Parviz Azimi; A. A. Ledari A class of Banach sequence spaces analogous to the space of Popov

Czechoslovak Mathematical Journal, Vol. 59 (2009), No. 3, 573-582

Persistent URL: http://dml.cz/dmlcz/140499

Terms of use:

© Institute of Mathematics AS CR, 2009

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://dml.cz

A CLASS OF BANACH SEQUENCE SPACES ANALOGOUS TO THE SPACE OF POPOV

P. AZIMI and A. A. LEDARI, Zahedan

(Received May 12, 2006)

Abstract. Hagler and the first named author introduced a class of hereditarily l_1 Banach spaces which do not possess the Schur property. Then the first author extended these spaces to a class of hereditarily l_p Banach spaces for $1 \leq p < \infty$. Here we use these spaces to introduce a new class of hereditarily $l_p(c_0)$ Banach spaces analogous of the space of Popov. In particular, for p = 1 the spaces are further examples of hereditarily l_1 Banach spaces failing the Schur property.

Keywords: Banach spaces, Schur property, hereditarily l_p

MSC 2010: 46B20, 46E30

1. INTRODUCTION

A class of hereditarily l_1 Banach spaces was introduced by Hagler and the first named author. Among other interesting properties it does not possess the Schur property [2]. Then these spaces were extended to a new class of hereditarily l_p Banach spaces, $X_{\alpha,p}$ [1]. In 2005, Popov constructed a new class of hereditarily l_1 subspaces of L_1 without the Schur property [5] and generalized his result to a class of hereditarily l_p Banach spaces [6]. In this paper we use the spaces $X_{\alpha,p}$ [1] to introduce and study a new class of hereditarily l_p spaces, analogous of the space of Popov. In particular, we show that for p = 1 the spaces are further examples of hereditarily l_1 Banach spaces which do not possess the Schur property. This would be the fourth example of this type. The first was constructed by J. Bourgain [3], the second by Hagler and the first author, and the third by Popov.

Our construction shows that for the case p = 0 the spaces are hereditarily c_0 .

Before we define these new spaces let us recall the definition of $X_{\alpha,p}$. Let (α_i) be a sequence of reals in [0, 1] (whose terms are used as the weighting factor in the definition of the norm) which has the following properties:

(1) $1 = \alpha_1 \ge \alpha_2 \ge \dots$, (2) $\lim_i \alpha_i = 0$, and (3) $\sum_{i=1}^{\infty} \alpha_i = \infty$.

By a block F we mean an interval (finite or infinite) of integers. For a block F and a sequence of scalars $x = (t_1, t_2, \ldots)$ such that $\sum_j t_j$ converges, define $\langle x, F \rangle = \sum_{j \in F} t_j$. A sequence $F_1, F_2, \ldots, F_n, \ldots$ where each F_i is a finite block is admissible if

$$\max F_i < \min F_{i+1}$$
 for $i = 1, 2, 3, \dots$

For a finitely nonzero sequence of scalars $x = (t_1, t_2, \ldots)$, define

$$||x|| = \max\left(\sum_{i=1}^{n} \alpha_i |\langle x, F_i \rangle|^p\right)^{1/p},$$

where max is taken over all n, admissible sequences F_1, F_2, \ldots, F_n and $1 \leq p < \infty$. Then $X_{\alpha,p}$ is the completion of the finitely nonzero sequences of scalars $x = (t_1, t_2, \ldots)$ in this norm. For a good information concerning these spaces, we refer to [1] and [2].

Now we go through the construction of the spaces X_p analogous to the space of Popov. Let α be a fixed sequence and $(X_{\alpha,p_n})_{n=1}^{\infty}$ a sequence of Banach spaces as above with $\infty > p_1 > p_2 > \ldots > 1$. The direct sum of these spaces in the sense of l_p is defined as the linear space

$$X_p = \left(\sum_{i=1}^{\infty} \oplus X_{\alpha, p_n}\right)_p$$

with $p \in [1, \infty)$, which is the space of all sequences $x = (x^1, x^2, \ldots), x^n \in X_{\alpha, p_n}, n = 1, 2, \ldots$ with

$$||x||_p = \left(\sum_{n=1}^{\infty} ||x^n||_{\alpha,p_n}^p\right)^{1/p} < \infty.$$

The direct sum of the spaces (X_{α,p_n}) in the sense of c_0 is the linear space

$$X_0 = \left(\sum_{n=1}^{\infty} \oplus X_{\alpha, p_n}\right)_0$$

of all sequences $x = (x^1, x^2, \ldots), x^n \in X_{\alpha, p_n}, n = 1, 2, \ldots$ for which $\lim_n ||x^n||_{\alpha, p_n} = 0$ with the norm

$$||x||_0 = \max_n ||x^n||_{\alpha, p_n}.$$

A Banach space X is hereditarily l_p if every infinite dimensional subspace of X contains a subspace isomorphic to l_p . A Banach space X has the Schur property if the norm convergence and the weak convergence of sequences coincide. It is well known that l_1 has the Schur property.

We follow the same notation and terminology as in [4]. The construction and the idea of the proof follow [6] but the nature of these spaces is different, so for similar results we omit the details of proofs. In fact these spaces are a rich class of spaces which depend on the sequences (α_i) and (p_n) as above.

Fix a sequence (α_i) of reals which satisfies the above conditions, and a sequence (p_n) of reals with $\infty > p_1 > p_2 > \ldots > 1$. Consider the sequence of spaces X_p as above. For each $n \ge 1$, denote by $(\overline{e}_{i,n})_{i=1}^{\infty}$ the unit vector basis of X_{α,p_n} and by $(e_{i,n})_{i=1}^{\infty}$ its natural copy in X_p :

$$e_{i,n} = (\underbrace{0, \dots, 0}_{n-1}, \overline{e}_{i,n}, 0, \dots) \in X_p$$

Let $\delta_n > 0$ and $\Delta = (\delta_n)$ be such that $\sum_{i=1}^{\infty} \delta_n^p = 1$ if $p \ge 1$, and $\lim_n \delta_n = 0$ and $\max_n \delta_n = 1$ if p = 0. For each $i \ge 1$ put $z_i = \sum_{n=1}^{\infty} \delta_n e_{i,n}$. Then

$$||z_i||_p = \left(\sum_{n=1}^{\infty} ||\delta_n e_{i,n}||_{\alpha,p_n}^p\right)^{1/p} = \left(\sum_{n=1}^{\infty} \delta_n^p\right)^{1/p} = 1.$$

Since $||e_{i,n}||_{\alpha,p} = 1$ and

$$||z_i||_0 = \max_n ||\delta_n e_{i,n}||_{\alpha, p_n} = 1,$$

it is clear that for any sequence $(t_i)_{i=1}^m$ of scalars, we have

$$\left\|\sum_{i=1}^{m} t_i z_i\right\|_p^p = \sum_{n=1}^{\infty} \delta_n^p \left\|\sum_{i=1}^{m} t_i e_{i,n}\right\|_{\alpha, p_n}^p \text{ if } 1 \le p < \infty$$

and

$$\left\|\sum_{i=1}^{m} t_i z_i\right\|_0 = \max \delta_n \left\|\sum_{i=1}^{m} t_i e_{i,n}\right\|_{\alpha, p_n} \text{ if } p = 0.$$

Let Z_p be the closed linear span of $(z_i)_{i=1}^{\infty}$. Here is the main result of this paper:

Theorem 1.1.

- (i) The Banach space Z_p is hereditarily l_p for p > 1.
- (ii) For p = 1 the space Z_1 is hereditarily l_1 and does not possess the Schur property.
- (iii) The space Z_0 is hereditarily c_0 .

2. The results

Before beginning our detailed analysis, we collect some basic facts about our spaces in the following lemmas. For $x \in X_{\alpha,p}$, put $s(x) = \max |\langle x, G \rangle|$ where the max is taken over all blocks G.

Lemma 2.1. Let $p \ge 1$ and let (v_i) be a sequence in $X_{\alpha,p}$, (G_i) an admissible sequence of blocks such that $\{j: v_i(j) \ne 0\} \subset G_i$, and let

- 1. $||v_i|| \leq 2$,
- 2. $s(v_i) \rightarrow 0$.

Then

$$\left\|\sum_{i=1}^{k} t_{i} v_{i}\right\|^{p} \leq 2(3)^{p-1} \sum_{i=1}^{k} |t_{i}|^{p}.$$

Proof. Since $s(v_i) \to 0$ we have $\lim_{i \to \infty} \langle v_i, \mathbb{N} \rangle = 0$. By passing to a subsequence of (v_i) (not renaming) we may assume that

(A)
$$\sum_{i=1}^{\infty} |\langle v_i, \mathbb{N} \rangle|^q \leqslant 1.$$

By induction, we show that for any n, and admissible blocks F_1, F_2, \ldots, F_m we have

(B)
$$\sum_{j=1}^{m} \alpha_j \left| \left\langle \sum_{i=1}^{n} t_i v_i, F_j \right\rangle \right|^p \leq 2K \sum_{i=1}^{n-1} |t_i|^p + K |t_n|^p$$

for $K = 3^{p-1}$. Now we assume that (B) is true for all $k \leq n-1$, and note that it holds for k = 1. Let l be the largest integer for which

$$\operatorname{support}(v_{n-1}) \cap F_l \neq \varphi$$

and suppose that for $i = k, \ldots, n-1$

$$\operatorname{support}(v_i) \cap F_l \neq \varphi,$$

$$support(v_{k-1}) \cap F_l = \varphi$$

Thus v_{k+1}, \ldots, v_{n-1} are entirely supported in F_l .

Next,

(C)
$$\sum_{j=1}^{m} \alpha_j \left| \left\langle \sum_{i=1}^{n} t_i v_i, F_j \right\rangle \right|^p = \sum_{j=1}^{l-1} \alpha_j \left| \left\langle \sum_{i=1}^{k} t_i v_i, F_j \right\rangle \right|^p + \alpha_l \left| \left\langle \sum_{i=k}^{n} t_i v_i, F_l \right\rangle \right|^p + \sum_{j=l+1}^{m} \alpha_j |\langle t_n v_n, F_j \rangle|^p = \sum_1 + \sum_2 + \sum_3.$$

We will use the induction hypothesis on \sum_{1} , leave \sum_{3} basically as it is, and estimate the middle term \sum_{2} .

(D)
$$\sum_{2} = \alpha_{l} \left| t_{k} \langle v_{k}, F_{l} \rangle + \sum_{i=k+1}^{n-1} \langle t_{i} v_{i}, F_{l} \rangle + t_{n} \langle v_{n}, F_{l} \rangle \right|^{p}$$
$$\leq \alpha_{l} 3^{p-1} \left[|t_{k} \langle v_{k}, F_{l} \rangle|^{p} + \left| \sum_{i=k+1}^{n-1} \langle t_{i} v_{i}, F_{l} \rangle \right|^{p} + |t_{n} \langle v_{n}, F_{l} \rangle |^{p} \right].$$

We estimate the middle term in (D) by

$$\left|\sum_{i=k+1}^{n-1} \langle t_i v_i, F_l \rangle\right|^p = \left|\sum_{i=k+1}^{n-1} t_i \langle v_i, F_l \rangle\right|^p \leqslant \left(\sum_{i=k+1}^{n-1} |t_i|^p\right) \left(\sum_{i=k+1}^{n-1} |\langle v_i, F_l \rangle|^q\right)^{p/q}$$
$$= \left(\sum_{i=k+1}^{n-1} |t_i|^p\right) \left(\sum_{i=k+1}^{n-1} |\langle v_i, \mathbb{N} \rangle|^q\right)^{p/q} \leqslant \sum_{i=k+1}^{n-1} |t_i|^p$$

by virtue of (A). Returning to (C) we obtain

$$\begin{split} &\sum_{j=1}^{m} \alpha_{j} \left| \left\langle \sum_{i=1}^{n} t_{i} v_{i}, F_{j} \right\rangle \right|^{p} \leqslant \left[2K \sum_{i=1}^{k-1} |t_{i}|^{p} + K|t_{k}|^{p} \right] \\ &+ \left[K |t_{k} \langle v_{k}, F_{l} \rangle |^{p} + K \sum_{i=k+1}^{n-1} |t_{i}|^{p} + \alpha_{l} K |t_{n} \langle v_{n}, F_{l} \rangle |^{p} \right] + \sum_{j=l+1}^{m} \alpha_{j} |\langle t_{n} v_{n}, F_{j} \rangle |^{p} \\ &\leqslant 2K \sum_{i=1}^{n-1} |t_{i}|^{p} + K \sum_{j=l}^{m} \alpha_{j} |\langle t_{n} v_{n}, F_{j} \rangle |^{p} \leqslant 2K \sum_{i=1}^{n-1} |t_{i}|^{p} + K|t_{n}|^{p}, \end{split}$$

 thus

$$\left\|\sum_{i=1}^{k} t_{i} v_{i}\right\|^{p} \leq 2(3)^{p-1} \sum_{i=1}^{k} |t_{i}|^{p}.$$

but

Let $1 < p_n < p_{n-1}$ and let (u_i) be a norm one sequence in X_{α,p_n} , (G_i) an admissible sequence of blocks such that $\{j: u_i(j) \neq 0\} \subset G_i$ and let $s(u_i) \to 0$. Then the norm of u_i in $X_{\alpha,p_{n-1}}$ is less than or equal to 1. Then using previous lemma with $p = p_{n-1}$ we obtain

Lemma 2.2. Let (u_i) be a norm one sequence in X_{α,p_n} , (G_i) an admissible sequence of blocks such that $\{j: u_i(j) \neq 0\} \subset G_i$ and $s(u_i) \to 0$

$$\left\|\sum_{i=1}^{k} t_{i} v_{i}\right\|^{p_{n-1}} \leq 2(3)^{p_{n-1}-1} \sum_{i=1}^{k} |t_{i}|^{p_{n-1}}$$

We use the following lemma from [1].

Lemma 2.3. Let (u_i) be a sequence of norm one vectors in X_{α,p_n} $(p_n \ge 1)$ and (G_i) an admissible sequence of blocks such that $\{j: u_i(j) \ne 0\} \subset G_i$. Then for a subsequence (v_k) of (u_k) and for a given sequence t_1, t_2, \ldots, t_k of scalars we have

$$\left\|\sum_{i=1}^{k} t_{i} v_{i}\right\|^{p_{n}} \ge \frac{1}{2} \sum_{i=1}^{k} |t_{i}|^{p_{n}}.$$

For each $I \subseteq \mathbb{N}$ the projection P_I denotes the natural projection of X onto $[e_{i,n}: i \in \mathbb{N}, n \in I]$.

Lemma 2.4. Let E_0 be an infinite dimensional subspace of Z_p , $n, m, j \in \mathbb{N}$ (n > 1) and $\varepsilon > 0$. Then there are $\{x_i\}_{i=1}^m \subset E_0$ and $\{u_i\}_{i=1}^m \subset Z_p$ such that the k'th component of u_i is of the form

$$u_{i,k} = \delta_k \sum_{s=j_1+1}^{j_{i+1}} a_{i,s} v_s,$$

where $j = j_1 < j_2 < \ldots < j_{m+1}$. The v_i 's are obtained from Lemmas 2.2 and 2.3 for $p = p_n$ such that

$$\sum_{s=j_i+1}^{j_{i+1}} |a_i|^{p_{n-1}} = 1 \quad and \quad ||u_i - x_i|| < \frac{\varepsilon}{m} ||u_i||$$

for each $i = 1, \ldots, m$.

Proof. Put $Z_1 = E_0 \cap [z_i]_{i=j+1}^{\infty}$. Since E_0 is infinite dimensional and $[z_i]_{i=j+1}^{\infty}$ has finite codimension in Z_p , Z_1 is infinite dimensional as well. Put $j_1 = j$ and choose any $\overline{x}_1 \in Z_1 \setminus \{0\}$ such that the k'th component of \overline{x}_1 has the form

$$\overline{x}_{1,k} = \delta_k \sum_{s=j_1+1}^{\infty} \overline{a}_{1,s} v_s.$$

Take \overline{x}_1 and use Lemma 2.2 of [6] to obtain x_1 and u_1 with the above properties and continue the procedure of that lemma to construct the desired sequence.

For $n \in \mathbb{N}$ denote $Q_n = P_{\{n, n+1, \dots\}}$.

Lemma 2.5. Let E_0 be an infinite dimensional subspace of Z_p , $j, n \in \mathbb{N}$ and $\varepsilon > 0$. There exist an $x \in E_0$, $x \neq 0$ and a $u \in Z_p$ such that

- (i) $||Q_n u|| \ge (1-\varepsilon)||u||,$
- (ii) $||x u|| < \varepsilon ||u||.$

Proof. Choose m so that $2^{1/p_n}((2(3)^{p_{n-1}-1}))^{1/p_{n-1}}\delta_n^{-1}m^{1/p_{n-1}-1/p_n} < \varepsilon$.

Using Lemma 2.4, choose $\{x_i\}_{i=1}^m \subset E_0$ and $\{u_i\}_{i=1}^m \subset Z_p$ to satisfy the claims of the lemma and put

$$x = \sum_{i=1}^{m} x_i$$
 and $u = \sum_{i=1}^{m} u_i$.

First, we prove (ii). We know that $||u_i|| \leq ||u||$ for i = 1, ..., m and

$$\|x-u\| \leqslant \sum_{i=1}^{m} \|x_i - u_i\| < \sum_{i=1}^{m} \frac{\varepsilon \|u_i\|}{m} \leqslant \frac{\varepsilon \|u\|}{m} = \varepsilon \|u\|.$$

To prove (i), we first show that

$$||u|| - ||Q_n u|| < (2(3)^{p_{n-1}-1}) m^{1/p_{n-1}}.$$

Indeed, $||u|| - ||Q_n u|| \leq ||P_{\{1,\dots,n-1\}}u||$. Hence, for $p \ge 1$ and by virtue of Lemma 2.2 we have

$$(\|u\| - \|Q_n u\|)^p \leq \sum_{k=1}^{n-1} \delta_k^p \left\| \sum_{i=1}^m \sum_{s=j_i+1}^{j_{i+1}} a_{i,s} v_s \right\|_{\alpha,p_k}^p \leq \sum_{k=1}^{n-1} \delta_k^p \left\| \sum_{i=1}^m \sum_{s=j_i+1}^{j_{i+1}} a_{i,s} v_s \right\|_{\alpha,p_{n-1}}^p$$
$$\leq \left(2(3)^{p_{n-1}-1} \right)^{p/p_{n-1}} \sum_{k=1}^{n-1} \delta_k^p \left(\sum_{i=1}^m \sum_{s=j_i+1}^{j_{i+1}} |a_{i,s}|^{p_{n-1}} \right)^{p/p_{n-1}}$$

$$\leqslant \left(2(3)^{p_{n-1}-1}\right)^{p/p_{n-1}} \sum_{k=1}^{n-1} \delta_k^p \left(\sum_{i=1}^m 1\right)^{p/p_{n-1}} \\ = \left(2(3)^{p_{n-1}-1}\right)^{p/p_{n-1}} m^{p/p_{n-1}} \sum_{k=1}^{n-1} \delta_k^p \\ < \left(2(3)^{p_{n-1}-1}\right)^{p/p_{n-1}} m^{p/p_{n-1}}.$$

Further, for p = 0,

$$\begin{aligned} \|u\| - \|Q_n u\| &\leq \max \delta_k \left\| \sum_{i=1}^m \sum_{s=j_i+1}^{j_{i+1}} a_{i,s} v_s \right\|_{\alpha,p_k} \\ &\leq \max \delta_k \left\| \sum_{i=1}^m \sum_{s=j_i+1}^{j_{i+1}} a_{i,s} v_s \right\|_{\alpha,p_{n-1}} \\ &\leq \left(2(3)^{p_{n-1}-1} \right)^{1/p_{n-1}} \max \delta_k \left(\sum_{i=1}^m \sum_{s=j_i+1}^{j_{i+1}} |a_{i,s}|^{p_{n-1}} \right)^{1/p_{n-1}} \\ &\leq \left(2(3)^{p_{n-1}-1} \right)^{1/p_{n-1}} \max \delta_k \left(\sum_{i=1}^m 1 \right)^{1/p_{n-1}} \\ &= \left(2(3)^{p_{n-1}-1} \right)^{1/p_{n-1}} \max \delta_k m^{1/p_{n-1}} \\ &< \left(2(3)^{p_{n-1}-1} \right)^{1/p_{n-1}} m^{1/p_{n-1}}, \end{aligned}$$

where max is taken over $1 \leq k < n$.

On the other hand, using Lemma 2.3 we obtain for $p \geqslant 1$

$$\begin{split} \|u\|^{p} \ge \delta_{n}^{p} \left\| \sum_{i=1}^{m} \sum_{s=j_{i}+1}^{j_{i+1}} a_{i,s} v_{s} \right\|_{\alpha,p_{n}}^{p} \\ \ge \left(\frac{1}{2}\right)^{p/p_{n}} \delta_{n}^{p} \left(\sum_{i=1}^{m} \sum_{s=j_{i}+1}^{j_{i+1}} |a_{i,s}|^{p_{n}}\right)^{p/p_{n}} \\ \ge \left(\frac{1}{2}\right)^{p/p_{n}} \delta_{n}^{p} \left(\sum_{i=1}^{m} \left(\sum_{s=j_{i}+1}^{j_{i+1}} |a_{i,s}|^{p_{n-1}}\right)^{p_{n}/p_{n-1}}\right)^{p/p_{n}} \\ = \left(\frac{1}{2}\right)^{p/p_{n}} \delta_{n}^{p} \left(\sum_{i=1}^{m} 1\right)^{p/p_{n}} = \left(\frac{1}{2}\right)^{p/p_{n}} \delta_{n}^{p} m^{p/p_{n}}. \end{split}$$

Further, for p = 0,

$$\begin{aligned} \|u\| &= \max \delta_k \left\| \sum_{i=1}^m \sum_{s=j_i+1}^{j_{i+1}} a_{i,s} v_s \right\|_{\alpha, p_k} \ge \delta_n \left\| \sum_{i=1}^m \sum_{s=j_i+1}^{j_{i+1}} a_{i,s} v_s \right\|_{\alpha, p_n} \\ &\ge \left(\frac{1}{2}\right)^{1/p_n} \delta_n \left(\sum_{i=1}^m \sum_{s=j_i+1}^{j_{i+1}} |a_{i,s}|^{p_n} \right)^{1/p_n} \\ &\ge \left(\frac{1}{2}\right)^{1/p_n} \delta_n \left(\sum_{i=1}^m \left(\sum_{s=j_i+1}^{j_{i+1}} |a_{i,s}|^{p_{n-1}} \right)^{p_n/p_{n-1}} \right)^{1/p_n} \\ &= \left(\frac{1}{2}\right)^{1/p_n} \delta_n \left(\sum_{i=1}^m 1 \right)^{1/p_n} = \left(\frac{1}{2}\right)^{1/p_n} \delta_n m^{1/p_n}, \end{aligned}$$

where max is taken over $k \in \mathbb{N}$.

Thus, $||u|| \ge (\frac{1}{2})^{1/p_n} \delta_n m^{1/p_n}$ and hence

$$1 - \frac{\|Q_n u\|}{\|u\|} \leq 2^{1/p_n} \left(2(3)^{p_{n-1}-1}\right)^{1/p_{n-1}} \frac{1}{\delta_n} m^{1/p_{n-1}-1/p_n} < \varepsilon$$

and $||Q_n u|| \ge (1-\varepsilon)||u||$.

To complete the proof of parts (i) and (iii) of Theorem 1.1 we will use the following two results of [6] (Lemma 2.4 and Theorem 2.5)

Lemma 2.6. Suppose $\varepsilon > 0$ and ε_s for $s \in \mathbb{N}$ are such that $2\varepsilon_s \leqslant \varepsilon$ if p = 1, $\sum_{s=1}^{\infty} (2\varepsilon_s)^q \leqslant \varepsilon^q$ if 1 where <math>1/p + 1/q = 1, $\sum_{s=1}^{\infty} 2\varepsilon_s \leqslant \varepsilon$ if p = 0. If, for given vectors $\{u_s\}_{s=1}^{\infty} \subset S(Z_p)$, there is a sequence of integers $1 \leqslant n_1 < n_2 < \ldots$ such that, for each $s \in \mathbb{N}$, one has

(i) ||u_s - Q_{n_s}u_s|| ≤ ε_s,
(ii) ||Q_{n_{s+1}}u_s|| ≤ ε_s
then {u_s}_{s=1}[∞] ⊂ S(Z_p) is (1 + ε)(1 - 3ε)⁻¹-equivalent to the unit vector basis of ℓ_p (as weall as, c₀).

Theorem 2.7. The Banach space Z_p is hereditarily ℓ_p if $1 \leq p < \infty$ and is hereditarily c_0 if p = 0.

The proof of 2.6 and 2.7 is based on the definition of Q_i and the norm on Z_p . In fact by the lemma conditions and for any sequence $(a_s)_{s=1}^m$ of scalars it follows that

$$(1-3\varepsilon)\left(\sum_{s=1}^{m}|a_s|^p\right)^{1/p} \leqslant \left\|\sum_{s=1}^{m}a_su_s\right\| \leqslant (1+\varepsilon)\left(\sum_{s=1}^{m}|a_s|^p\right)^{1/p}$$

581

for $1 \leq p < \infty$, and

$$(1 - 3\varepsilon) \max_{1 \leqslant s \leqslant m} |a_s| \leqslant \left\| \sum_{s=1}^m a_s u_s \right\| \leqslant (1 + \varepsilon) \max_{1 \leqslant s \leqslant m} |a_s|$$

for p = 0. Then by using the stability properties of the bases [4, P. 5] and Lemma 2.5 we conclude the proof.

The following lemma completes the proof of Theorem 1.1.

Lemma 2.8. Z_1 does not possess the Schur property.

Proof. Let $u_i = z_{2i-1} - z_{2i}$. Assume that u_i does not converge weakly to zero. Then there exist an $f \in Z_1^*$, ||f|| = 1, and a $\delta > 0$ such that (passing to a subsequence of (u_i) and not renaming) $f(u_i) > \delta$ for all *i*. Thus

$$\left\|\frac{1}{N}\sum_{i=1}^{N}u_{i}\right\|_{1} > \delta \quad \text{for all } N.$$

Now, since $\alpha_i \to 0$ as $i \to \infty$, there exists N such that $N^{-1} \sum_{i=1}^N \alpha_i < \frac{1}{2}\delta$. Thus

$$\left\|\frac{1}{N}\sum_{i=1}^{N}u_i\right\|_1 = \frac{1}{N}\sum_{n=1}^{\infty}\delta_n\left(\sum_{i=1}^{2N}\alpha_i\right)^{1/p_n} \leqslant \sum_{n=1}^{\infty}\delta_n\frac{1}{N}\sum_{i=1}^{2N}\alpha_i < \frac{\delta}{2},$$

but this is a contradiction.

On the other hand, $||u_i||_1 = \sum_{n=1}^{\infty} \delta_n (1+\alpha_2)^{1/p_n} \ge \sum_{n=1}^{\infty} \delta_n = 1$. Hence, the sequence (u_i) is a weakly null sequence in Z_1 but not in norm.

References

- P. Azimi: A new class of Banach sequence spaces. Bull. of Iranian Math. Society 28 (2002), 57–68.
- [2] P. Azimi and J. Hagler: Examples of hereditarily ℓ₁ Banach spaces failing the Schur property. Pacific J. Math. 122 (1986), 287–297.
- [3] J. Bourgain: ℓ_1 -subspace of Banach spaces. Lecture notes. Free University of Brussels.
- [4] J. Lindenstrauss and L. Tzafriri: Classical Banach Spaces. Vol. I sequence Spaces, Springer Verlag, Berlin.
- [5] *M. M. Popov*: A hereditarily ℓ_1 subspace of L_1 without the Schur property. Proc. Amer. Math. Soc. 133 (2005), 2023–2028.
- [6] *M. M. Popov*: More examples of hereditarily ℓ_p Banach spaces. Ukrainian Math. Bull. 2 (2005), 95–111.

Author's address: A. A. Ledari, Department of mathematics, University of Sistan and Baluchestan, Zahedan, Iran, e-mail: ahmadi@hamoon.usb.ac.ir.