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Abstract. We prove that compactness of the canonical solution operator to ∂ restricted to
(0, 1)-forms with holomorphic coefficients is equivalent to compactness of the commutator
[P, M ] defined on the whole L2(0,1)(Ω), where M is the multiplication by z and P is

the orthogonal projection of L2(0,1)(Ω) to the subspace of (0, 1) forms with holomorphic

coefficients. Further we derive a formula for the ∂-Neumann operator restricted to (0, 1)
forms with holomorphic coefficients expressed by commutators of the Bergman projection
and the multiplications operators by z and z.
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1. Introduction

We assume that the reader is familiar with the ∂-Neumann problem. See [15], [4],

[8]. Let Ω be a bounded pseudoconvex domain in C
n. We consider the ∂-complex

L2(Ω)
∂

−→ L2
(0,1)(Ω)

∂
−→ . . .

∂
−→ L2

(0,n)(Ω)
∂

−→ 0,

where L2
(0,q)(Ω) denotes the space of (0, q)-forms on Ω with coefficients in L2(Ω).

The ∂-operator on (0, q)-forms is given by

∂

(

∑

J

′

aJ dzJ

)

=

n
∑

j=1

∑

J

′ ∂aJ

∂zj

dzj ∧ dzJ .

The derivatives are taken in the sense of distributions, and the domain of ∂ consists

of those (0, q)-forms for which the right hand side belongs to L2
(0,q+1)(Ω). Then ∂
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is a densely defined closed operator, and therefore has an adjoint operator from

L2
(0,q+1)(Ω) into L2

(0,q)(Ω) denoted by ∂∗.

The complex Laplacian

� = ∂∂∗ + ∂∗∂

acts as an unbounded selfadjoint operator on

L2
(0,q)(Ω), 1 6 q 6 n,

it is surjective and therefore has a continuous inverse, the ∂-Neumann operator Nq. If

v is a closed (0, q+1)-form, then ∂∗ Nq+1v provides the canonical solution to ∂u = v,

which is orthogonal to the kernel of ∂ and so has minimal norm (see [15], [8], [4]).

A survey of the L2-Sobolev theory of the ∂-Neumann problem is given in [1].

The question of compactness of Nq is of interest for various reasons. For example,

compactness of Nq implies global regularity in the sense of preservation of Sobolev

spaces [16]. Also, the Fredholm theory of Toeplitz operators is an immediate conse-

quence of compactness in the ∂-Neumann problem [20], [14], [3]. There are additional

ramifications for certain C∗-algebras naturally associated to a domain in Cn [19]. Fi-

nally, compactness is a more robust property than global regularity—for example, it

localizes, whereas global regularity does not—and it is generally believed to be more

tractable than global regularity.

Catlin [2] showed that for sufficiently smooth bounded pseudoconvex domains

satisfying what he called property (P), the ∂-Neumann problem is compact, and

that all domains of finite type in the sense of D’Angelo [5] satisfy property (P).

A thorough discussion of compactness in the ∂-Neumann problem can be found

in [7].

Compactness is completely understood on (bounded) locally convexifiable do-

mains. On such domains, the following are equivalent [6], [7]:

(i) Nq is compact,

(ii) the boundary of the domain satisfies (an analogue of) property (P) (for q-forms),

(iii) the boundary contains no q-dimensional analytic variety.

In general, however, the situation is not understood at all.

The study of the ∂-Neumann problem is essentially equivalent (in a sense that can

be made precise) to the study of the canonical solution operator to ∂. Interestingly,

in many situations, the restriction of the canonical solution operator to forms with

holomorphic coefficients arises naturally [19], [6].

The restriction of the canonical solution operator to forms with holomorphic co-

efficients has many interesting aspects, which in most cases correspond to certain

growth properties of the Bergman kernel. It is also of great interest to clarify to
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what extent compactness of the restriction already implies compactness of the orig-

inal solution operator to ∂. This is the case for convex domains, see [6]. There are

many other examples of non-compactness where the obstruction already occurs for

forms with holomorphic coefficients (see [18], [17]).

In [9] the canonical solution operator S1 to ∂ restricted to (0, 1)-forms with holo-

morphic coefficients was investigated. Let A2
(0,1)(Ω) denote the space of all (0, 1)-

forms with holomorphic coefficients belonging to L2(Ω). It is shown that the canonical

solution operator S1 : A2
(0,1)(Ω) −→ L2(Ω) has the form

S1(g)(z) =

∫

Ω

B(z, w) 〈g(w), z − w〉 dλ(w),

where B denotes the Bergman kernel of Ω and

〈g(w), z − w〉 =

n
∑

j=1

gj(w)(zj − wj),

for z = (z1, . . . , zn) and w = (w1, . . . , wn). (For further results see also [10], [11], [12],

[13]).

In this paper we investigate the connection between the ∂-Neumann operator

and commutators of the Bergman projection with multiplication operators. In [3]

it is shown that compactness of the ∂-Neumann operator N on L2
(0,1)(Ω) implies

compactness of the commutator [P, M ], where P is the Bergman projection and

M is pseudodifferential operator of order 0. Here we show that compactness of the

∂-Neumann operator N restricted to (0, 1)-forms with holomorphic coefficients is

equivalent to compactness of the commutator [P, M ] defined on the whole L2(Ω). In

addition we derive a formula for the ∂-Neumann operator restricted to (0, 1) forms

with holomorphic coefficients expressed by commutators of the Bergman projection

and the multiplications operators by z and z.

2. Commutators of the Bergman projection and

multiplication operators

Let Ω be a bounded domain in Cn and B(z, w) the Bergman kernel of Ω.We define

the following operator

T : L2
(0,1)(Ω) −→ L2(Ω),

by

Tf(z) =

∫

Ω

B(z, w)〈f(w), z − w〉dλ(w),

where f =
n
∑

k=1

fk dzk and 〈f(w), z − w〉 =
n
∑

k=1

fk(w)(zk − wk).
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Let P : L2
(0,1)(Ω) −→ A2

(0,1)(Ω) be the orthogonal projection on the space of

(0, 1)-forms with holomorphic coefficients. We claim that

Tf = TPf, f ∈ L2
(0,1)(Ω).

Note that

Pf =

n
∑

k=1

P (fk) dzk,

where P : L2(Ω) −→ A2(Ω) is the usual Bergman projection. So we get

TPf(z) =

∫

Ω

B(z, w)〈P(f), z − w〉dλ(w)

=
n

∑

k=1

∫

Ω

B(z, w)Pfk(w) (zk − wk) dλ(w)

=

n
∑

k=1

∫

Ω

B(z, w)

∫

Ω

B(w, ζ)fk(ζ) dλ(ζ) (zk − wk) dλ(w)

=
n

∑

k=1

∫

Ω

∫

Ω

B(z, w)B(w, ζ)(zk − wk) dλ(w)fk(ζ) dλ(ζ)

=

n
∑

k=1

∫

Ω

[
∫

Ω

B(ζ, w)B(w, z)(zk − wk) dλ(w)

]−

fk(ζ) dλ(ζ)

=

n
∑

k=1

∫

Ω

B(z, ζ)(zk − ζk) fk(ζ) dλ(ζ) = Tf(z),

where we used the reproducing property of the Bergman kernel for the holomorphic

function w 7→ B(w, z)(zk − wk). For another proof of this fact see Remark b) from

below.

Now, let S denote the canonical solution operator to ∂ restricted to A2
(0,1)(Ω).

From [9] we have for f ∈ L2
(0,1)(Ω)

S (Pf) = T (Pf) = Tf.

Hence we have proved the following

Theorem 1. If f ∈ L2
(0,1)(Ω), then T (Pf) = Tf. The operator S is compact as

an operator from A2
(0,1)(Ω) to L2(Ω), if and only if the operator T is compact as an

operator from L2
(0,1)(Ω) to L2(Ω).
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Remarks.

a) The operator T can be written as a sum of commutators

Tf =

n
∑

k=1

[Mk, P ]fk, f =

n
∑

k=1

fk dzk

where Mkv(z) = zkv(z), v ∈ L2(Ω), k = 1, . . . , n.

b) If g⊥A2
(0,1)(Ω), then Tg = TPg = 0. This also follows from the direct calcula-

tion

Tg(z) =
n

∑

k=1

PMkg(z) =
n

∑

k=1

∫

Ω

B(z, w)wkgk(w) dλ(w)

=

n
∑

k=1

∫

Ω

gk(w) [B(w, z)wk]
−

dλ(w) = 0,

because w 7→ B(w, z)wk is holomorphic and gk⊥A2(Ω), for k = 1, . . . , n.

c) The adjoint operator T ∗ : L2(Ω) −→ L2
(0,1)(Ω) is given by

T ∗(g) =

n
∑

k=1

[P, Mk] g dzk, g ∈ L2(Ω),

where Mkv(z) = zkv(z). Here we have

T ∗(I − P )(g) = T ∗(g),

since

[P, Mk] Pg = PMkPg − MkPg = 0.

In a similar way the following results can be proved.

Lemma 1.

a) PMjP = MjP,

b) PMjP = PMj.

Let

B2
(0,1)(Ω) = {f ∈ L2

(0,1)(Ω): f ∈ ker ∂}.

Now suppose that Ω is bounded pseudoconvex domain in C
n. The ∂-Neumann

operator N can be viewed as an operator from B2
(0,1)(Ω) to B2

(0,1)(Ω). The operator

∂∗N : B2
(0,1)(Ω) −→ A2(Ω)⊥

is the canonical solution operator to ∂ (see [4]).
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Theorem 2. If f =
n
∑

k=1

fk dzk ∈ B2
(0,1)(Ω), then

PNPf =

n
∑

k=1

( n
∑

j=1

(PMkM jPfj − MkPM jfj)

)

dzk.

If f =
n
∑

k=1

fk dzk ∈ A2
(0,1)(Ω), then

PNf =

n
∑

k=1

[P, Mk]

( n
∑

j=1

M jfj

)

dzk.

P r o o f. First we observe that for f ∈ B2
(0,1)(Ω) we have

N∂∂∗Nf = N(I − ∂∗∂N)f = Nf,

where we used the fact that

N : B2
(0,1)(Ω) −→ B2

(0,1)(Ω).

If f ∈ A2
(0,1)(Ω), then by Theorem 1 it follows that

∂∗Nf = Tf.

Let f ∈ A2
(0,1)(Ω) and g ∈ B2

(0,1)(Ω) with orthogonal decompostion g = h + h̃, where

h ∈ A2
(0,1)(Ω) and h̃ = (I − P)g, then

(g, N∂∂∗Nf) = (∂∗N(h + h̃), T f) = (∂∗Nh, Tf) + (∂∗Nh̃, T f)

= (Th, T f) + (∂∗Nh̃, T f) = (Tg, T f) + (∂∗Nh̃, T f)

= (g, T ∗Tf) + (∂∗Nh̃, T f).

Since

(∂∗Nh̃, T f) = (Nh̃, ∂Tf) = (Nh̃, f) = (h̃, Nf),

we obtain

(g, Nf) = (g, N∂∂∗Nf) = (g, T ∗Tf) + (h̃, Nf)

= (g, T ∗Tf) + ((I − P)g, Nf) = (g, T ∗Tf) + (g, (I − P)Nf).

Now, since g ∈ B2
(0,1)(Ω) was arbitrary, we get

Nf = T ∗Tf + Nf − PNf,
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and therefore

PNf = T ∗Tf.

If we take into account, that for f ∈ B2
(0,1)(Ω) we have Tf = TPf, we can now

apply the last formula to Pf and get

PNPf = T ∗Tf.

It remains to compute T ∗T. If f ∈ B2
(0,1)(Ω), then

T ∗Tf =

n
∑

k=1

[P, Mk]

( n
∑

j=1

[M j , P ]fj

)

dzk

=

n
∑

k=1

( n
∑

j=1

(PMkM jP − MkPM jP − PMkPM j + MkPM j)fj

)

dzk

=

n
∑

k=1

( n
∑

j=1

(PMkM jPfj − MkPM jfj)

)

dzk,

where we used Lemma 1.

If f ∈ A2
(0,1)(Ω), then

Pfj = fj

and we obtain the second formula in Theorem 2. �

Using the last results we get the criterion for compactness of the commutators

[P, Mk]:

Theorem 3. Let Ω be a bounded pseudoconvex domain in Cn. Then the following

conditions are equivalent:

(1) N |A2
(0,1)

(Ω) is compact;

(2) ∂∗N |A2
(0,1)

(Ω) is compact;

(3) [P, Mk] is compact on L2(Ω) for k = 1, . . . , n;

(4) (I − P )MkP is compact on L2(Ω) for k = 1, . . . , n;

(5) [Mϕ, P ] is compact on L2(Ω) for each continuous function ϕ on Ω̄.

P r o o f. Let S1 = ∂∗N1 : B2
(0,1)(Ω) −→ A2(Ω)⊥ be the canonical solution

opertor to ∂ and similarly S2 = ∂∗N2 : B2
(0,2)(Ω) −→ B2

(0,1)(Ω)⊥, then

N1 = S
∗
1 S1 + S2S

∗
2 .
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(see for instance [4] or [7]). Since S ∗
2 |A2

(0,1)
(Ω) = 0, we have

N1|A2
(0,1)

(Ω) = S
∗
1 S1|A2

(0,1)
(Ω),

and (1) is equivalent to (2).

Now suppose that (2) holds. Then, since the restriction of ∂∗N to A2
(0,1)(Ω) is of

the form

∂∗Nf =

n
∑

k=1

[Mk, P ]fk,

where f =
n
∑

k=1

fk dzk ∈ A2
(0,1)(Ω), then by Theorem 1 it follows that the operators

[Mk, P ] are compact on L2(Ω). Since [Mk, P ]∗ = [P, Mk], we obtain property (3).

It is also clear by Theorem 1 that (3) implies (2).

Now suppose that (3) holds. It follows that [Mk, P ]P is also compact, and since

[Mk, P ]P = MkP − PMkP = (I − P )MkP,

the Hankel operators (I−P )MkP are compact. So we have shown that (3) implies (4).

Suppose that (4) holds. The Hankel operators Hzjzk
with symbol zjzk can be

written in the form

Hzjzk
= (I − P )Mj(P + (I − P ))MkP = (I − P )Mj(I − P )MkP,

hence it follows that Hzjzk
is compact. Similarly one can show that for any polyno-

mial

p(z, z) =
∑

|α|6N

λαzα1zα2 ,

where α = (α1, α2) in a multiindex in N
2n, the corresponding Hankel operator Hp =

(I−P )MpP is compact. Now let ϕ ∈ C (Ω). Then, by the Stone-Weierstraß Theorem,

there exists a polynomial p of the above form such that

‖ϕ − p‖∞ < ε.

Hence

‖Hϕ − Hp‖ = ‖(I − P )Mϕ−pP‖ 6 ‖ϕ − p‖∞.

Since the compact operators form a closed twosided ideal in the operator norm and

since for g = g1 + g2 where g1 ∈ A2(Ω) and g2 ∈ A2(Ω)⊥ we have

[Mϕ, P ]g = −H∗
ϕ̄g2 + Hϕg1,

it follows that [Mϕ, P ] is compact. �
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Remark. If Ω is a bounded convex domain, then compactness of ∂∗N |A2
(0,1)

(Ω)

implies already compactness of ∂∗N on all of L2
(0,1)(Ω) (see [6]), hence, in this case

property (1) of Theorem 3 can be replaced by N being compact on L2
(0,1)(Ω) and

property (2) of Theorem 3 can be replaced by ∂∗N being compact on L2
(0,1)(Ω).
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