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Abstract. Let G be an Archimedean ℓ-group. We denote by G
d and RD(G) the divisible

hull of G and the distributive radical of G, respectively. In the present note we prove the
relation (RD(G))

d = RD(G
d). As an application, we show that if G is Archimedean, then

it is completely distributive if and only if it can be regularly embedded into a completely
distributive vector lattice.
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Throughout the paper, ℓ-group will be used as a shorthand for lattice-ordered

group.

The distributive radical RD(G) of an ℓ-group G was investigated by Byrd and

Lloyd [2]; cf. also Darnel [3], Section 2.2.

Assume that G is an Archimedean ℓ-group. The symbol Gd denotes the divisible

hull of G. In this paper we prove that the relation

(RD(G))d = RD(Gd)

is valid.

In other words, we prove that the operators d and RD commute on the class A

of all Archimedean ℓ-groups defined by

d : G → Gd,

RD : G → RD(G).

This paper was supported by VEGA grant 1/0539/08.
This work has been partially supported by the Slovak Academy of Sciences via the project
Center of Excellence-Physics of Information (grant I/2/2005).
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As an application, we show that if G is Archimedean, then it is completely dis-

tributive if and only if it can be regularly embedded into a completely distributive

vector lattice.

1. ℓ-ideals in G

The group operation in an ℓ-group will be written additively; for the terminology,

cf. [1] and [2].

It is well-known that each Abelian ℓ-group can be embedded into a divisible ℓ-

group. Each Archimedean ℓ-group is Abelian. If G is an Archimedean ℓ-group, then

according to the results of [4], the divisible hull Gd is an Archimedean ℓ-group and

is characterized by the following properties:

(i) for each element y of Gd there exist a positive integer n and an element x ∈ G

such that ny = x; in such case we write

(1) y =
x

n
;

(ii) for each z ∈ Gd and each positive integer m there is t ∈ Gd with mt = z;

(iii) G is regularly embedded into G∧ (that is, all suprema and infima that exist

in G are preserved by the embedding into G∧).

This terminology is in accordance with that applied by Sikorski [8] for Boolean

algebras.

In what follows we assume that G is an Archimedean ℓ-group.

If H is an ℓ-group, then we denote by J(H) the system of all ℓ-ideals of H ; this

system is partially ordered by the set-theoretic inclusion. In fact, J(H) is a complete

lattice. For an Abelian ℓ-group H , the notion of ℓ-ideal coincides with the notion of

convex ℓ-subgroup of H .

The following three lemmas are easy to verify; the proofs will be omitted.

Lemma 1.1. Let H1 be a subset of an ℓ-group H such that

(i) H1 is a subgroup of the group H ;

(ii) if 0 < x ∈ H1, 0 < y ∈ H and y 6 x, then y ∈ H1.

Then H1 is a convex ℓ-subgroup of H .

Let A ∈ J(G). We denote by f(A) the set of all elements y of Gd which can be

expressed in the form (1), where x ∈ A and n ∈ N.
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Lemma 1.2. Let A ∈ J(G). Then f(A) ∈ J(Gd).

Let B ∈ J(Gd). We put g(B) = B ∩ G.

Lemma 1.3. Under the notation as above, g(B) belongs to J(G).

Lemma 1.4. Let A ∈ J(G) and B = f(A). Then g(B) = A.

P r o o f. a) Let x ∈ A. Then x ∈ B, whence x ∈ g(B). Thus A ⊆ g(B).

b) Let z ∈ (g(B))+. Hence there are n ∈ N and x ∈ A such that nz = x. In view

of z > 0 we have x > 0. Moreover, 0 6 z 6 x. Since z ∈ G, we infer that z ∈ A.

Thus (g(B))+ ⊆ A.

c) If x ∈ A, then −x also belongs to A. Hence b) yields (g(B))− ⊆ A. The group

g(B) is generated by its subset

(g(B))+ ∪ (g(B))−

and thus g(B) ⊆ A. �

As a consequence of 1.3 and 1.4 we get that f is a one-to-one mapping of the set

J(G) onto the set J(Gd).

From the definitions of the mappings f and g we obtain that if A1, A2 ∈ J(G),

then

A1 ⊆ A2 ⇒ f(A1) ⊆ f(A2).

Similarly, if B1, B2 ∈ J(Gd), then

B1 ⊆ B2 ⇒ g(B1) ⊆ g(B2).

Hence we conclude

Lemma 1.5. The mapping f is an isomorphism of the lattice J(G) onto the

lattice J(Gd).

For each ℓ-group H and each subset X of H the polar Xδ(H) is defined by

Xδ(H) = {y ∈ H : |y| ∧ |x| = 0 for all x ∈ X}.

It is well-known that Xδ(H) is a convex ℓ-subgroup of H .

From the definition of polar we easily obtain
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Lemma 1.6. Let H be an Abelian ℓ-group and let A be an ℓ-ideal of H . Then

Aδ(H) is the largest element of the set

{A1 ∈ J(H) : A1 ∧ A = {0}},

where A1 ∧ A denotes the infimum of {A1, A} in the lattice J(H).

Lemma 1.7. Let A ∈ J(G). Then

f(Aδ(G)) = f(A)δ(Gd).

P r o o f. This is a consequence of 1.5 and 1.6. �

Lemma 1.8. Let A ∈ J(G). The following conditions are equivalent:

(i) A is a prime ideal in G.

(ii) f(A) is a prime ideal in Gd.

P r o o f. a) Let (i) be valid and let y1, y2 ∈ Gd be such that y1 ∧ y2 = 0. Hence

there are x1, x2 ∈ G and n1, n2 ∈ N such that

yi =
xi

ni

(i = 1, 2).

Then we have xi > 0 (i = 1, 2). Moreover, from the relation y1 ∧ y2 = 0 we obtain

(n1y1) ∧ (n2y2) = 0,

whence x1 ∧ x2 = 0. The condition (i) yields that either x1 ∈ A or x2 ∈ A. Thus

either y1 ∈ f(A) or y2 ∈ f(A). Therefore (ii) is valid.

b) Conversely, assume that (ii) holds. Let x1, x2 ∈ G, x1 ∧ x2 = 0. Then x1, x2 ∈

Gd and the relation x1 ∧ x2 = 0 is valid in Gd. In view of (ii), either x1 ∈ f(A) or

x2 ∈ f(A). Hence according to 1.4, either x1 ∈ A or x2 ∈ A. Therefore (i) holds. �
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2. Distributive radical and complete distributivity

We recall the notions concerning higher degrees of distributivity.

Let α and β be nonzero cardinals. Further, let T and S be nonempty sets with

cardT 6 α and cardS 6 β. A lattice L is (α, β)-distributive if the following identities

hold in L

(d1)
∧

t∈T

∨
s∈S

xt,s =
∨

ϕ∈ST

∧
t∈T

xt,ϕ(t),

(d2)
∨

t∈T

∧
s∈S

xt,s =
∧

ϕ∈ST

∨
t∈T

xt,ϕ(t)

whenever all joins and meets appearing in (d1) or (d2) exist in L.

If L is (α, β)-distributive for any nonzero cardinals α and β, then L is said to be

completely distributive.

Definition 2.1 (Cf. [2]). Let H be an ℓ-group. The distributive radical RD(H)

of H is defined to be the set

⋂
A

δ(H)
i (i ∈ I),

where {Ai}i∈I is the system of all minimal prime ideals of H .

Lemma 2.2. RD(Gd) = f(RD(G)).

P r o o f. Let A ∈ J(G). In view of 1.7, 1.8 and 1.5 the following conditions are

equivalent:

(i) A is a minimal prime ideal of G.

(ii) f(A) is a minimal prime ideal of Gd.

By applying 1.5 again we conclude that the assertion of the lemma is valid. �

Corollary 2.2.1. RD(G) = {0} if and only if RD(Gd) = {0}.

P r o o f. This is a consequence of 2.2 and 1.5. �

Theorem 2.3. Let G be an Archimedean ℓ-group. Then the relation

(RD(G))d = RD(Gd)

is valid.

P r o o f. Denote

P = RD(G), Q = RD(Gd).

We have to verify that Q = P d.
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It is obvious that P is an ℓ-subgroup of Q and that Q is Archimedean. Consider

the conditions (i), (ii) and (iii) from the definition of the divisible hull of an ℓ-group

(cf. Section 1). Let us apply these conditions for P and Q.

Let q ∈ Q. In view of 2.2, there exist p ∈ P and n ∈ N such that nq = p. Hence

(i) is valid.

In view of the definition of the divisible hull, Q is divisible (since it is an ℓ-ideal

of a divisible ℓ-group); thus the condition (ii) is satisfied.

Suppose that X ⊆ P , x ∈ P and that the relation x = supX is valid in P . Since

P is an ℓ-ideal in G, the relation x = supX holds in G. Then, according to the

definition of the divisible hull, x = supX is valid in Gd as well. Since Q is an ℓ-ideal

of Gd and X ⊆ Q, x ∈ Q, we conclude that the relation x = supX holds in Q.

Analogously we verify the corresponding dual condition. Therefore the condition

(iii) is satisfied. �

The following theorem is due to Byrd and Lloyd [2].

Theorem 2.4. Let H be an ℓ-group. The following conditions are equivalent:

(i) RD(H) = {0}.

(ii) H is completely distributive.

Theorem 2.5. The following conditions are equivalent:

(i) G is completely distributive.

(ii) Gd is completely distributive.

P r o o f. This is a consequence of 2.2.1 and 2.4. �

The Dedekind completion of an Archimedean ℓ-group H will be denoted by H∧.

We remark that the implication (i)⇒(ii) is a consequence of the following more

general result which is due to Darnel (private communication):

(∗) Let H be an Abelian ℓ-group. Suppose that H is completely distributive.

Then the divisible hull Hd of H is completely distributive as well.

Let α and β be cardinals. The question whether the complete distributivity in (∗)

can be replaced by (α, β)-distributivity remains open.

Lemma 2.6. (Cf. [4], [6].) Gd∧ is a complete vector lattice.

The following result was proved independently in [6] and [7].

Lemma 2.7. (Cf. [6], [7].) G is regularly embedded into Gd∧.
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Lemma 2.8. The following conditions are equivalent:

(i) Gd is completely distributive.

(ii) Gd∧ is completely distributive.

P r o o f. This follows from Theorem 2.2 in [5]. �

Theorem 2.9. Let G be an Archimedean ℓ-group. The following conditions are

equivalent:

(i) G is completely distributive.

(ii) G can be regularly embedded into a completely distributive complete vector

lattice.

P r o o f. The implication (ii) ⇒ (i) is obvious. The converse implication is a

consequence of 2.5, 2.6, 2.7, 2.3 and 2.8. (Thus the only new ingredient to prove

Theorem 2.9 is Theorem 2.3.) �
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