Czechoslovak Mathematical Journal

Piotr Kot

Boundary functions on a bounded balanced domain

Czechoslovak Mathematical Journal, Vol. 59 (2009), No. 2, 371-379

Persistent URL: http://dml.cz/dmlcz/140486

Terms of use:

© Institute of Mathematics AS CR, 2009

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

BOUNDARY FUNCTIONS ON A BOUNDED BALANCED DOMAIN

Piotr Kot, Krakow

(Received June 20, 2007)

Abstract

We solve the following Dirichlet problem on the bounded balanced domain Ω with some additional properties: For $p>0$ and a positive lower semi-continuous function u on $\partial \Omega$ with $u(z)=u(\lambda z)$ for $|\lambda|=1, z \in \partial \Omega$ we construct a holomorphic function $f \in \mathbb{O}(\Omega)$ such that $u(z)=\int_{\mathbb{D} z}|f|^{p} d \mathfrak{L}_{\mathbb{D} z}^{2}$ for $z \in \partial \Omega$, where $\mathbb{D}=\{\lambda \in \mathbb{C}:|\lambda|<1\}$.

Keywords: boundary behavior of holomorphic functions, exceptional sets, boundary functions, Dirichlet problem, Radon inversion problem

MSC 2010: 30B30

1. Preface

Let us denote $\mathbb{D}=\{\lambda \in \mathbb{C}:|\lambda|<1\}$. Assume that $\Omega \subset \mathbb{C}^{n}$ is a bounded balanced domain (i.e. $\mathbb{D} \Omega=\Omega$). We solve the following Dirichlet problem: For $p>0$ and a positive lower semi-continuous function u on $\partial \Omega$ with $u(z)=u(\lambda z)$ for $|\lambda|=1, z \in \partial \Omega$ we construct a holomorphic function ${ }^{1} f \in \mathbb{O}(\Omega)$ such that ${ }^{2}$ $u(z)=\int_{\mathbb{D} z}|f|^{p} \mathrm{~d} \mathfrak{L}_{\mathbb{D} z}^{2}$ for $z \in \partial \Omega$. The case when $p=2$ and Ω is a unit ball \mathbb{B}^{n} was solved in the paper [6, Theorem 2.9]. Now we generalize this result. In fact, our methods can be used for a bounded balanced domain Ω wich fulfils the following

Condition 1. There exists a positive constant θ and a natural number K such that if a function g is continuous on $\partial \Omega$ and $g(z)=g(\lambda z)>0$ when $|\lambda|=1$, $z \in \partial \Omega$, then there exists a natural number N_{0} and a sequence of homogeneous polynomials p_{m} of degree m such that
(1) $\left|p_{m}(z)\right|<g(z)$ for $m>N_{0}$ and $z \in \partial \Omega$,
(2) $\theta g(z)<\max _{j=0,1, \ldots, K-1}\left|p_{m K+j}(z)\right|$ for $m>N_{0}$ and $z \in \partial \Omega$.

[^0]The above condition is true when Ω is the unit ball \mathbb{B}^{n} (see [7, Theorem 2.7]). However, the last construction of homogeneous polynomials [7, Lemma 2.5] suggests that Condition 1 will be satisfied in more complicated domains. In fact, it will be fulfilled (see [8, Theorem 2.5]) at least for the class of bounded circular strictly convex domains with C^{2} boundary. The result [6 , Theorem 2.7] was proved by using some properties of homogeneous polynomials on the unit ball while in [7] we constructed similar polynomials in the case when Ω is a bounded circular strictly convex domain with C^{2} boundary. For this reason Condition 1 is the main assumption for the present paper.

Our construction is to enable us to give a simple description of exceptional sets of the form

$$
E^{p}(f)=\left\{z \in \partial \Omega: \int_{\mathbb{D} z}|f|^{p} \mathrm{~d} \mathfrak{L}_{\mathbb{D} z}^{2}=\infty\right\} .
$$

The exceptional sets were presented in the papers: [1], [2], [3], [4], [5], [6], [7].

2. Solution

The following fact will simplify the integration of holomorphic functions.

Lemma 1. Assume that $p>0, f \in C(\bar{\Omega}), \varepsilon, \delta \in(0,1)$. If $g_{m} \in C(\bar{\Omega})$ and $g_{m} \rightarrow 0$ uniformly on any compact subset of Ω, then there exists m_{0} such that

$$
\begin{aligned}
& \int_{\mathbb{D} z}\left|f+g_{m}\right|^{p} \mathrm{~d} \mathfrak{L}_{\mathbb{D} z}^{2} \geqslant-\varepsilon+\int_{\mathbb{D} z}|f|^{p} \mathrm{~d} \mathfrak{L}_{\mathbb{D} z}^{2}+\delta^{p} \int_{\mathbb{D} z}\left|g_{m}\right|^{p} \mathrm{~d} \mathfrak{L}_{\mathbb{D} z}^{2}, \\
& \int_{\mathbb{D} z}\left|f+g_{m}\right|^{p} \mathrm{~d} \mathfrak{L}_{\mathbb{D} z}^{2} \leqslant \varepsilon+\int_{\mathbb{D} z}|f|^{p} \mathrm{~d} \mathfrak{L}_{\mathbb{D} z}^{2}+\delta^{-p} \int_{\mathbb{D} z}\left|g_{m}\right|^{p} \mathrm{~d} \mathfrak{L}_{\mathbb{D} z}^{2}
\end{aligned}
$$

for $m>m_{0}, z \in \partial \Omega$.
Proof. Let $M:=\sup _{z \in \Omega}|f(z)|$. There exists a number $r \in\left(\frac{1}{2}, 1\right)$ such that $\left(\pi\left(1-r^{2}\right) M^{p}\right) /(1-\delta)^{p} \leqslant \varepsilon / 8$. Let $D(z)=\{w \in \mathbb{D} z: r \leqslant\|w\|\}$. We consider the following function:

$$
\Psi: \partial \Omega \times \overline{\mathbb{D}} \ni(z, \xi) \rightarrow \int_{|\lambda| \leqslant r}|f(\lambda z)+\xi|^{p} \mathrm{~d} \mathfrak{L}^{2}(\lambda) .
$$

Since Ω is bounded and Ψ continuous there exists $0<\alpha<\delta \sqrt[p]{\varepsilon / 4 \pi}$ with

$$
|\Psi(z, 0)-\Psi(z, \xi)| \leqslant \frac{\varepsilon}{4}
$$

for $z \in \partial \Omega$ and $|\xi| \leqslant \alpha$. Moreover, there exists m_{0} such that $\left|g_{m}(z)\right| \leqslant \alpha$ for $m>m_{0}$ and $z \in r \Omega$. Let us observe that

$$
\begin{equation*}
\int_{r \mathbb{D} z}\left|g_{m}\right|^{p} \mathrm{~d} \mathfrak{L}_{\mathbb{D} z}^{2} \leqslant \int_{\mathbb{D} z} \delta^{p}\left|\frac{\varepsilon}{4 \pi}\right| \mathrm{d} \mathfrak{L}_{\mathbb{D} z}^{2} \leqslant \frac{1}{4} \delta^{p} \varepsilon \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{D(z)}|f|^{p} \mathrm{~d} \mathfrak{L}_{\mathbb{D} z}^{2} \leqslant \int_{D(z)} M^{p} \mathrm{~d} \mathfrak{L}_{\mathbb{D} z}^{2} \leqslant \frac{1}{4} \varepsilon . \tag{2}
\end{equation*}
$$

Since $\left|g_{m}\right| \leqslant \alpha$ on $r \mathbb{D} z$ we have $\left|\Psi(w, 0)-\Psi\left(w, g_{m}(w)\right)\right| \leqslant \frac{\varepsilon}{4}$ for $w \in r \mathbb{D} z$. In particular, ${ }^{3}$

$$
\begin{aligned}
\int_{r \mathbb{D} z}\left|f+g_{m}\right|^{p} \mathrm{~d} \mathfrak{L}_{\mathbb{D} z}^{2} & \geqslant-\frac{1}{4} \varepsilon+\int_{r \mathbb{D} z}|f|^{p} \mathrm{~d} \mathfrak{L}_{\mathbb{D} z}^{2} \\
& \stackrel{(2)}{\geqslant}-\frac{1}{2} \varepsilon+\int_{r \mathbb{D} z}|f|^{p} \mathrm{~d} \mathfrak{L}_{\mathbb{D} z}^{2}+\delta^{p} \int_{r \mathbb{D} z}\left|g_{m}\right|^{p} \mathrm{~d} \mathfrak{L}_{\mathbb{D} z}^{2}
\end{aligned}
$$

and

$$
\begin{aligned}
\int_{r \mathbb{D} z}\left|f+g_{m}\right|^{p} \mathrm{~d} \mathfrak{L}_{\mathbb{D} z}^{2} & \leqslant \frac{1}{4} \varepsilon+\int_{r \mathbb{D} z}|f|^{p} \mathrm{~d} \mathfrak{L}_{\mathbb{D} z}^{2} \\
& \stackrel{(2)}{\leqslant} \frac{1}{2} \varepsilon+\int_{r \mathbb{D} z}|f|^{p} \mathrm{~d} \mathfrak{L}_{\mathbb{D} z}^{2}+\delta^{-p} \int_{r \mathbb{D} z}\left|g_{m}\right|^{p} \mathrm{~d} \mathfrak{L}_{\mathbb{D} z}^{2}
\end{aligned}
$$

Now we define the following sets:

$$
\begin{aligned}
B_{m, 1}(z) & :=\left\{w \in \mathbb{D} z: r \leqslant\|w\|,\left|\left(f+g_{m}\right)(w)\right| \geqslant \delta\left|g_{m}(w)\right|\right\} \\
B_{m, 2}(z) & :=\left\{w \in \mathbb{D} z: r \leqslant\|w\|,|f(w)|+\left|g_{m}(w)\right| \leqslant \delta^{-1}\left|g_{m}(w)\right|\right\} \\
C_{m, i}(z) & :=\left\{w \in \mathbb{D} z: r \leqslant\|w\|, w \notin B_{m, i}(z)\right\} .
\end{aligned}
$$

Let $w \in C_{m, 1}(z)$. Since $\left|\left(f+g_{m}\right)(w)\right|<\delta\left|g_{m}(w)\right|$ we have $(1-\delta)\left|g_{m}(w)\right| \leqslant|f(w)| \leqslant$ M and

$$
\int_{C_{m, 1}(z)}\left|g_{m}\right|^{p} \mathrm{~d} \mathfrak{L}_{\mathbb{D} z}^{2} \leqslant \int_{D(z)} \frac{M^{p}}{(1-\delta)^{p}} \mathrm{~d} \mathfrak{L}_{\mathbb{D} z}^{2} \leqslant \frac{1}{8} \varepsilon
$$

We can estimate

$$
\begin{aligned}
\int_{D(z)}\left|f+g_{m}\right|^{p} \mathrm{~d} \mathfrak{L}_{\mathbb{D} z}^{2} & \geqslant \int_{B_{m, 1}(z)}\left|f+g_{m}\right|^{p} \mathrm{~d} \mathfrak{L}_{\mathbb{D} z}^{2} \\
& \geqslant \delta^{p} \int_{B_{m, 1}(z)}\left|g_{m}\right|^{p} \mathrm{~d} \mathfrak{L}_{\mathbb{D} z}^{2} \geqslant-\frac{1}{4} \varepsilon+\delta^{p} \int_{D(z)}\left|g_{m}\right|^{p} \mathrm{~d} \mathfrak{L}_{\mathbb{D} z}^{2} \\
& \geqslant-\frac{1}{2} \varepsilon+\int_{D(z)}|f|^{p} \mathrm{~d} \mathfrak{L}_{\mathbb{D} z}^{2}+\delta^{p} \int_{D(z)}\left|g_{m}\right|^{p} \mathrm{~d} \mathfrak{L}_{\mathbb{D} z}^{2}
\end{aligned}
$$

[^1]Let $w \in C_{m, 2}(z)$. Since $|f(w)|+\left|g_{m}(w)\right|>\delta^{-1}\left|g_{m}(w)\right|$ we have $\left(\delta^{-1}-1\right)\left|g_{m}(w)\right| \leqslant$ $|f(w)| \leqslant M$ and $|f(w)|+\left|g_{m}(w)\right|<M+\delta M /(1-\delta)=M /(1-\delta)$. So we may conclude

$$
\int_{C_{m, 2}(z)}\left|f+g_{m}\right|^{p} \mathrm{~d} \mathfrak{L}_{\mathbb{D} z}^{2} \leqslant \int_{D(z)} \frac{M^{p}}{(1-\delta)^{p}} \mathrm{~d} \mathfrak{L}_{\mathbb{D} z}^{2} \leqslant \frac{1}{8} \varepsilon
$$

This implies

$$
\begin{aligned}
\int_{D(z)}\left|f+g_{m}\right|^{p} \mathrm{~d} \mathfrak{L}_{\mathbb{D} z}^{2} & \leqslant \frac{1}{8} \varepsilon+\int_{B_{m, 2}(z)}\left|f+g_{m}\right|^{p} \mathrm{~d} \mathfrak{L}_{\mathbb{D} z}^{2} \\
& \leqslant \frac{1}{8} \varepsilon+\delta^{-p} \int_{B_{m, 2}(z)}\left|g_{m}\right|^{p} \mathrm{~d} \mathfrak{L}_{\mathbb{D} z}^{2} \\
& \leqslant \frac{1}{2} \varepsilon+\int_{D(z)}|f|^{p} \mathrm{~d} \mathfrak{L}_{\mathbb{D} z}^{2}+\delta^{-p} \int_{D(z)}\left|g_{m}\right|^{p} \mathrm{~d} \mathfrak{L}_{\mathbb{D} z}^{2},
\end{aligned}
$$

which completes the proof.
The next result will be the first approximation of our solution.

Lemma 2. There exists a constant $a \in(0,1)$ and a natural number K such that if a function h is continuous on $\partial \Omega$ and $h(z)=h(\lambda z)>0$ when $|\lambda|=1, z \in \partial \Omega$, then there exists a natural number m_{0} and a sequence of homogeneous polynomials q_{m} of degree m such that

$$
\begin{align*}
& h(z)>\int_{\mathbb{D} z}\left|\sum_{j=0}^{K-1} q_{m K+j}\right|^{p} \mathrm{~d} \mathfrak{L}_{\mathbb{D} z}^{2}>a h(z), \tag{3}\\
& \quad m h(z) t^{m p}>\left|\sum_{j=0}^{K-1} q_{m K+j}(t z)\right|^{p}
\end{align*}
$$

for $z \in \partial \Omega, t>0$ and $m \geqslant m_{0}$.
Proof. Let θ and K be from Condition 1. Let $\delta=\min \left\{p / 4 \pi K^{p}, 1 / 2^{p+1} K^{p}\right\}$. There exists a natural number $m_{0}>K$ and a sequence of homogeneous polynomials p_{m} of degree m such that $\left|p_{m}(z)\right|^{p}<\delta h(z)$ and $\theta^{p} \delta h(z)<\max _{j=0, \ldots, K-1}\left|p_{m K+j}(z)\right|^{p}$ for $z \in \partial \Omega$ and $m \geqslant m_{0}$. Let $q_{m}:=m^{1 / p} p_{m}, w_{m}:=\sum_{j=0}^{K-1} q_{m+j}$ and $I_{m, s, z}:=$ $\int_{\mathbb{D} z}\left|w_{m}\right|^{s} \mathrm{~d} \mathfrak{L}_{\mathbb{D} z}^{2}$.

Assume that m_{0} is so large that $(m+j)^{1 / p} \leqslant 2 m^{1 / p}$ for $m \geqslant m_{0}, j=0, \ldots, K-1$. We then obtain the inequality (4):
(5) $\left|w_{m}(t z)\right| \leqslant \sum_{j=0}^{K-1}(m+j)^{1 / p} t^{m+j} \delta^{1 / p} h(z)^{1 / p} \leqslant 2(m \delta h(z))^{1 / p} K t^{m}<(m h(z))^{1 / p} t^{m}$
and conclude for the left-hand side of relation (3)

$$
\begin{aligned}
I_{m, p, z} & =\int_{0}^{1} \int_{0}^{2 \pi} t\left|w_{m}\left(t z \mathrm{e}^{\mathrm{i} \varphi}\right)\right|^{p} \mathrm{~d} t \mathrm{~d} \varphi \\
& \leqslant 4 \pi \delta K^{p} h(z) \int_{0}^{1} m t^{p m+1} \mathrm{~d} t<\frac{4 \pi \delta K^{p} h(z)}{p} \leqslant h(z)
\end{aligned}
$$

for $z \in \partial \Omega$.
Since q_{m}, \ldots, q_{m+K-1} are homogeneous polynomials with degrees $m, m+1, \ldots$, $m+K-1$ we conclude that q_{m}, \ldots, q_{m+K-1} are orthogonal polynomials, which implies that

$$
I_{m, 2, z}=\int_{\mathbb{D} z}\left|\sum_{j=0}^{K-1} q_{m+j}\right|^{2} \mathrm{~d} \mathfrak{L}_{\mathbb{D} z}^{2}=\sum_{j=0}^{K-1} \int_{\mathbb{D} z}\left|q_{m+j}\right|^{2} \mathrm{~d} \mathfrak{L}_{\mathbb{D} z}^{2} .
$$

Let us observe that

$$
\begin{align*}
I_{m, 2, z} & =\sum_{j=0}^{K-1} \int_{\mathbb{D} z}\left|q_{m+j}\right|^{2} \mathrm{~d} \mathfrak{L}_{\mathbb{D} z}^{2} \geqslant 2 \pi \int_{0}^{1}\left(m \theta^{p} \delta h(z)\right)^{2 / p} t^{2(m+K)-1} \mathrm{~d} t \tag{6}\\
& \geqslant \frac{\pi \theta^{2}(m \delta h(z))^{2 / p}}{2 m} .
\end{align*}
$$

Now we define

$$
A(z):=\left\{\varphi \in[0,2 \pi]:\left|w_{m}\left(z \mathrm{e}^{\mathrm{i} \varphi}\right)\right|>\frac{1}{3} \theta(m \delta h(z))^{1 / p}\right\} .
$$

Since

$$
\begin{aligned}
\left|t^{m} w_{m}(z)-w_{m}(t z)\right| & \leqslant \sum_{k=m}^{m+K-1} k^{1 / p}\left|t^{m} p_{k}(z)-p_{k}(t z)\right| \\
& \leqslant \sum_{k=m}^{m+K-1} 2 m^{1 / p} t^{m}\left(1-t^{k-m}\right)\left|p_{k}(z)\right| \\
& \leqslant 2 m^{1 / p} t^{m}\left(1-t^{K}\right) K \max _{j=0, \ldots, K-1}\left|p_{m+j}(z)\right| \\
& \leqslant 2 m^{1 / p} t^{m}\left(1-t^{K}\right) K(\delta h(z))^{1 / p},
\end{aligned}
$$

there exists $r \in(0,1)$ such that

$$
\left|t^{m} w_{m}\left(z \mathrm{e}^{\mathrm{i} \varphi}\right)-w_{m}\left(t z \mathrm{e}^{\mathrm{i} \varphi}\right)\right| \leqslant \frac{1}{6} \theta(m \delta h(z))^{1 / p} t^{m}
$$

for $t \in(r, 1), z \in \partial \Omega$ and $m \geqslant m_{0}$. In particular, if $\varphi \in[0,2 \pi] \backslash A(z)$ then

$$
\left|w_{m}\left(t z \mathrm{e}^{\mathrm{i} \varphi}\right)\right| \leqslant\left|t^{m} w_{m}\left(z \mathrm{e}^{\mathrm{i} \varphi}\right)\right|+\left|t^{m} w_{m}\left(z \mathrm{e}^{\mathrm{i} \varphi}\right)-w_{m}\left(t z \mathrm{e}^{\mathrm{i} \varphi}\right)\right| \leqslant \frac{1}{2} \theta(m \delta h(z))^{1 / p} t^{m}
$$

for $t \in(r, 1)$. Let $c_{z}:=\mathfrak{L}(A(z))$. Now due to (5) we have

$$
\begin{aligned}
I_{m, 2, z} \leqslant & \int_{r}^{1} \int_{A(z)} 4(m \delta h(z))^{2 / p} K^{2} t^{2 m+1} \mathrm{~d} t \mathrm{~d} \varphi+\int_{r}^{1} \int_{[0,2 \pi] \backslash A(z)} t\left|w\left(t z \mathrm{e}^{\mathrm{i} \varphi}\right)\right|^{2} \mathrm{~d} t \mathrm{~d} \varphi \\
& +2 \pi \int_{0}^{r} 4(m \delta h(z))^{2 / p} K^{2} t^{2 m+1} \mathrm{~d} t \\
\leqslant & \frac{c_{z} 4(m \delta h(z))^{2 / p} K^{2}}{2 m+2}+\frac{\left(1-c_{z}\right) \theta^{2}(m \delta h(z))^{2 / p}}{4(2 m+2)}+\frac{8 \pi(m \delta h(z))^{2 / p} K^{2} r^{2 m+2}}{2 m+2},
\end{aligned}
$$

which together with (6) gives the inequality

$$
\pi \theta^{2} \leqslant c_{z} 4 K^{2}+\left(1-c_{z}\right) \frac{\theta^{2}}{4}+8 \pi K^{2} r^{2 m+2}
$$

In particular, if m_{0} is so large that $8 \pi K^{2} r^{2 m_{0}+2}<\pi \theta^{2} / 2-\theta^{2} / 4$ then we can estimate $\pi \theta^{2} / 2 \leqslant c_{z}\left(4 K^{2}-\theta^{2} / 4\right)<c_{z} 4 K^{2}$ and conclude that $c_{z}>\pi \theta^{2} / 8 K^{2}$.

Let us observe that if $\varphi \in A(z)$ then

$$
\left|w_{m}\left(t z \mathrm{e}^{\mathrm{i} \varphi}\right)\right| \geqslant\left|t^{m} w_{m}\left(z \mathrm{e}^{\mathrm{i} \varphi}\right)\right|-\left|t^{m} w_{m}\left(z \mathrm{e}^{\mathrm{i} \varphi}\right)-w_{m}\left(t z \mathrm{e}^{\mathrm{i} \varphi}\right)\right| \geqslant \frac{1}{6} \theta(m \delta h(z))^{1 / p} t^{m}
$$

so we can set $a=\frac{1}{16}\left(\pi \theta^{2+p} \delta\right) /\left(K^{2} 6^{p} p\right)$ and conclude for the right-hand side of relation (3):

$$
\begin{aligned}
I_{m, p, z} & \geqslant \int_{r}^{1} \int_{A(z)} t\left|w\left(t z \mathrm{e}^{\mathrm{i} \varphi}\right)\right|^{p} \mathrm{~d} t \mathrm{~d} \varphi \\
& >\frac{\pi \theta^{2}}{8 K^{2}} \frac{\theta^{p} \delta h(z)}{6^{p}} \int_{r}^{1} m t^{p m+1} \mathrm{~d} t>\frac{\pi \theta^{2+p} \delta}{8 K^{2} 6^{p} 2 p} h(z) \geqslant a h(z)
\end{aligned}
$$

for $m \geqslant m_{0}$ and m_{0} large enough.
We need also well Lemmas 3-4 to simplify our calculations.

Lemma 3. There exists a constant $\theta \in(0,1)$ and $K \in \mathbb{N}$ such that if g is a complex continuous function on $\bar{\Omega}$ and h is a positive continuous function on $\partial \Omega$ with $h(z)=h(\lambda z)>0$ when $|\lambda|=1, z \in \partial \Omega$, then there exists a natural number m_{0} and a sequence of holomorphic polynomials w_{m} such that

$$
\begin{gather*}
h(z)>\int_{\mathbb{D} z}\left|g+w_{m}\right|^{p}-|g|^{p} \mathrm{~d} \mathfrak{L}_{\mathbb{D} z}^{2}>\theta h(z), \tag{7}\\
m t^{m p} h(z)>\left|w_{m}(t z)\right|^{p} \tag{8}
\end{gather*}
$$

for $z \in \partial \Omega, t \in(0,1], m \in K \mathbb{N} \backslash\left[0, m_{0}\right] .{ }^{4}$
Proof. Due to Lemma 2 there exist a constant $a \in(0,1)$, a natural number m_{0} and a sequence of holomorphic polynomials w_{m} such that

$$
\begin{gathered}
\frac{1}{2} h(z)>\int_{\mathbb{D} z}\left|w_{m}\right|^{p} \mathrm{~d} \mathfrak{L}_{\mathbb{D} z}^{2}>\frac{a}{2} h(z), \\
m t^{m p} h(z)>\left|w_{m}(t z)\right|^{p}
\end{gathered}
$$

for $z \in \partial \Omega, t \in(0,1], m \in K \mathbb{N} \backslash\left[0, m_{0}\right]$. Let $\varepsilon, \delta \in(0,1)$ be such that $\max \left\{1-\delta^{p}\right.$, $\left.\delta^{-p}-1\right\}<\frac{1}{4} a$ and $\varepsilon<\frac{1}{8} a h(z) \max \left\{1-\delta^{p}, \delta^{-p}-1\right\}<\frac{1}{4} a$ for $z \in \partial \Omega$. Since $w_{m} \rightarrow 0$ uniformly on any compact subset of Ω due to Lemma 1 we can increase m_{0} in such a way that

$$
\begin{align*}
& \int_{\mathbb{D} z}\left|g+w_{m}\right|^{p} \mathrm{~d} \mathfrak{L}_{\mathbb{D} z}^{2} \geqslant-\varepsilon+\int_{\mathbb{D} z}|g|^{p} \mathrm{~d} \mathfrak{L}_{\mathbb{D} z}^{2}+\delta^{p} \int_{\mathbb{D} z}\left|w_{m}\right|^{p} \mathrm{~d} \mathfrak{L}_{\mathbb{D} z}^{2}, \tag{9}\\
& \int_{\mathbb{D} z}\left|g+w_{m}\right|^{p} \mathrm{~d} \mathfrak{L}_{\mathbb{D} z}^{2} \leqslant \varepsilon+\int_{\mathbb{D} z}|g|^{p} \mathrm{~d} \mathfrak{L}_{\mathbb{D} z}^{2}+\delta^{-p} \int_{\mathbb{D} z}\left|w_{m}\right|^{p} \mathrm{~d} \mathfrak{L}_{\mathbb{D} z}^{2} \tag{10}
\end{align*}
$$

for $m \in K \mathbb{N} \backslash\left[0, m_{0}\right]$.
Let us denote $I_{m, z}:=\int_{\mathbb{D} z}\left|g+w_{m}\right|^{p}-|g|^{p} \mathrm{~d} \mathfrak{L}_{\mathbb{D} z}^{2}$. Using (10) we may conclude for the left-hand side of inequality (7):

$$
\begin{aligned}
I_{m, z} & \leqslant \varepsilon+\int_{\mathbb{D} z}\left|w_{m}\right|^{p} \mathrm{~d} \mathfrak{L}_{\mathbb{D} z}^{2}+\left(\delta^{-p}-1\right) \int_{\mathbb{D} z}\left|w_{m}\right|^{p} \mathrm{~d} \mathfrak{L}_{\mathbb{D} z}^{2} \\
& <\frac{a h(z)}{8}+\frac{h(z)}{2}+\frac{a h(z)}{8}<h(z) .
\end{aligned}
$$

Due to (9) we have for the right-hand side of inequality (7):

$$
\begin{aligned}
I_{m, z} & \geqslant-\varepsilon+\int_{\mathbb{D} z}\left|w_{m}\right|^{p} \mathrm{~d} \mathfrak{L}_{\mathbb{D} z}^{2}-\left(1-\delta^{p}\right) \int_{\mathbb{D} z}\left|w_{m}\right|^{p} \mathrm{~d} \mathfrak{L}_{\mathbb{D} z}^{2} \\
& >-\frac{a h(z)}{8}+\frac{a h(z)}{2}-\frac{a h(z)}{8}=\frac{a h(z)}{4} .
\end{aligned}
$$

We have just proved that it is enough to choose $\theta=\frac{1}{4} a$.

[^2]Lemma 4. Let $\varepsilon>0$, let h be a positive continuous function on $\partial \Omega$ with $h(z)=h(\lambda z)>0$ when $|\lambda|=1, z \in \partial \Omega$. Moreover, let g be a complex continuous function on $\bar{\Omega}$ and T a compact subset of Ω. Then there exists a homolomorphic polynomial w on Ω such that $h(z)-\varepsilon<\int_{\mathbb{D} z}|w+g|^{p}-|g|^{p} \mathrm{~d} \mathfrak{L}_{\mathbb{D} z}^{2}<h(z)$ for $z \in \partial \Omega$ and $\|w\|_{T}<\varepsilon$.

Proof. Due to Lemma 3 there exist a constant $\theta \in(0,1)$ and a sequence of holomorphic polynomials w_{m} such that
(1) $\left\|w_{m}\right\|_{T}<\varepsilon / 2^{m+1}$.
(2) $\theta h_{m}(z)<\int_{\mathbb{D} z}\left|w_{m}+g_{m}\right|^{p}-\left|g_{m}\right|^{p} \mathrm{~d} \mathfrak{L}_{\mathbb{D} z}^{2}<h_{m}(z)$ for $z \in \partial \Omega$, where $h_{1}=h, g_{1}=g$,

$$
h_{m+1}(z)=h_{m}(z)-\left(\int_{\mathbb{D} z}\left|w_{m}+g_{m}\right|^{p}-\left|g_{m}\right|^{p} \mathrm{~d} \mathfrak{L}_{\mathbb{D} z}^{2}\right) \text { and } g_{m+1}=\sum_{j=1}^{m} w_{m}+g
$$

Let us observe that $0<h_{m+1}(z)=h(z)-\left(\int_{\mathbb{D} z}\left|g_{m+1}\right|^{p}-|g|^{p} \mathrm{~d} \mathfrak{L}_{\mathbb{D} z}^{2}\right)$. Now due to (2) we can estimate

$$
0<h_{m+1}(z)=h_{m}(z)+\int_{\mathbb{D} z}\left|g_{m}\right|^{p}-\left|g_{m+1}\right|^{p} \mathrm{~d} \mathfrak{L}_{\mathbb{D} z}^{2}<h_{m}(z)-\theta h_{m}(z)=(1-\theta) h_{m}
$$

Since $h_{m+1}(z)<(1-\theta)^{m} h_{1}(z)$ there exists m_{0} so large that

$$
0<h_{m_{0}+1}(z)=h(z)-\left(\int_{\mathbb{D} z}\left|g_{m_{0}+1}\right|^{p}-|g|^{p} \mathrm{~d} \mathfrak{L}_{\mathbb{D} z}^{2}\right)<\varepsilon
$$

for $z \in \partial \Omega$. So it is enough to choose $w=\sum_{m=1}^{m_{0}} w_{m}$.
Now it is possible to present the main result of our paper:
Theorem 1. Let u be a positive lower semi-continuous function on $\partial \Omega$ with $u(z)=u(\lambda z)>0$ when $|\lambda|=1, z \in \partial \Omega$. Then there exists a holomorphic function f on Ω such that $u(z)=\int_{\mathbb{D} z}|f|^{p} \mathrm{~d} \mathfrak{L}_{\mathbb{D} z}^{2}$ for $z \in \partial \Omega$.

Proof. Let T_{m} be an increasing sequence of compact subsets of $\Omega=\bigcup_{m \in \mathbb{N}} T_{m}$. There exists a sequence u_{m} of continuous functions on $\partial \Omega$ with $u_{m}(z)=u_{m}(\lambda z)>0$ when $|\lambda|=1, z \in \partial \Omega$ and $u_{m} \nearrow u$. We construct a sequence of polynomials w_{m} such that
(1) $\left\|w_{m}\right\|_{T_{m}}<1 / 2^{m+1}$,
(2) $u_{m}(z)-1 / 2^{m}<\int_{\mathbb{D} z}\left|\sum_{k=1}^{m} w_{k}\right|^{p} \mathrm{~d} \mathfrak{L}_{\mathbb{D} z}^{2}<u_{m}(z)$ for $z \in \partial \Omega$.

To construct w_{1} it is enough to use Lemma 4 for the data $(\varepsilon, h, g, T)=\left(\frac{1}{2}, u_{1}, 0, T_{1}\right)$. Assume that we have constructed $w_{1}, w_{2}, \ldots, w_{m}$. Now it is enough to choose a holomorphic polynomial w_{m+1} from Lemma 4 used for the data

$$
(\varepsilon, h, g, T)=\left(\frac{1}{2^{m+1}}, h_{m+1}, \sum_{k=1}^{m} w_{k}, T_{m+1}\right)
$$

where $h_{m+1}(z)=u_{m+1}(z)-\int_{\mathbb{D} z}\left|\sum_{k=1}^{m} w_{k}\right|^{p} \mathrm{~d} \mathfrak{L}_{\mathbb{D} z}^{2}$. We can observe that

$$
\begin{aligned}
& u_{m+1}(z)-\int_{\mathbb{D} z}\left|\sum_{k=1}^{m} w_{k}\right|^{p} \mathrm{~d} \mathfrak{L}_{\mathbb{D} z}^{2}-\frac{1}{2^{m+1}} \\
& \quad<\int_{\mathbb{D} z}\left|\sum_{k=1}^{m+1} w_{k}\right|^{p} \mathrm{~d} \mathfrak{L}_{\mathbb{D} z}^{2}-\int_{\mathbb{D} z}\left|\sum_{k=1}^{m} w_{k}\right|^{p} \mathrm{~d} \mathfrak{L}_{\mathbb{D} z}^{2}<u_{m+1}(z)-\int_{\mathbb{D} z}\left|\sum_{k=1}^{m} w_{k}\right|^{p} \mathrm{~d} \mathfrak{L}_{\mathbb{D} z}^{2} .
\end{aligned}
$$

To complete the proof it is enough to define $f=\sum_{k=1}^{\infty} w_{k}$.
Theorem 2. Let E be a subset of type G_{δ} in $\partial \Omega$. There exists a holomorphic function f such that $E=E^{p}(f)$ and $\int_{\Omega \backslash \mathbb{D} E}|f|^{p} \mathrm{~d} \mathfrak{L}^{\mathfrak{2 n}}<\infty$.

Proof. To prove this fact it is enough to combine Theorem 1 with the methods from [6, Theorem 3.1].

References

[1] J. Globevnik: Holomorphic functions which are highly nonintegrable at the boundary. Isr. J. Math. 115 (2000), 195-203.
[2] P. Jakóbczak: The exceptional sets for functions from the Bergman space. Port. Math. 50 (1993), 115-128.
[3] P. Jakóbczak: Highly non-integrable functions in the unit ball. Isr. J. Math. 97 (1997), 175-181.
[4] P. Jakóbczak: Exceptional sets of slices for functions from the Bergman space in the ball. Can. Math. Bull. 44 (2001), 150-159.
[5] P. Kot: Description of simple exceptional sets in the unit ball. Czech. Math. J. 54 (2004), 55-63.
[6] P. Kot: Boundary functions in $L^{2} H\left(\mathbb{B}^{n}\right)$. Czech. Math. J. 57 (2007), 29-47.
[7] P. Kot: Homogeneous polynomials on strictly convex domains. Proc. Am. Math. Soc. 135 (2007), 3895-3903.
[8] P. Kot: Bounded holomorphic functions with given maximum modulus on all circles. Proc. Amer. Math. Soc 137 (2009), 179-187.

Author's address: P. Kot, Politechnika Krakowska, Instytut Matematyki, ul. Warszawska 24, 31-155 Krakow, Poland, e-mail: pkot@pk.edu.pl.

[^0]: ${ }^{1} \mathrm{By} \mathbb{O}(\Omega)$ we denote the space of all holomorphic functions on Ω.
 ${ }^{2} \mathbb{D} z=\{\lambda z:|\lambda|<1\}, \mathfrak{L}_{\mathbb{D} z}^{2}$ denotes Lebesgue measure on $\mathbb{D} z$.

[^1]: ${ }^{3}$ In fact, since $g_{m} \rightarrow 0$ uniformly on $r \Omega$, these two inequalities are easy consequences of the Lebesgue lemma.

[^2]: ${ }^{4} K \mathbb{N} \backslash\left[0, m_{0}\right]=\left\{K j: j \in \mathbb{N} \wedge j>m_{0}\right\}$.

