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Abstract. Let G be a connected, undirected graph without loops and without multiple
edges. For a pair of distinct vertices u and v, a minimum {u, v}-separating set is a smallest
set of edges in G whose removal disconnects u and v. The edge connectivity of G, de-
noted λ(G), is defined to be the minimum cardinality of a minimum {u, v}-separating set
as u and v range over all pairs of distinct vertices in G. We introduce and investigate the
eavesdropping number, denoted ε(G), which is defined to be the maximum cardinality of
a minimum {u, v}-separating set as u and v range over all pairs of distinct vertices in G.
Results are presented for regular graphs and maximally locally connected graphs, as well
as for a number of common families of graphs.
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1. Eavesdropping

Suppose that a spy agency needs to maintain teams to eavesdrop on wireline

communications between secured communications centers. If the agency will only

have short notice as to which two centers will be in communication, what is the

smallest number of eavesdropping teams that must be kept ready so that the agency

is guaranteed to have an adequate number of teams to intercept the communications

no matter which centers are involved and no matter which wirelines are employed?

We investigate the solution of this problem via graph theory.
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2. Notation, basic definitions and useful results

Let G = G(V, E) be an undirected graph with vertex set V , with edge set E,

without loops and without multiple edges. Unless otherwise specified, n denotes |V |.

For each vertex v ∈ V , d(v) will denote the degree of v. If the degree sequence for G

is written in ascending order d1 6 d2 6 . . . 6 dn−1 6 dn, then we let δ(G) = d1,

∆ = ∆(G) = dn, and ∆′(G) = dn−1. For a vertex v, Sv denotes the set of all edges

that meet v. For adjacent vertices u and v, uv will denote the edge between them.

The vertex connectivity of G will be denoted by k(G) and the edge connectivity of G

will be denoted by λ(G).

For n > 1, let Kn denote the complete graph on n vertices. For n > 3, let

Cn denote the cycle on n vertices. For n > 1, let Qn denote the n-dimensional

hypercube on 2n vertices.

If u and v are distinct vertices of a connected G, then a nonempty set S of edges

in G is called a {u, v}-separator if the removal of S leaves u and v in distinct con-

nected components of the resulting graph. The set S is called a minimum {u, v}-

separator if it has the smallest cardinality among all {u, v}-separators. We will

denote the size of a minimum {u, v}-separator by λ(u, v).

The properties of λ(u, v) have been extensively studied. The following result is

well known (see [3, Theorem 5.8]).

Lemma 1. Let G be a graph. If u and v are distinct vertices in a graph G, then

λ(u, v) equals the maximum number of edge disjoint paths between u and v.

The following result due to Mader [8, Theorem 1] is perhaps less well known:

Theorem 2. Let G be a connected graph. Then there exists a pair of adjacent

vertices u and v in G that are joined by at least δ(G) edge disjoint paths. Conse-

quently, λ(u, v) > δ(G) for some pair of adjacent vertices u and v in G.

A connected graph G with at least two vertices is said to have edge connectivity

λ = λ(G) if the removal of some set of λ edges disconnects G, but there is no smaller

set of edges whose removal disconnects G.

Observe that

λ(G) = min{|S| : S is a {u, v}-separator, u, v ∈ V with u 6= v}

= min{|S| : S is a minimum {u, v}-separator, u, v ∈ V with u 6= v}

= min{λ(u, v) : u, v ∈ V with u 6= v}.

Edge connectivity has been extensively studied, with important results dating to

the well-known result of Whitney (1932) [9].
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Theorem 3. Let G be a connected graph. Then k(G) 6 λ(G) 6 δ(G).

3. The eavesdropping number ε(G)

For a connected graph G with at least two vertices, the eavesdropping number

of G, denoted ε = ε(G), is defined by

ε(G) = max{|S| : S is a minimum {u, v}-separator, u, v ∈ V with u 6= v}

= max{λ(u, v) : u, v ∈ V with u 6= v}.

A minimum {u, v}-separator of maximum cardinality (as u and v range over V with u

and v distinct) is called an eavesdropping set for G. A vertex v is called a critical

vertex if there is another vertex u in G such that a minimum {u, v}-separator is an

eavesdropping set. The pair of vertices {u, v} is called a critical pair if u 6= v and

λ(u, v) = ε(G).

In view of Lemma 1, the following two results are immediate.

Lemma 4. Let G be a connected graph with at least two vertices. Then ε(G) is

the maximum number of edge disjoint paths between a pair of vertices in G where

the maximum is taken over all distinct pairs of vertices. Further, if λ(u, v) = ε(G)

for some pair of vertices u, v ∈ V , then both u and v are critical vertices for G.

Lemma 5. Let G be a connected graph with at least two vertices.Then λ(G) =

ε(G) if and only if every minimum {u, v}-separator (as u and v range over all distinct

pairs of vertices in V ) has the same cardinality.

Corollary 6. Let G be a tree with at least two vertices. Then k(G) = λ(G) =

ε(G) = δ(G) = 1.

Lemma 7. Let u and v be distinct vertices of a connected graph G. Then each

of Su and Sv is a {u, v}-separator, and thus λ(u, v) 6 min{d(u), d(v)}.

P r o o f. Removing all edges in the set Su disconnects u from every other vertex

in G, hence from v; thus Sv is a {u, v}-separator with |Su| = d(u). Similarly, Sv is a

{u, v}-separator with |Sv| = d(v). If S is a {u, v}-separator of minimal cardinality,

the inequality follows. �
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Theorem 8. Let G be a connected graph with at least two vertices.Then

δ(G) 6 ε(G) 6 ∆′(G).

P r o o f. ¿From Theorem 2, δ(G) 6 λ(u, v) for some pair of vertices u and v. By

definition, λ(u, v) 6 ε(G). For the remaining inequality apply Lemma 7 and note

that min{d(u), d(v)} 6 min{∆′(G), ∆(G)} = ∆′(G). �

Note that for a tree T on n vertices, ∆′(T ) and ∆(T ) can be large since ∆′(T ) 6
1
2n−1, and this bound can be attained by the central vertices of a symmetric double

star. Consequently, ε(G) can be much smaller than ∆′(G).

The following example shows that the parameters discussed in this paper can all

have distinct values.

Example 9. Let p and q be positive integers with 5 6 p < q. Let G be constructed

from Kp, Kq and K5 by the addition of three edges as indicated below. Then

δ(G) = 4, ∆′(G) = q + 1, and ∆(G) = q + 3. Further, k(G) = 1, λ(G) = 3 and

ε(G) = q. Thus

k(G) < λ(G) < δ(G) < ε(G) < ∆′(G) < ∆(G).

Kp Kq K5

Algorithms exist to find the eavesdropping number for a graph and an eavesdrop-

ping set in polynomial time.

Theorem 10. Let G be a connected graph on n vertices.Then ε(G) can be

computed and an eavesdropping set can be found in O(n6) operations. If G has

m edges, then ε(G) can be computed and an eavesdropping set can be found in

O(n2m2) operations.

P r o o f. For each vertex v in G, the Max-Flow Min-Cut Algorithm [3, Algo-

rithm 5.1] can be applied to G to find λ(u, v) for every vertex u in G in O(nm2)

operations. Since there are n choices for v, it follows that ε(G) can be computed

and an eavesdropping set can be found in O(n2m2) operations. Since m 6
(

n

2

)

, m is

bounded by O(n2), and thus, O(n2m2) 6 O(n6). �
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4. Maximally locally connected graphs

Let G be a connected graph with at least two vertices. The distance between two

vertices in G is the length of the shortest path connecting them. The diameter of G,

denoted diam(G), is the maximum distance between distinct vertices in G. When

G = K1, diam(G) = 0. When G is not connected, diam(G) = ∞.

The graph G is called maximally locally connected if λ(u, v) = min{d(u), d(v)} for

all distinct u, v ∈ V (G). In [4], Fricke, Oellermann and Swart showed the following

result:

Theorem 11. If G is a graph with diam(G) 6 2, then λ(u, v) = min{d(u), d(v)}

for all pairs of distinct vertices u and v.

In [7], Hellwig and Volkmann generalized a result on p-partite graphs from [4] to

obtain

Theorem 12. Let p be a positive integer with p > 2. Let G be a graph that does

not contain a complete subgraph of order p + 1. If

|V (G)| 6 2
⌊pδ(G)

p − 1

⌋

− 1,

then G is maximally locally connected.

In the same paper, Hellwig and Volkmann proved

Theorem 13. Let G be a bipartite graph with bipartition V = V ′ ∪ V ′′ with

V ′ ∩ V ′′ = ∅. Let n = |V |, and suppose that δ(G) > 2. If d(x) + d(y) > 1
2 (n + 1)

whenever x, y ∈ V ′ with x 6= y and whenever x, y ∈ V ′′ with x 6= y, then G is

maximally locally connected.

The following result connects maximally locally connectedness to the eavesdrop-

ping number.

Theorem 14. Let G be a maximally locally connected graph. Then ε(G) =

∆′(G).

P r o o f. If G is maximally locally connected, then

ε(G) = max{λ(u, v) : u, v ∈ V (G) with u 6= v}

= max{min{d(u), d(v)} : u, v ∈ V (G) with u 6= v}.

Choose u and v with u 6= v and {d(u), d(v)} = {∆′(G), ∆(G)}. This is clearly the

maximizer. �
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5. Regular graphs

The next result is a consequence of Theorem 8.

Theorem 15. Let G be r-regular for some positive integer r. Then ε(G) = r.

P r o o f. Since each connected component of G is r-regular, apply the preceding

theorem to any connected component, and note that δ(G) = r = ∆′(G). �

The following three results are consequences of the preceding theorem since in

each case, it is known that λ(G) = ∆′(G).

Example 16. Let n > 2. Then

k(Kn) = λ(Kn) = ε(Kn) = δ(Kn) = ∆′(Kn) = ∆(Kn) = n − 1.

Example 17. Let n > 3. Then

k(Cn) = λ(Cn) = ε(Cn) = δ(Cn) = ∆′(Cn) = ∆(Cn) = 2.

Example 18. Let n > 2. Then

k(Qn) = λ(Qn) = ε(Qn) = δ(Qn) = ∆′(Qn) = ∆(Qn) = n.

More generally, there exist families of regular graphs G for which k(G) and

λ(G) are small, but for which ε(G) is arbitrarily large.

Example 19. Let m be a positive integer. The following construction produces

an r-regular graph Gm on 8m + 6 vertices with ε(G) = r = 4m + 1 but k(Gm) =

λ(Gm) = 1.

To build Hm proceed as follows. Start with two distinct copies of K2m+2, call

them L1 and L2, and a singleton vertex w. Select two distinct vertices, u1 and v1

in L1, and two distinct vertices u2 and v2 in L2. Label the vertices in V (L1)\{u1, v1}

as a1, . . . , a2m. Label the vertices in V (L2) \ {u2, v2} as b1, . . . , b2m. Identify u1

with u2 (call the vertex u), v1 with v2 (call the vertex v), and the edge u1v1 with

the edge u2v2 (call the edge uv). Create an edge between each pair of vertices ai

and bj exactly when i 6= j. Join every vertex ai and every vertex bj to w. It is easy

to verify that Hm contains 4m + 3 vertices, that every vertex except w has degree

4m + 1, and that w has degree 4m.

Now Gm is constructed from two copies of Hm by connecting w in each copy

of Hm with an edge. Deleting either copy of w or the edge that connects them will

disconnect Gm. Then Gm has 8m + 6 vertices and is r-regular with r = 4m + 1.
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G1

Note that if there were an r-regular graph G on 8m + 6 vertices with r > 4m + 3,

then by a result due to Chartrand and Harary [2], k(G) > 2. Thus the graph Gm

has almost the highest degree that a regular graph with k(G) = 1 can have.

6. Cartesian products

If G1 and G2 are graphs, then the Cartesian product of G1 and G2, denoted G1 ×

G2, is the graph with vertex set V (G1)× V (G2), and edge set E = {(u1, v1)(u2, v2):

either u1 = u2 and v1v2 ∈ E(G2), or v1 = v2 and u1u2 ∈ E(G1)}. For i = 1, 2

and for v ∈ Gi, let d(i)(v) denote the degree of the vertex v in Gi. Cartesian

products of graphs have been extensively studied. For example, the edge-connectivity

of Cartesian products has been studied in [10]. We state without proof a simple result

that will be useful in the rest of this section.

Lemma 20. Let G1 and G2 be graphs. For each u ∈ V (G1) and each v ∈ V (G2),

the degree of the vertex (u, v) in G1 × G2 is d(1)(u) + d(2)(v). Thus, ∆(G1 × G2) =

∆(G1) + ∆(G2), and

∆′(G1 × G2) = max{∆′(G1) + ∆(G2), ∆(G1) + ∆′(G2)}.

Theorem 21. Let G1 and G2 be graphs each of which contains at least one edge.

Then ε(G1 × G2) satisfies:

max{ε(G1) + ∆(G2), ε(G2) + ∆(G1)} 6 ε(G1 × G2)

and

ε(G1 × G2) 6 max{∆′(G1) + ∆(G2), ∆(G1) + ∆′(G2)}.

P r o o f. The upper bound follows from Theorem 8 and the preceding lemma.

Suppose that a and b are a critical pair of vertices for the graphG1. Since G1 contains

an edge, there must be a path from a to b in G1. Suppose that w is a vertex of

degree ∆(G2) in G2, and that its neighbors in G2 are v1, v2, . . . , v∆2
. Observe that
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for 1 6 j 6 ∆(G2), (a, w)(a, vj) and (b, w)(b, vj) are distinct edges in G1 × G2. For

each v ∈ V (G2), let G1×v denote the subgraph of G1×G2 induced by V (G1)×{v}.

Then for 1 6 j 6 ∆(G2) there is a path Pj in G1 × vj from a to b. Thus there are

∆(G2) paths in G1×G2 from (a, w) to (b, w) of the form (a, w)(a, vj), Pj , (b, w)(b, vj);

and further, these paths are edge disjoint and contain no edges from G1×w. Finally,

since a and b are critical for G1, there exist ε(G1) paths from (a, w) to (b, w) that

lie entirely inside G1 ×w. Thus there are at least ε(G1)+ ∆(G2) edge disjoint paths

between two vertices in G1 × G2. Interchanging the roles of G1 and G2, the lower

bound inequality follows. �

The next result, which is a corollary of Theorem 15 as well as of the previous

theorem, shows that both inequalities in the previous result are sharp.

Corollary 22. Let r1 and r2 be positive integers. For i = 1, 2, let Gi be an

ri-regular graph. Then G1 × G2 is an (r1 + r2)-regular graph, and further,

ε(G1 × G2) = ε(G1) + ε(G2).

7. Edge cutsets, vertex cutsets and the eavesdropping number

Theorem 23. Let G be a connected graph with at least two vertices. Suppose

that F is an edge cutset for G with |F | = h, and suppose that the deletion of the

edges in F results in disjoint, nonempty graphs G1 and G2. Then

ε(G) 6 max
{

h, ε(G1) +
⌊h

2

⌋

, ε(G2) +
⌊h

2

⌋}

.

P r o o f. Suppose that a and b are any pair of distinct vertices in the graph G1.

Then there are at most ε(G1) edge disjoint paths between a and b in G1. Since

there are h edges connecting G1 to G2, there are at most an additional
⌊

1
2h

⌋

edge

disjoint paths between a and b in G. In particular, if a and b are a critical pair of

vertices for G, then it follows that ε(G) 6 ε(G1) +
⌊

1
2h

⌋

. Similarly, every pair of

distinct vertices contained in G2 is joined by at most ε(G2)+
⌊

1
2h

⌋

edges, and hence

if G2 contains a critical pair of vertices for G, then ε(G) 6 ε(G2)+
⌊

1
2h

⌋

. Further, if

a lies in G1 and b lies in G2, then there are at most h edge disjoint paths between a

and b, and if a and b are a critical pair for G, then ε(G) 6 h. Finally, at least one

of the following holds: G1 contains a critical pair for G, G2 contains a critical pair

for G, or there is a critical pair for G with one vertex in G1 and one vertex in G2. �
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Corollary 24. Let G be a connected graph with at least three vertices. Suppose

that G has a pendant vertex v. Then ε(G) = ε(G − v).

Theorem 25. Let G be a connected graph with at least two vertices. Suppose

that W = {w1, w2, . . . , wk} is a vertex cutset for G. Let p be

p =

k
∑

i=1

⌊d(wi)

2

⌋

.

Suppose that the deletion of the vertices inW results in disjoint, nonempty graphsG1

and G2. Then

ε(G) 6 max
{

p, ε(G1) +
⌊p

2

⌋

, ε(G2) +
⌊p

2

⌋}

.

P r o o f. Observe that the maximum number of edge disjoint paths passing

through a vertex v is
⌊

1
2d(v)

⌋

. Consequently, the maximum possible number of edge

disjoint paths in G between vertices in G1 and vertices in G2 is p, the maximum

possible number of edge disjoint paths passing through vertices in W .

Suppose that a and b are any pair of distinct vertices in the graph G1. Then there

are at most ε(G1) edge disjoint paths between a and b in G1. Since there are at most

p edge disjoint paths connecting G1 to G2 in G, there are at most an additional
⌊

1
2p

⌋

edge disjoint paths between a and b in G. In particular, if a and b are a critical pair

of vertices for G, then it follows that ε(G) 6 ε(G1) +
⌊

1
2p

⌋

. Similarly, every pair of

distinct vertices contained in G2 is joined by at most ε(G2) +
⌊

1
2p

⌋

edges, and hence

if G2 contains a critical pair of vertices for G, then ε(G) 6 ε(G2) +
⌊

1
2p

⌋

. Further, if

a lies in G1 and b lies in G2, then there are at most p edge disjoint paths between a

and b, and if a and b are a critical pair for G, then ε(G) 6 p. Finally, at least one

of the following holds: G1 contains a critical pair for G, G2 contains a critical pair

for G, or there is a critical pair for G with one vertex in G1 and one vertex in G2. �

8. Further results

Proposition 26. Let n1, n2, . . . , nk be positive integers for some positive integer

k > 2. Let K(n1, n2, . . . , nk) denote the complete, k-partite graph with partition

sets of size n1, n2, . . . , nk.

(i) If 1 = n1 6 n2 6 . . . 6 nk, then

ε(K(n1, n2, . . . , nk)) = 1 +

k
∑

i=3

ni,

where the summation is zero when k = 2.

631



(ii) If 2 6 n1 6 n2 6 . . . 6 nk, then

ε(K(n1, n2, . . . , nk)) =

k
∑

i=2

ni.

P r o o f. Part (ii). For each j, let Vj denote the vertex partition subset of size nj .

C a s e 1. Choose j ∈ {1, 2, . . . , k}. Choose x, y ∈ Vj with x 6= y. Then for each

v ∈ V − Vj , there is a path Pv = {(x, v), (v, y)}, and if w ∈ V − Vj with w 6= v, then

Pv and Pw are edge disjoint. Thus λ(x, y) > |V − Vj | =
∑

i6=j

ni = d(x) = d(y). Since

λ(x, y) 6 d(y) by Lemma 7, λ(x, y) = d(y).

C a s e 2. Choose j, l ∈ {1, 2, . . . , k} with j < l. Then choose x ∈ Vj and y ∈

Vl. Note that nj 6 nl implies dx > dy, and hence, by Lemma 7, λ(x, y) 6 dy.

Since ε(G) is the maximum of λ(x, y) over all pairs of distinct vertices, it suffices to

maximize dy over all choices of y ∈ V. This maximum occurs when nj is minimized.

Part (i). The proof is similar to that of Part (ii). If x ∈ V1 and y ∈ V2, then

λ(x, y) = |V − (V1 ∪ V2)| + 1 = |V | − n2. The proof that this is the maximum is

similar to the proof of Part (i). �

For a disconnected graph G, ε(G) and the several of the other parameters used in

this paper are determined from the components. Consequently, the stipulation that

G is connected can be removed when discussing the eavesdropping number.

Proposition 27. Let G be a disconnected graph with connected components

G1, G2, . . . , Gp for some p > 2. Then k(G) = λ(G) = 0, δ(G) = min
j

δ(Gj), ∆(G) =

max
j

∆(Gj), ε(G) = max
j

ε(Gj), and ∆′(G) > max
j

∆′(Gj).

Note that the inequality in Proposition 27 can be strict. For example, if G is the

disjoint union of the complete bipartite graphs K1,5 and K1,6, then ∆′(G) = 5 but

max
j

∆′(Gj) = 1. Also note that ε(G) = 0 exactly when G contains no edges.

Employing Theorem 8 yields

Theorem 28. Let G be a disconnected graph with connected components

G1, G2, . . . , Gp for some p > 2. Then

max
j

δ(Gj) 6 ε(G) 6 max
j

∆′(Gj).

It is well-known that a connected graph G contains a cycle if and only if λ(G) > 2.

Consequently, we have
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Lemma 29. Let G be a graph with at least one edge. Then G is either a tree or

a forest if and only if ε(G) = 1. Also, G contains a cycle if and only if ε(G) > 2.

Next, we examine the impact of vertex and edge deletions.

Example 30. Letm > 2 be a positive integer. If G is obtained by joining a single

vertex in each of two copies Km to a singleton vertex w, then ε(G) = ε(G − {w}) =

m − 1. Let P be the path on 5 vertices, and label the vertices consecutively from

one end to the other as v1, v2, . . . , v5. Let H be obtained by taking m copies of P ,

and identifying all copies of v1 (call the common vertex u), identifying all copies

of v3 (call the common vertex w), and identifying all copies of v5 (call the common

vertex v). Then there are m edge disjoint paths from u to v, so ε(H) = m but

ε(H − {w}) = 1.

The next result follows from the definition of ε(G), Lemma 4, and the observations

in the previous example.

Lemma 31. Let G be a graph with at least two vertices and at least one edge.

Then for each vertex v, ε(G−{v}) 6 ε(G), and for each edge e, ε(G)−1 6 ε(G−e) 6

ε(G).

Turning to subgraphs, we have

Lemma 32. LetG be a graph with at least two vertices. LetH be a subgraph ofG

with at least two vertices. Let u and v be distinct vertices in H . Then λH(u, v) 6

λG(u, v).

In the preceding result, it seems reasonable that every minimum {u, v}-separator

in G should contain a minimum {u, v}-separator in H , and that every minimum

{u, v}-separator in H should be contained in a minimum {u, v}-separator in G, but

neither of these claims is known to be true. Nonetheless, the preceding lemma does

yield

Proposition 33. Let G be a graph, and let H be a subgraph of G. Then

ε(G) > ε(H).

Corollary 34. Let G be a graph. If G contains Km as a subgraph for some

m > 2, then ε(G) > m − 1.

The following result says that when G contains a cycle, any pendent trees can be

pruned from G without changing the eavesdropping number.
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Theorem 35. Suppose that G is a graph that contains a cycle. Suppose that

the subgraph T of G is a pendent tree that meets the rest of G at a vertex u. Let

the subgraph H of G be induced by the vertex set (V (G) − V (T )) ∪ {u}. Then

ε(G) = ε(H).

P r o o f. Since G contains a cycle, λ(G) > 2, and hence no vertex in V (T )−{u}

can be critical. If {v, w} is a critical pair of vertices for G, then none of the vertices

on any path from v to w can include edges in T . Thus λG(v, w) = λH(v, w). �

The final two results concern contractions. The first addresses vertex contraction,

the second, edge contraction.

Theorem 36. Suppose that G has a degree two vertex a with nonadjacent neigh-

bors b and c. Let H be the graph obtained from G be deleting the vertex a and

replacing the edges ab and ac with a new edge bc. Then ε(G) = ε(H).

P r o o f. Since a, b and c do not lie on a triangle, H does not contain multiple

edges. For any w ∈ V − {a, b, c}, λ(w, a) 6 λ(w, b) and λ(w, a) 6 λ(w, c). Thus

there is a critical pair {u, v} of vertices for G that does not contain a. Let S be

a minimum {u, v}-separator in G. Then S contains at most one of the edges ab

and ac. If S contains neither edge, then S is a {u, v}-separator in H , and it must

be minimal for H . If S contains one of the edges ab and ac, without loss ab, then

(S − {ab}) ∪ {bc} is a minimal {u, v}-separator in H . �

Theorem 37. Suppose that G contains two adjacent vertices a and b that do not

lie on a triangle. Let e = ab. Let H be the graph obtained by contracting the edge e

(that is, by deleting e and identifying a and b). Then ε(H) 6 ε(G). Further, {a, b} is

the unique critical pair for G if and only if ε(H) < ε(G).

P r o o f. Since e is not an edge of a triangle, contracting e does not produce

multiple edges. Suppose that {u, v} is a pair of distinct vertices in G. Then there are

λG(u, v) edge disjoint paths from u to v in G. There cannot be more paths from u to v

inH than there are in G. Thus λG(u, v) > λH(u, v), and hence, ε(G) > ε(H). If none

of the λG(u, v) edge disjoint paths in G from u to v use e, then λG(u, v) = λH(u, v).

If from every set of λG(u, v) edge disjoint paths in G from u to v, some path uses e,

and if {u, v} 6= {a, b}, identifying a and b and deleting e does not eliminate that

path in H , and thus λG(u, v) = λH(u, v). If {u, v} 6= {a, b} and {u, v} is a critical

pair for G, then it is also a critical pair for H , and hence, ε(G) = ε(H). Suppose

that {a, b} is the unique critical pair for G. If {u, v} is a critical pair for H , then

{u, v} 6= {a, b}, and hence ε(H) = λH(u, v) = λG(u, v) < λG(a, b) = ε(G). �
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If {a, b} in the preceding theorem is the unique critical pair for G, then e is in

every eavesdropping set for G. Consequently, we would expect that H has a lower

eavesdropping number. Alternatively, if {∆(G), ∆′(G)} = {da, db}, contracting on e

means ∆(H) = ∆(G) + ∆′(G)− 2, which is large, but ∆′(H) could be much smaller

than ∆′(G). Since ∆′ is an upper bound for ε, this suggests that ε(H) can be much

smaller than ε(G). The following example confirms this.

Example 38. Let m be a positive integer with m > 2. Let Gm be constructed

from m copies of the four-cycle C4 as follows. For each copy of C4, label a pair of

adjacent vertices as a and b, and label the edge between a and b as e = ab. Join

all m four-cycles by identifying the vertices a, the vertices b, and the edges e. Then

ε(Gm) = m + 1, and {a, b} is the unique critical pair for Gm since every other

vertex has degree 2. If the edge e is contracted to obtain Hm, then Hm consists of

m triangles joined at a common vertex, and hence ε(H) = 2. Note that ∆(Gm) =

∆′(Gm) = m+1; ∆(Hm) = 2m, which is large, but ∆′(Hm) = 2, which can be much

smaller than m + 1.

G3 H3

Corollary 39. Suppose that G is a connected graph with more than two vertices.

Suppose that e = ab is a cutedge for G. Let the graph H be obtained by contracting

the edge e. Then ε(G) = ε(H).

In closing, we mention several natural questions:

1. For a fixed value of |V | or of |V | and |E|, what values of ε(G) can occur?

2. For a fixed values of |V | and ∆(G) (or ∆′(G)), what values of ε(G) can occur?

3. What conditions on G imply that ε(G) = δ(G)? That ε(G) = ∆′(G)?

4. Is there a relationship between ε(G) and the diameter of G?

5. Is restricting G to be bipartite useful?

6. What conditions on G imply that some eavesdropping set is actually the set of

all edges incident at a critical vertex? That all eavesdropping sets are of this

type?

7. What if multiple edges or loops are allowed in G?

8. What are the analogous results for directed graphs?
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Each of these questions is analogous to questions about edge connectivity that

have already been investigated. For example, how large a (minimally) n-edge con-

nected graph can be has been studied in [1], [6], [8]. An extensive survey of results

relating edge-connectivity, super edge-connectivity, minimum degree, clique number,

and maximally locally connectedness can be found in [5].
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