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Abstract. Torsion-free covers are considered for objects in the category q2. Objects in the
category q2 are just maps in R-Mod. For R = Z, we find necessary and sufficient conditions
for the coGalois group G(A −→ B), associated to a torsion-free cover, to be trivial for an
object A −→ B in q2. Our results generalize those of E. Enochs and J. Rado for abelian
groups.
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1. Introduction

Recall that, for abelian groups, if C is torsion free, then a mapping C
ϕ

−→ A

is called a torsion-free precovering of A if, whenever B is torsion free, every map

B
π

−→ A factors through C
ϕ

−→ A. That is, there exists a map B
̺

−→ C that satisfies

ϕ̺ = π. A torsion-free precovering C
ϕ

−→ A is said to be a covering if ker(ϕ) contains

no nontrivial pure subgroup of C.We refer to [1] for general results about covers and

envelopes.

In [2], the abelian groups were determined that have a trivial coGalois group

relative to the covering class of torsion-free abelian groups. It was shown that the

coGalois group G(A) of an abelian group A is trivial if and only if A is p-divisible for

each relevant prime p of A, where p is called a relevant prime if A has an element of

order p. The criterion in [2] for G(A) = 1 is stated slightly differently, but is obviously

equivalent to the above more succinct statement. In this connection, note that the

condition stated above implies that the torsion subgroup A(t) of A is divisible and

therefore must split out. Thus, the above condition implies that A = A(t)⊕B, where

B ∼= A/A(t) is torsion free.
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If C
ϕ

−→ A is a torsion-free covering of the abelian group A and if K = ker(ϕ),

then the coGalois group G(A) of A consists of the automorphisms of C that map K

into itself and induce the identity on C/K. Hence, an endomorphism π : C → C is

an element of G(A) if and only if π = 1 + σ, where σ is a homomorphism from C

into the subgroup K.We hasten to add that if σ is a homomorphism from C into K,

we know that 1 + σ is an automorphism of C since C
ϕ

−→ A is a covering of A and

since ϕ(1 + σ) = ϕ. We note that this description continues to hold for the category

q2 considered below.

In [3] and [4], torsion-free covers were studied for the category q2 whose objects

are maps A
f

−→ A′ in R-Mod. The maps in q2 are pairs of maps (ϕ, ϕ′) in R-Mod

that make the diagram

A

ϕ

��

f
// A′

ϕ′

��

B
g

// B′

commutative, where A
f

−→ A′ and B
g

−→ B′ are objects in q2. In this paper, we

find necessary and sufficient conditions for an object A
f

−→ A′ in q2 to have a trivial

coGalois group. These conditions depend heavily on the mapping f : A −→ A′, not

just on the groups A and A′. For example, the condition G(A′) = 1 is both necessary

and sufficient for G(A
f

−→ A′) = 1 whenever f is monic, but if f is not monic this is

by no means sufficient, and the required conditions depend on both the kernel and

the image of f.

As in [2], in this paper modules are always abelian groups, that is, it is assumed

that modules are always over the ring Z.

2. Torsion free coverings for group pairs

Following [4], we say that an object A
f

−→ A′ is torsion in q2 if A and A′ are both

torsion abelian groups. Actually, this is one of two torsion theories for q2 studied in

[4], but we consider only this one here.

The torsion-free covering for an object A
f

−→ A′ in q2 was described in [4] as

follows. Let C
ϕ

−→ A be a torsion-free covering of A in the category of abelian

groups. Likewise, let C′
ϕ′

−→ A′ be a torsion-free covering of A′. Denote the kernel

of ϕ and of ϕ′, respectively, by K and K ′. Let P ⊆ C ⊕ C′ denote the pullback of

C
f◦ϕ
−→ A′ and C′

ϕ′

−→ A′. Let ̺ and ̺′, respectively, denote the projections of C ⊕C′
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onto C and C′ (usually restricted here to P ⊆ C ⊕ C′ ). Finally, let

K0 = ker(f ◦ ϕ) = {x ∈ C : ϕ(x) ∈ A0},

where A0 = ker(f).

Note that ifM is a subgroup of K and if we let ̺ denote the projection of P/M ⊆

C/M ⊕C′ onto C/M, then ϕ◦̺ maps P/M onto A, where we continue to denote the

map induced by ϕ from C/M to A simply by ϕ. It is easily verified that (ϕ ◦ ̺, ϕ′)

is a map in q2 from P/M
̺′

−→ C′ to A
f

−→ A′.

Theorem 2.1 ([4]). Using the above notation, we have that

P/M

ϕ◦̺

��

̺′

// C′

ϕ′

��

A
f

// A′

is a torsion-free covering in q2 of A
f

−→ A′, whenever M is any maximal subgroup

contained in K that is pure in K0.

As was shown in [4], the kernel of the covering map described in the preceding

theorem is

K/M ⊕ K ′
̺′

−→ K ′.

It should be observed that the covering map (ϕ ◦ ̺, ϕ′) is onto in the sense that

for every element (a, f(a)) belonging to A
f

−→ A′, there is an element in the cover

P/M
̺′

−→ C′ that maps onto it. This follows immediately from the fact that Z
j

−→ Z

is a torsion free object in q2, where j is the identity map. And if π and π′ are maps

from Z into A and A′ that map 1 onto a and f(a), respectively, then (π, π′) is a map

in q2 that maps (1, 1) onto (a, f(a)). Therefore, (a, f(a)) must be in the image of the

covering map.

The following lemma establishes a necessary condition for the coGalois group

G(A
f

−→ A′) to be trivial. An object B
f

−→ B′ in q2 is said to be bounded if B and

B′ are both bounded abelian groups, nB = 0 = nB′ for some positive integer n. A

subobject B
f

−→ B′ of A
f

−→ A′ is called a bounded endomorphic image of A
f

−→ A′

if it is bounded and if there is a map in q2 from A
f

−→ A′ onto B
f

−→ B′.
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Lemma 2.2. If G(A
f

−→ A′) = 1, then A
f

−→ A′ can contain no nonzero bounded

endomorphic image.

P r o o f. The proof of this lemma becomes more transparent if we use single

letters to denote the objects and maps in q2. Objects in q2 will be denoted by bold

letters. Thus, we will let A and B, respectively, stand for the objects A
f

−→ A′ and

B
g

−→ B′ in q2. And whenever the diagram

A

ϕ

��

f
// A′

ϕ′

��

B
g

// B′

is commutative, we denote the map (ϕ, ϕ′) in q2 from A to B simply by ϕ. Further, the

preceding commutative diagram is denoted by A
ϕ

−→ B.While we do not distinguish

maps in q2 by using bold letters, it is easy to determine from the bold letters used

for their domain and codomain or from the context whether or not a map is in q2.

Naturally, nϕ stands for (nϕ, nϕ′), which is again a map in q2 from A to B. Now

suppose that A
π

−→ B is a map in q2 from A onto B, where B is a nonzero bounded

subobject of A. Let nB = 0 and let C
ϕ

−→ A be a torsion-free covering of A. Since

C
ϕ

−→ A is a torsion-free covering of A and since B is a subobject of A, there must

be an endomorphism σ of C that satisfies ϕ ◦ σ = π ◦ ϕ. Since ϕ and π are both

epimorphisms, clearly σ cannot be the zero map. Moreover, since C is torsion free,

nσ cannot be zero either. However, nπ = 0 because nB = 0. Therefore,

ϕ ◦ nσ = nπ ◦ ϕ = 0,

so nσ must map C into the kernel of ϕ. Thus G(A
f

−→ B) is not trivial. �

Corollary 2.3. If A and A′ are bounded but not both zero, then the coGalois

group of A
f

−→ A′ is not trivial.

Another necessary condition for the coGalois group to be trivial is the following

useful lemma.

Lemma 2.4. A necessary condition for G(A
f

−→ A′) = 1 is that G(A′) = 1 and

therefore that A′ is p-divisible for every relevant prime p of A′.

P r o o f. Assume that G(A′) 6= 1. Then there is a nonzero map δ′ from C′ into

K ′, where C′
ϕ′

−→ A′ is a torsion-free covering of A′ and where K ′ = ker(ϕ′). Recall

from Theorem 1 that P/M
̺′

−→ C′, together with the covering map (ϕ ◦ ̺, ϕ′) from
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P/M
̺′

−→ C′ onto A
f

−→ A′, is the torsion-free cover in q2 of A
f

−→ A′. And the

kernel of the covering map is K/M ⊕ K ′
̺′

−→ K ′. Let δ = δ′ ◦ ̺′. Then (δ, δ′) is a

nonzero map from the cover P/M
̺′

−→ C′ into the kernel, K/M ⊕ K ′
̺′

−→ K ′, of the

covering map. Therefore, we conclude that G(A
f

−→ A′) 6= 1. �

The next result shows that A′ being p-divisible for each relevant prime p of A′ is

not only necessary but also sufficient for the coGalois group of A
f

−→ A′ to be trivial

whenever f is monic.

Theorem 2.5. If ker(f) is torsion free, in particular if f is monic, then G(A
f

−→

A′) = 1 if and only if A′ is p-divisible for each relevant prime p of A′.

P r o o f. In view of the preceding lemma, we only need to prove the sufficiency.

Thus, suppose that A′ is p-divisible for each relevant prime p of A′. We want to

show that G(A
f

−→ A′) = 1 whenever ker(f) is torsion free. As before, consider the

torsion-free cover P/M
̺′

−→ C′ of A
f

−→ A′ with a covering map (ϕ◦̺, ϕ′) in q2 with

the kernel K/M ⊕ K ′
̺′

−→ K ′.

Assume that (δ, δ′) is a map in q2 from the cover P/M
̺′

−→ A′ into the kernel,

K/M ⊕ K ′
̺′

−→ K ′, of the covering map. This means that the diagram

P/M

δ

��

̺′

// C′

δ′

��

K/M ⊕ K ′
̺′

// K ′

is commutative. We wish to show that (δ, δ′) is the zero map in q2. The divisibility

on A′ implies that δ′ = 0, but the argument for δ = 0 is entirely different since δ

maps into K/M ⊕ K ′, not K. Furthermore, no restriction has been placed on A.

Since the diagram is commutative and since δ′ = 0 , we see at once that δ must map

into K/M.

Recall that earlier we defined K0 = ker(f ◦ϕ) and that K denotes the kernel of ϕ.

Thus, K0/K ∼= ker(f), so by hypothesis, K0/K is torsion free. Thus, K is pure in

K0, andM must be equal to K sinceM is a maximal pure subgroup of K0 contained

in K. Since K/M = 0 and since δ maps into K/M, clearly δ must be zero. Therefore,

we have the desired result that (δ, δ′) is the zero map in q2. �

An immediate corollary of the preceding theorem is that the condition G(A) = 1

is not necessary for G(A
f

−→ A′) = 1. Indeed, we have the following.
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Corollary 2.6. If A is arbitrary and E is its injective envelope, then A ⊆ E

always has a trivial coGalois group.

We have seen that unlike the condition G(A′) = 1, the corresponding condition

G(A) = 1 is not always necessary for the coGalois group to be trivial. In the other

direction, the next simple example demonstrates that the conditions G(A) = 1 and

G(A′) = 1 are not sufficient for G(A
f

−→ A′) to have a trivial coGalois group.

3. Example

Example. Let A = Z(p∞), and let C
ϕ

−→ A be the torsion-free covering of the

abelian group A. As usual, set K = ker(ϕ). It is convenient here to take A′ = A.

Then C′ = C, and K ′ = K. Certainly, G(A) = 1 = G(A′) since A = A′ is divisible.

We take f to be the zero map from A to A′. Then K0 = C, soM = 0 since there is no

nonzero pure subgroup of C contained in K. We conclude that P/M = P = C ⊕K ′.

The kernel of the covering map is K⊕K ′
̺′

−→ K ′. In order to show that G(A
f

−→ A′)

is nontrivial, we need to find a nonzero map (δ, δ′) in q2 for which the diagram

C ⊕ K ′

δ

��

̺′

// C′

δ′

��

K ⊕ K ′
̺′

// K ′

is commutative. There is no choice about δ′; it must be zero. However, even though

there is no nonzero map from C into K, there obviously is a nonzero map δ from

C ⊕K ′ into K since K ′ = K.With this choice of δ (that maps K ′ onto K), the dia-

gram commutes, so (δ, δ′) is the desired nonzero map. Therefore, G(A
f

−→ A′) 6= 1.

Using exactly the same argument as in the preceding example, one can prove the

following.

Proposition 3.1. Suppose that G(A) = 1 = G(A′). Let C
ϕ

−→ A and C′
ϕ′

−→ A′

be coverings of A and A′ with kernels K and K ′, respectively. Let f : A → A′ be

the zero map. Then G(A
f

−→ A′) = 1 if and only if Hom(K ′, K) = 0.

Since G(A) = 1 = G(A′) is not sufficient for G(A
f

−→ A′) = 1, we need to find

other necessary conditions. This is accomplished in the next section.
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4. Additional necessary conditions

Even though it is not necessary for A to be p-divisible for its relevant primes in

order for G(A
f

−→ A′) = 1 to hold, the next lemma shows that it is necessary for

this condition to hold for A0 = ker(f).

Theorem 4.1. In order for G(A
f

−→ A′) = 1, to hold it is necessary that A0 be

p-divisible for each relevant prime p of A0.

P r o o f. We know that K0
ϕ

−→ A0 is a precover of A0 since K0 = ϕ−1(A0) is the

complete inverse image of A0 under the covering map C
ϕ

−→ A. Clearly, the kernel

of the precovering map K0
ϕ

−→ A0 is K = ker(C
ϕ

−→ A).

Now, M is maximal among the pure subgroups of K0 contained in K. Therefore,

K0/M
ϕ

−→ A0 is a covering map for A0 with the kernel K/M. If A0 is not p-

divisible for some relevant prime p of A0, then there is a nonzero mapping π from

the cover K0/M into the kernel K/M. Since K0/M is pure in P/M and since K/M

is the kernel of a covering map, π can be extended to P/M by a special case of

Wakamatsu’s lemma [5]. So, we have a nonzero map

P/M
π

−→ K/M ⊆ K/M ⊕ K ′.

Thus, (π, 0) is a nonzero map in q2 from the cover P/M
̺′

−→ C′ of A
f

−→ A′ into the

kernel K/M ⊕ K ′
̺′

−→ K ′, and consequently G(A
f

−→ A′) 6= 1. �

We have shown that both A′ and A0 = ker(f) being p-divisible for their relevant

primes are necessary conditions for A
f

−→ A′ to have a trivial coGalois group, but the

example in Section 3 demonstrates that these conditions are not sufficient. Therefore,

we seek additional necessary conditions. Toward this end, let

A′

0
= f(A) ⊆ A′

denote the image of the mapping f. We will show that A′

0
must be p-divisible not

for its own relevant primes but for the relevant primes p of A0.

First we establish

Lemma 4.2. If G(A
f

−→ A′) = 1 and p is a relevant prime of A0, then K/M has

a rank 1 pure subgroup whose type is finite at the prime p but ∞ at every other

prime.

P r o o f. Let p be a relevant prime of A0. Since G(A
f

−→ A′) = 1, we know

that A0 is p-divisible by Theorem 4.1. Therefore, since p is a relevant prime, A0
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has Z(p∞) as a direct summand. Recall that K0/M
ϕ

−→ A0 is a cover of A0 with

the kernel K/M. Therefore, K0/M has a nonzero divisible summand, namely the

cover of Z(p∞). And consequently K/M must have a nonzero summand which is

q-divisible for each prime q 6= p. However, this summand cannot be divisible because

the kernel of a covering can never contain a nonzero divisible subgroup since the

kernel has no nonzero subgroup that is pure in the cover. It follows that any rank

one pure subgroup of this summand satisfies the conclusion of the lemma. �

Theorem 4.3. If P/M has a torsion-free homomorphic image H that contains a

rank 1 pure subgroupB with finite type at a relevant prime p ofA0, then G(A
f

−→ A′)

is not trivial.

P r o o f. Under the hypothesis, the preceding lemma implies that there is a

nontrivial homomorphism σ from B into K/M because the type of B is less than

or equal to the type of some pure subgroup of K/M. Since K/M is the kernel of a

covering map (making it cotorsion) and since B is pure in H, we know that σ can be

extended to a mapping of H into K/M. Therefore, since H is a homomorphic image

of P/M, there is a nontrivial homomorphism from P/M into K/M, and the coGalois

group of A
f

−→ A′ is not trivial. �

Theorem 4.4. For the coGalois group of A
f

−→ A′ to be trivial, it is necessary

that A′

0
= f(A) be p-divisible whenever p is a relevant prime of A0.

P r o o f. Let C′

0
= ̺′(P/M) ⊆ C′. It is easy to see that C′

0

ϕ′

−→ A′

0
is a precover

of A′

0
. Suppose that A′

0
is not p-divisible for a relevant prime p of A0. Then Z/pZ

is a homomorphic image of A′

0
and therefore of C′

0
, and consequently Z/pZ is a

homomorphic image of P/M. Therefore, there must be a nontrivial homomorphism

from P/M into the p-adic group since the p-adic group is the torsion-free cover of

Z/pZ. This means that P/M cannot be p-divisible, so it must have a rank one pure

subgroup whose type is finite at the prime p. According to the preceding theorem,

there is a nontrivial homomorphism from P/M into K/M, which implies that A
f

−→

A′ does not have a trivial coGalois group. �

Once again, the example in Section 3 shows that the necessary conditions cited

thus far are not sufficient conditions for A
f

−→ A′ to have a trivial co-Galois group.

These conditions are:

(1) A′ is p-divisible for each of its relevant primes.

(2) A0 = ker(f) is p-divisible for each of its relevant primes.

(3) A′

0
= Im(f) is p-divisible for each relevant prime of A0.

We need another necessary condition that precludes the example.

1076



Lemma 4.5. In order for G(A
f

−→ A′) = 1 to hold, it is necessary that the

following condition be satisfied:

(4) A′

0
(p) = A′(p) for each relevant prime p of A0.

P r o o f. Assume that A′(p) 6= A′

0
(p) for some relevant prime p of A0, where

A(p) denotes the p-primary subgroup of A. Since A′(p) and A′

0
(p) are both divisible,

we can write

A′ = Z(p∞) ⊕ A′

1
,

where A′

0
⊆ A′

1
. Let C′

1
−→ A′

1
and C∗ −→ Z(p∞) be the torsion-free coverings

of A′

1
and Z(p∞), respectively. Further, let K∗ be the kernel of the covering map

C∗ −→ Z(p∞). Then C′ = C∗ ⊕ C′

1
, and

C′

0
= K∗ ⊕ (C′

0
∩ C′

1
).

Now, K∗ cannot be divisible but is q-divisible if q 6= p since it is the kernel of the

covering map of the p-group Z(p∞). Therefore, C′

0
and consequently P/M cannot be

p-divisible. Hence, as before, there is a nonzero map from P/M into K/M, and the

coGalois group of A
f

−→ A′ is not trivial. �

5. The sufficiency of conditions (1)–(4)

We have shown in the previous sections that conditions (1)–(4) are necessary for

A
f

−→ A′ to have a trivial co-Galois group. The purpose of this section is to prove

that they are also sufficient.

Theorem 5.1. The coGalois group of the object A
f

−→ A′ in q2 is trivial if and

only if the following conditions are satisfied.

(1) A′ is p-divisible for each of its relevant primes.

(2) A0 = ker(f) is p-divisible for each of its relevant primes.

(3) A′

0
= Im(f) is p-divisible for each relevant prime of A0.

(4) A′

0
(p) = A′(p) for each relevant prime p of A0.

P r o o f. At this point, we only need to demonstrate that the conditions are

sufficient for a coGalois group to be trivial. Hence, assume the conditions. Suppose

that the diagram

P/M

δ

��

̺′

// C′

δ′

��

K/M ⊕ K ′
̺′

// K ′
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is commutative. In view of what has gone before, the proof will be complete if we

can show that δ and δ′ both must be zero. Condition (1) implies that δ′ is zero,

so the proof is all about δ having to be zero. As we observed before, δ must map

into K/M since δ′ is zero. Since K0/M is the cover of A0 with the kernel K/M,

condition (2) implies that δ must map K0/M to 0. Therefore, δ induces a map from

P/K0 ∼= (P/M)/(K0/M) into K/M, and it suffices to show that this map must

be zero. But P/K0 ∼= C′

0
, where C′

0
= ̺′(P ). Therefore, it suffices to show that

Hom(C′

0
, K/M) = 0.

Recall that K/M is the kernel of the covering K0/M
ϕ

−→ A0.We claim, therefore,

that K/M cannot contain a nonzero subgroup which is p-divisible for every relevant

prime of A0. Suppose such a subgroup H exists. Then H would have to be p-pure

in K0/M for each relevant prime p of A0. It follows that the purification H∗ of H in

K0/M resides within K/M because (K0/M)/(K/M) ∼= A0 has no nonzero element

of order a power of q whenever q is a prime not relevant to A0. But K/M cannot

contain a nonzero pure subgroup of K0/M since M is a maximal pure subgroup

of K0 contained in K. Hence, to verify that Hom(C′

0
, K/M) = 0 and complete the

proof of the theorem, it suffices to show that C′

0
is p-divisible for each relevant prime

of A0.

We proceed now to show that C′

0
is p-divisible for each relevant prime p of A0.

Henceforth, assume that p is a relevant prime of A0.

In view of conditions (3) and (4), we can write

A′ = A′

0
(p) ⊕ A∗,

where A′

0
(p) is the p-primary component of A′ and A∗ has no element of order p. So,

since covers are unique, we have that

C′ = C′

0,p ⊕ C∗,

where C′

0,p is a cover of A
′

0
(p), and C∗ is the cover of A∗. Further, we have that

C′

0
= C′

0,p ⊕ C∗

0
,

where C∗

0
⊆ C∗ since C′

0,p ⊆ C′

0
.

Since C′

0,p is the cover of A
′

0
(p) and since A′

0
(p) is divisible, we know that C′

0,p is

divisible. In particular, C′

0,p is p-divisible, and therefore C′

0
will be p-divisible if C∗

0

is p-divisible.

We aim to show now that C∗

0
is p-divisible. Toward this end, notice that

(A′/A′

0
)(p) = 0 because A′

0
is p-divisible and A′(p) = A′

0
(p) in view of conditions (3)

and (4). Moreover, since

C′

0
= {x ∈ C′ : ϕ′(x) ∈ A′

0
},
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we have that C′/C′

0
∼= A′/A′

0
. Thus, (C′/C′

0
)(p) = 0, and C′

0
is p-pure in C′. Further,

C′

0

ϕ′

−→ A′

0
is a precover since C′

ϕ′

−→ A′ is a cover. Set A∗

0
= A∗∩A′

0
. Since C∗

ϕ′

−→ A∗

is a cover of A∗ and since

C∗

0
= {x ∈ C∗ : ϕ′(x) ∈ A∗

0
},

it follows that C∗

0
is a precover of A∗

0
. Therefore,

C∗

0
= C(A∗

0
) ⊕ L,

where C(A∗

0
) is a cover of A∗

0
and where L ⊆ K∗ = ker(C∗

ϕ′

−→ A∗). Since C′

0
is

p-pure in C′, it follows that C∗

0
is p-pure in C∗. So, by transitivity, L is p-pure in C∗

and consequently in K∗.

Recall that A′ = A′

0
(p)⊕A∗, so condition (1) implies that A∗ = A∗(t)⊕ F, where

A∗(t) is the torsion part of A∗ and F is torsion free. Hence, C∗ = C(A∗(t)) ⊕ F,

where C(A∗(t)) is the cover of A∗(t). Since A∗ is a summand of A′ and since A′(t)

is divisible, so is A∗(t). Therefore, C(A∗(t)) is divisible. But K∗ ⊆ C(A∗(t)) and it

is p-pure in C(A∗(t)) since A∗(t)(p) = 0. Therefore, K∗ is p-divisible. As we have

seen, L is p-pure in K∗, so L is p-divisible.

It remains only to show that C(A∗

0
) is p-divisible since C∗

0
= C(A∗

0
) ⊕ L. But A∗

0

is p-divisible since

A′

0
= A′

0
(p) ⊕ A∗

0

and A′

0
is p-divisible by condition (3). Thus, C(A∗

0
) must also be p-divisible. �

We have seen that in the special case where f is monic, then A
ϕ

−→ A′ has a

trivial coGalois group if and only if A′ is p-divisible for each relevant prime. We now

consider the special case where f is epic. So, for a subgroup A0 of A, we consider

the object A −→ A/A0, where the map is the natural map from A onto its quotient

A/A0.

The following result is easily established by specializing Theorem 5.1 to the case

at hand.

Corollary 5.2. The coGalois group of A −→ A/A0 is trivial if and only if:

(i) A/A0 is p-divisible for each of its own relevant primes and for the relevant

primes of A0.

(ii) A0 is p-divisible for each of its relevant primes.
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6. Extensions having trivial coGalois group

In this section we consider the notion of an extension of a group A by a group C

having a trivial coGalois group. More precisely, we consider a short exact sequence

0 −→ A −→ B −→ C −→ 0

and say that it has a trivial coGalois group if all the maps, together with their

specified domains and codomains, have trivial coGalois groups as objects in the

category q2. The following theorem gives definitive results.

Theorem 6.1. The short-exact sequence

0 −→ A −→ B −→ C −→ 0

representing the extension of A by C has a trivial coGalois group if and only if each

of the groups A, B, and C is p-divisible for each of its relevant primes.

P r o o f. Since each of the groups A, B, and C is the codomain of one of the maps

in the sequence, it is clearly necessary according to Lemma 2.4 that these groups be

p-divisible for their relevant primes in order for the sequence of maps to have trivial

coGalois groups.

In order to prove sufficiency of the conditions, we begin by observing that the

hypothesis that A and B are p-divisible for their relevant primes means that the

monic maps 0 −→ A and A −→ B have trivial coGalois groups by Theorem 2.5.

Moreover, since the kernel of the mapping C −→ 0 is the group B and since B is

p-divisible for its relevant primes, it follows quickly that C −→ 0 satisfies conditions

(1)–(4) of Theorem 5.1. Therefore, C −→ 0 has a trivial coGalois group. It remains

to show that B −→ C has a trivial coGalois group.

Condition (1) of Theorem 5.1 is satisfied for B −→ C because C is p-divisible

for its relevant primes. And the kernel of the map is A, which is p-divisible for its

relevant primes. So, condition (2) of Theorem 5.1 is also satisfied. But, in addition,

we need to show that C is p-divisible for the relevant primes of A in order to verify

condition (3). Toward this end, let p be a relevant prime of A. Since A −→ B is

monic, p must be a relevant prime of B, Therefore, by hypothesis, B is p-divisible.

Since B −→ C is epic, C must be p-divisible since B is. Finally, condition (4) is

satisfied trivially since B −→ C is an epimorphism. Therefore, B −→ C satisfies

conditions (1)–(4) of Theorem 5.1, and hence it has a trivial coGalois group. �
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