence f(P, A) = ‖PA‖. By a straightforward computation, one

can easily see that this yields a Riemannian metric.

For the second example, consider K = the ellipse given by x2/a2 + y2/b2 = 1, and

by J the region in the plane described by x2/a2+y2/b2 < 1. It is difficult to compute

the metric induced by (3). However, if for a point A from J and two lines of slopes

m1 andm2 passing through A we have g11(x, y, m1) 6= g11(x, y, m2), the metric is, by

Theorem 2, a Lagrange generalised metric not reducible to a Riemannian, Finslerian

or Lagrangian metric. Specifically, choosing A = O(0, 0) and m1 in the direction

corresponding to the x−axis, we get g11 = g22 = 4/b. If we take m2 in the direction

corresponding to the y−axis, then g11 = g22 6= 4/b, because the two circles of radii

b/2 can not be tangent to the ellipse. Consequently, the metric induced on J by

Theorem 2 is a Lagrange generalized metric, and this fact can be established even

without computing specifically the metric.

In the view of Theorem 2, it might be of interest to note that Zair Ibragimov

has shown that the Barbilian metric is Riemannian in zero, one or all points of the

domain (he uses the term “conformal” for Riemannian). See [24], [25] for this fact

and related implications.
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