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Abstract. We solve the following Dirichlet problem on the bounded balanced domain Ω
with some additional properties: For p > 0 and a positive lower semi-continuous function u

on ∂Ω with u(z) = u(λz) for |λ| = 1, z ∈ ∂Ω we construct a holomorphic function f ∈ O(Ω)
such that u(z) =

∫
Dz |f |

pdL
2

Dz for z ∈ ∂Ω, where D = {λ ∈ C : |λ| < 1}.

Keywords: boundary behavior of holomorphic functions, exceptional sets, boundary func-
tions, Dirichlet problem, Radon inversion problem

MSC 2010 : 30B30

1. Preface

Let us denote D = {λ ∈ C : |λ| < 1}. Assume that Ω ⊂ Cn is a bounded

balanced domain (i.e. DΩ = Ω). We solve the following Dirichlet problem: For

p > 0 and a positive lower semi-continuous function u on ∂Ω with u(z) = u(λz)

for |λ| = 1, z ∈ ∂Ω we construct a holomorphic function1 f ∈ O(Ω) such that2

u(z) =
∫

Dz
|f |p dL

2
Dz for z ∈ ∂Ω. The case when p = 2 and Ω is a unit ball Bn was

solved in the paper [6, Theorem 2.9]. Now we generalize this result. In fact, our

methods can be used for a bounded balanced domain Ω wich fulfils the following

Condition 1. There exists a positive constant θ and a natural number K such

that if a function g is continuous on ∂Ω and g(z) = g(λz) > 0 when |λ| = 1,

z ∈ ∂Ω, then there exists a natural number N0 and a sequence of homogeneous

polynomials pm of degree m such that

(1) |pm(z)| < g(z) for m > N0 and z ∈ ∂Ω,

(2) θg(z) < max
j=0,1,...,K−1

|pmK+j(z)| for m > N0 and z ∈ ∂Ω.

1 By O(Ω) we denote the space of all holomorphic functions on Ω.
2 D z = {λz : |λ| < 1}, L2Dz denotes Lebesgue measure on D z.
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The above condition is true when Ω is the unit ball Bn (see [7, Theorem 2.7]).

However, the last construction of homogeneous polynomials [7, Lemma 2.5] suggests

that Condition 1 will be satisfied in more complicated domains. In fact, it will be

fulfilled (see [8, Theorem 2.5]) at least for the class of bounded circular strictly convex

domains with C2 boundary. The result [6, Theorem 2.7] was proved by using some

properties of homogeneous polynomials on the unit ball while in [7] we constructed

similar polynomials in the case when Ω is a bounded circular strictly convex domain

with C2 boundary. For this reason Condition 1 is the main assumption for the

present paper.

Our construction is to enable us to give a simple description of exceptional sets of

the form

Ep(f) =

{

z ∈ ∂Ω:

∫

Dz

|f |p dL
2
Dz = ∞

}

.

The exceptional sets were presented in the papers: [1], [2], [3], [4], [5], [6], [7].

2. Solution

The following fact will simplify the integration of holomorphic functions.

Lemma 1. Assume that p > 0, f ∈ C(Ω), ε, δ ∈ (0, 1). If gm ∈ C(Ω) and

gm → 0 uniformly on any compact subset of Ω, then there exists m0 such that

∫

Dz

|f + gm|p dL
2
Dz > − ε +

∫

Dz

|f |p dL
2
Dz + δp

∫

Dz

|gm|p dL
2
Dz ,

∫

Dz

|f + gm|p dL
2
Dz 6 ε +

∫

Dz

|f |p dL
2
Dz + δ−p

∫

Dz

|gm|p dL
2
Dz

for m > m0, z ∈ ∂Ω.

P r o o f. Let M := sup
z∈Ω

|f(z)|. There exists a number r ∈ (1
2 , 1) such that

(π(1 − r2)Mp)/(1 − δ)p 6 ε/8. Let D(z) = {w ∈ Dz : r 6 ‖w‖}. We consider the

following function:

Ψ: ∂Ω × D ∋ (z, ξ) →

∫

|λ|6r

|f(λz) + ξ|p dL
2(λ).

Since Ω is bounded and Ψ continuous there exists 0 < α < δ p

√

ε/4π with

|Ψ(z, 0)− Ψ(z, ξ)| 6
ε

4
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for z ∈ ∂Ω and |ξ| 6 α. Moreover, there exists m0 such that |gm(z)| 6 α for m > m0

and z ∈ rΩ. Let us observe that

(1)

∫

rDz

|gm|p dL
2
Dz 6

∫

Dz

δp
∣

∣

∣

ε

4π

∣

∣

∣
dL

2
Dz 6

1

4
δpε

and

(2)

∫

D(z)

|f |p dL
2
Dz 6

∫

D(z)

Mp dL
2
Dz 6

1

4
ε.

Since |gm| 6 α on rDz we have |Ψ(w, 0) − Ψ(w, gm(w))| 6 ε
4 for w ∈ rDz. In

particular,3

∫

rDz

|f + gm|p dL
2
Dz > −

1

4
ε +

∫

rDz

|f |p dL
2
Dz

(2)

> −
1

2
ε +

∫

rDz

|f |p dL
2
Dz + δp

∫

rDz

|gm|p dL
2
Dz

and
∫

rDz

|f + gm|p dL
2
Dz 6

1

4
ε +

∫

rDz

|f |p dL
2
Dz

(2)

6
1

2
ε +

∫

rDz

|f |p dL
2
Dz + δ−p

∫

rDz

|gm|p dL
2
Dz .

Now we define the following sets:

Bm,1(z) := {w ∈ Dz : r 6 ‖w‖ , |(f + gm)(w)| > δ|gm(w)|},

Bm,2(z) := {w ∈ Dz : r 6 ‖w‖, |f(w)| + |gm(w)| 6 δ−1|gm(w)|},

Cm,i(z) := {w ∈ Dz : r 6 ‖w‖, w /∈ Bm,i(z)}.

Let w ∈ Cm,1(z). Since |(f + gm)(w)| < δ|gm(w)| we have (1− δ)|gm(w)| 6 |f(w)| 6

M and ∫

Cm,1(z)

|gm|p dL
2
Dz 6

∫

D(z)

Mp

(1 − δ)p
dL

2
Dz 6

1

8
ε.

We can estimate
∫

D(z)

|f + gm|p dL
2
Dz >

∫

Bm,1(z)

|f + gm|p dL
2
Dz

> δp

∫

Bm,1(z)

|gm|p dL
2
Dz > −

1

4
ε + δp

∫

D(z)

|gm|p dL
2
Dz

> −
1

2
ε +

∫

D(z)

|f |p dL
2
Dz + δp

∫

D(z)

|gm|p dL
2
Dz .

3 In fact, since gm → 0 uniformly on rΩ, these two inequalities are easy consequences of
the Lebesgue lemma.
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Let w ∈ Cm,2(z). Since |f(w)| + |gm(w)| > δ−1|gm(w)| we have (δ−1 − 1)|gm(w)| 6

|f(w)| 6 M and |f(w)| + |gm(w)| < M + δM/(1 − δ) = M/(1 − δ). So we may

conclude ∫

Cm,2(z)

|f + gm|p dL
2
Dz 6

∫

D(z)

Mp

(1 − δ)p
dL

2
Dz 6

1

8
ε.

This implies

∫

D(z)

|f + gm|p dL
2
Dz 6

1

8
ε +

∫

Bm,2(z)

|f + gm|p dL
2
Dz

6
1

8
ε + δ−p

∫

Bm,2(z)

|gm|p dL
2
Dz

6
1

2
ε +

∫

D(z)

|f |p dL
2
Dz + δ−p

∫

D(z)

|gm|p dL
2
Dz ,

which completes the proof. �

The next result will be the first approximation of our solution.

Lemma 2. There exists a constant a ∈ (0, 1) and a natural number K such that

if a function h is continuous on ∂Ω and h(z) = h(λz) > 0 when |λ| = 1, z ∈ ∂Ω, then

there exists a natural number m0 and a sequence of homogeneous polynomials qm of

degree m such that

h(z) >

∫

Dz

∣

∣

∣

∣

K−1
∑

j=0

qmK+j

∣

∣

∣

∣

p

dL
2
Dz > ah(z),(3)

mh(z)tmp >

∣

∣

∣

∣

K−1
∑

j=0

qmK+j(tz)

∣

∣

∣

∣

p

(4)

for z ∈ ∂Ω, t > 0 and m > m0.

P r o o f. Let θ and K be from Condition 1. Let δ = min{p/4πKp, 1/2p+1Kp}.

There exists a natural number m0 > K and a sequence of homogeneous polynomi-

als pm of degree m such that |pm(z)|p < δh(z) and θpδh(z) < max
j=0,...,K−1

|pmK+j(z)|p

for z ∈ ∂Ω and m > m0. Let qm := m1/ppm, wm :=
K−1
∑

j=0

qm+j and Im,s,z :=
∫

Dz
|wm|s dL

2
Dz .

Assume that m0 is so large that (m+ j)1/p 6 2m1/p for m > m0, j = 0, . . . , K−1.

We then obtain the inequality (4):

(5) |wm(tz)| 6

K−1
∑

j=0

(m+j)1/ptm+jδ1/ph(z)1/p 6 2(mδh(z))1/pKtm < (mh(z))1/ptm
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and conclude for the left-hand side of relation (3)

Im,p,z =

∫ 1

0

∫ 2π

0

t|wm(tzeiϕ)|p dt dϕ

6 4πδKph(z)

∫ 1

0

mtpm+1 dt <
4πδKph(z)

p
6 h(z)

for z ∈ ∂Ω.

Since qm, . . . , qm+K−1 are homogeneous polynomials with degrees m, m + 1, . . . ,

m + K − 1 we conclude that qm, . . . , qm+K−1 are orthogonal polynomials, which

implies that

Im,2,z =

∫

Dz

∣

∣

∣

∣

K−1
∑

j=0

qm+j

∣

∣

∣

∣

2

dL
2
Dz =

K−1
∑

j=0

∫

Dz

|qm+j |
2 dL

2
Dz .

Let us observe that

Im,2,z =

K−1
∑

j=0

∫

Dz

|qm+j |
2 dL

2
Dz > 2π

∫ 1

0

(mθpδh(z))2/pt2(m+K)−1 dt(6)

>
πθ2(mδh(z))2/p

2m
.

Now we define

A(z) :=
{

ϕ ∈ [0, 2π] : |wm(zeiϕ)| > 1
3θ(mδh(z))1/p

}

.

Since

|tmwm(z) − wm(tz)| 6

m+K−1
∑

k=m

k1/p|tmpk(z) − pk(tz)|

6

m+K−1
∑

k=m

2m1/ptm(1 − tk−m)|pk(z)|

6 2m1/ptm(1 − tK)K max
j=0,...,K−1

|pm+j(z)|

6 2m1/ptm(1 − tK)K(δh(z))1/p,

there exists r ∈ (0, 1) such that

|tmwm(zeiϕ) − wm(tzeiϕ)| 6 1
6θ(mδh(z))1/ptm
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for t ∈ (r, 1), z ∈ ∂Ω and m > m0. In particular, if ϕ ∈ [0, 2π] \ A(z) then

|wm(tzeiϕ)| 6 |tmwm(zeiϕ)| + |tmwm(zeiϕ) − wm(tzeiϕ)| 6 1
2θ(mδh(z))1/ptm

for t ∈ (r, 1). Let cz := L(A(z)). Now due to (5) we have

Im,2,z 6

∫ 1

r

∫

A(z)

4(mδh(z))2/pK2t2m+1 dt dϕ +

∫ 1

r

∫

[0,2π]\A(z)

t|w(tzeiϕ)|2 dt dϕ

+ 2π

∫ r

0

4(mδh(z))2/pK2t2m+1 dt

6
cz4(mδh(z))2/pK2

2m + 2
+

(1 − cz)θ
2(mδh(z))2/p

4(2m + 2)
+

8π(mδh(z))2/pK2r2m+2

2m + 2
,

which together with (6) gives the inequality

πθ2 6 cz4K2 + (1 − cz)
θ2

4
+ 8πK2r2m+2.

In particular, if m0 is so large that 8πK2r2m0+2 < πθ2/2−θ2/4 then we can estimate

πθ2/2 6 cz(4K2 − θ2/4) < cz4K2 and conclude that cz > πθ2/8K2.

Let us observe that if ϕ ∈ A(z) then

|wm(tzeiϕ)| > |tmwm(zeiϕ)| − |tmwm(zeiϕ) − wm(tzeiϕ)| > 1
6θ(mδh(z))1/ptm,

so we can set a = 1
16 (πθ2+pδ)/(K26pp) and conclude for the right-hand side of

relation (3):

Im,p,z >

∫ 1

r

∫

A(z)

t|w(tzeiϕ)|p dt dϕ

>
πθ2

8K2

θpδh(z)

6p

∫ 1

r

mtpm+1 dt >
πθ2+pδ

8K26p2p
h(z) > ah(z)

for m > m0 and m0 large enough. �

We need also well Lemmas 3–4 to simplify our calculations.
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Lemma 3. There exists a constant θ ∈ (0, 1) and K ∈ N such that if g is a

complex continuous function on Ω and h is a positive continuous function on ∂Ω

with h(z) = h(λz) > 0 when |λ| = 1, z ∈ ∂Ω, then there exists a natural number m0

and a sequence of holomorphic polynomials wm such that

h(z) >

∫

Dz

|g + wm|p − |g|p dL
2
Dz > θh(z),(7)

mtmph(z) > |wm(tz)|p(8)

for z ∈ ∂Ω, t ∈ (0, 1], m ∈ KN \ [0, m0].
4

P r o o f. Due to Lemma 2 there exist a constant a ∈ (0, 1), a natural number m0

and a sequence of holomorphic polynomials wm such that

1

2
h(z) >

∫

Dz

|wm|p dL
2
Dz >

a

2
h(z),

mtmph(z) > |wm(tz)|p

for z ∈ ∂Ω, t ∈ (0, 1], m ∈ KN \ [0, m0]. Let ε, δ ∈ (0, 1) be such that max{1 − δp,

δ−p − 1} < 1
4a and ε < 1

8ah(z)max{1− δp, δ−p − 1} < 1
4a for z ∈ ∂Ω. Since wm → 0

uniformly on any compact subset of Ω due to Lemma 1 we can increase m0 in such

a way that
∫

Dz

|g + wm|p dL
2
Dz > − ε +

∫

Dz

|g|p dL
2
Dz + δp

∫

Dz

|wm|p dL
2
Dz ,(9)

∫

Dz

|g + wm|p dL
2
Dz 6 ε +

∫

Dz

|g|p dL
2
Dz + δ−p

∫

Dz

|wm|p dL
2
Dz(10)

for m ∈ KN \ [0, m0].

Let us denote Im,z :=
∫

Dz
|g + wm|p − |g|p dL

2
Dz. Using (10) we may conclude for

the left-hand side of inequality (7):

Im,z 6 ε +

∫

Dz

|wm|p dL
2
Dz + (δ−p − 1)

∫

Dz

|wm|p dL
2
Dz

<
ah(z)

8
+

h(z)

2
+

ah(z)

8
< h(z).

Due to (9) we have for the right-hand side of inequality (7):

Im,z > − ε +

∫

Dz

|wm|p dL
2
Dz − (1 − δp)

∫

Dz

|wm|p dL
2
Dz

> −
ah(z)

8
+

ah(z)

2
−

ah(z)

8
=

ah(z)

4
.

We have just proved that it is enough to choose θ = 1
4a. �

4 KN \ [0, m0] = {Kj : j ∈ N ∧ j > m0}.

377



Lemma 4. Let ε > 0, let h be a positive continuous function on ∂Ω with

h(z) = h(λz) > 0 when |λ| = 1, z ∈ ∂Ω. Moreover, let g be a complex continuous

function on Ω and T a compact subset of Ω. Then there exists a homolomorphic

polynomial w on Ω such that h(z) − ε <
∫

Dz
|w + g|p − |g|p dL

2
Dz < h(z) for z ∈ ∂Ω

and ‖w‖T < ε.

P r o o f. Due to Lemma 3 there exist a constant θ ∈ (0, 1) and a sequence of

holomorphic polynomials wm such that

(1) ‖wm‖T < ε/2m+1.

(2) θhm(z) <
∫

Dz
|wm+gm|p−|gm|p dL

2
Dz < hm(z) for z ∈ ∂Ω, where h1 = h, g1 = g,

hm+1(z) = hm(z) − (
∫

Dz
|wm + gm|p − |gm|p dL

2
Dz) and gm+1 =

m
∑

j=1

wm + g.

Let us observe that 0 < hm+1(z) = h(z)− (
∫

Dz |gm+1|
p − |g|p dL

2
Dz). Now due to (2)

we can estimate

0 < hm+1(z) = hm(z) +

∫

Dz

|gm|p − |gm+1|
p dL

2
Dz < hm(z) − θhm(z) = (1 − θ)hm.

Since hm+1(z) < (1 − θ)mh1(z) there exists m0 so large that

0 < hm0+1(z) = h(z) −

(
∫

Dz

|gm0+1|
p − |g|p dL

2
Dz

)

< ε

for z ∈ ∂Ω. So it is enough to choose w =
m0
∑

m=1
wm. �

Now it is possible to present the main result of our paper:

Theorem 1. Let u be a positive lower semi-continuous function on ∂Ω with

u(z) = u(λz) > 0 when |λ| = 1, z ∈ ∂Ω. Then there exists a holomorphic function f

on Ω such that u(z) =
∫

Dz
|f |p dL

2
Dz for z ∈ ∂Ω.

P r o o f. Let Tm be an increasing sequence of compact subsets of Ω =
⋃

m∈N

Tm.

There exists a sequence um of continuous functions on ∂Ω with um(z) = um(λz) > 0

when |λ| = 1, z ∈ ∂Ω and um ր u. We construct a sequence of polynomials wm

such that

(1) ‖wm‖Tm
< 1/2m+1,

(2) um(z) − 1/2m <
∫

Dz

∣

∣

∣

m
∑

k=1

wk

∣

∣

∣

p

dL
2
Dz < um(z) for z ∈ ∂Ω.

To construct w1 it is enough to use Lemma 4 for the data (ε, h, g, T ) = (1
2 , u1, 0, T1).

Assume that we have constructed w1, w2, . . . , wm. Now it is enough to choose a

holomorphic polynomial wm+1 from Lemma 4 used for the data

(ε, h, g, T ) =

(

1

2m+1
, hm+1,

m
∑

k=1

wk, Tm+1

)

,
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where hm+1(z) = um+1(z) −
∫

Dz

∣

∣

∣

m
∑

k=1

wk

∣

∣

∣

p

dL
2
Dz. We can observe that

um+1(z) −

∫

Dz

∣

∣

∣

∣

m
∑

k=1

wk

∣

∣

∣

∣

p

dL
2
Dz −

1

2m+1

<

∫

Dz

∣

∣

∣

∣

m+1
∑

k=1

wk

∣

∣

∣

∣

p

dL
2
Dz −

∫

Dz

∣

∣

∣

∣

m
∑

k=1

wk

∣

∣

∣

∣

p

dL
2
Dz < um+1(z) −

∫

Dz

∣

∣

∣

∣

m
∑

k=1

wk

∣

∣

∣

∣

p

dL
2
Dz .

To complete the proof it is enough to define f =
∞
∑

k=1

wk. �

Theorem 2. Let E be a subset of type Gδ in ∂Ω. There exists a holomorphic

function f such that E = Ep(f) and
∫

Ω\DE |f |p dL
2n < ∞.

P r o o f. To prove this fact it is enough to combine Theorem 1 with the methods

from [6, Theorem 3.1]. �
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