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Abstract. In this paper we show that in a tree with vertex weights the vertices with the
second smallest status and those with the second smallest branch-weight are the same.
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1. Introduction

All graphs considered in this paper are finite, simple, and without loops. If G is

a graph and there exists a weight function w : V (G) ∪E(G) → R+, then (G, w) is a

weighted graph.

For a connected weighted graph (G, w), pertinent definitions and notation are

given below.

For a path P in G, the weight length of P , denoted by lw(P ), is defined by

lw(P ) =
∑

e∈E(P )

w(e).

For vertices x, y in G, the weight distance between x and y, denoted by dw(x, y),

is defined by

dw(x, y) = min lw(P ),

where the minimum is taken over all paths P joining x and y.

For any vertex x of G, the status of x, denoted by s(x), is defined by

s(x) =
∑

y∈V (G)

w(y)dw(y, x).
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The median of G, denoted by M1(G), is the set of vertices in G with the smallest

status, i.e., M1(G) = {t ∈ V (G) : s(t) 6 s(x) for all x ∈ V (G)}.

The second median of G, denoted by M2(G), is the set of vertices in G with

the second smallest status, i.e., M2(G) = {t ∈ V (G) − M1(G) : s(t) 6 s(x) for all

x ∈ V (G) − M1(G)}.

The weight of G, denoted by w(G), is defined by

w(G) =
∑

x∈V (G)

w(x).

Note that by definition, the weight of a connected weighted graph is independent

of the weights of its edges.

If T is a tree and (T, w) is a weighted graph, then we say that (T, w) is a weighted

tree.

For a weighted tree (T, w), we give the following definitions and notation.

For any vertex x of T , the branch-weight of x, denoted by bw(x), is the maximum

weight of any component of T − x.

The centroid of T , denoted by C1(T ), is the set of vertices in T with the smallest

branch-weight, i.e., C1(T ) = {t ∈ V (T ) : bw(t) 6 bw(x) for all x ∈ V (T )}.

The second centroid of T , denoted by C2(T ), is the set of vertices in T with the

second smallest branch-weight, i.e., C2(T ) = {t ∈ V (T ) − C1(T ) : bw(t) 6 bw(x) for

all x ∈ V (T ) − C1(T )}.

B. Zelinka [4] showed that any tree with constant weight function has its median

equal to its centroid. A.Kang and D.Ault [2] extended the result to any weighted

tree with constant vertex weight. O.Kariv and S. L.Hakimi [3] extended the result

further to any weighted tree.

Proposition 1.1 [3, Lemma 3.1]. Let (T, w) be a weighted tree and x a vertex

in T . Then x is in the centroid of T if and only if bw(x) 6 1
2w(T ).

Proposition 1.2 [3, Theorem 3.1]. Any weighted tree has its median equal to its

centroid.

The purpose of this paper is to prove the following result.

Theorem 3.3. Let (T, w) be a weighted tree with w(e) = 1 for each e ∈ E(T ).

Then M2(T ) = C2(T ).
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2. Some remarks

In this section, we give some remarks which we need for our discussions. Let us

begin with those about statuses and medians. Though the main result deals with

weighted trees, we state the remarks for connected weighted graphs if possible.

Remark 2.1. Let (G, w) be a connected weighted graph. Suppose that x, y are

vertices in G such that xy is a cut edge. Let Gx, Gy be the components of G − xy

with x ∈ V (Gx), y ∈ V (Gy). Then we have s(x) − s(y) = w(xy)(w(Gy) − w(Gx)).

P r o o f.

s(x) − s(y) =
∑

t∈V (G)

w(t)(dw(t, x) − dw(t, y))

=
∑

t∈V (Gx)

w(t)(dw(t, x) − dw(t, y)) +
∑

t∈V (Gy)

w(t)(dw(t, x) − dw(t, y))

=
∑

t∈V (Gx)

w(t)(−w(xy)) +
∑

t∈V (Gy)

w(t)(w(xy))

= w(xy)(w(Gy) − w(Gx)).

�

Remark 2.2. Let (G, w) be a connected weighted graph. Suppose that

x1, x2, . . . , xk (k > 2) are vertices in G such that x1x2 . . . xk is a path and, for

i = 1, 2, . . . , k − 1, each xixi+1 is a cut edge of G with w(xixi+1) = 1. Let

G1, G2, . . . , Gk be the components of G−{x1x2, x2x3, . . . , xk−1xk} with xi ∈ V (Gi)

for i = 1, 2, . . . , k. Then

s(x1) − s(xk) =

k∑

i=1

(−k − 1 + 2i)w(Gi).

P r o o f. We prove the result by induction on k. By Remark 2.1 this is true

for k = 2. Suppose the result holds for k > 2. Now x1x2 . . . xkxk+1 is a path in G

such that each xixi+1 is a cut edge of G with w(xixi+1) = 1 for i = 1, 2, . . . , k, and

G1, G2, . . . , Gk, Gk+1 are components of G− {x1x2, x2x3, . . . , xk−1xk, xkxk+1} with

xi ∈ V (Gi), i = 1, 2, . . . , k, k + 1. Applying the induction hypothesis to the path

x1x2 . . . xk we have s(x1)−s(xk) =
k−1∑
i=1

(−k−1+2i)w(Gi)+(k−1)(w(Gk)+w(Gk+1)).

Considering the path xkxk+1 we have s(xk) − s(xk+1) = −(w(G1) + w(G2) + . . . +
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w(Gk)) + w(Gk+1). Thus

s(x1) − s(xk+1) = (s(x1) − s(xk)) + (s(xk) − s(xk+1))

=

k−1∑

i=1

(−k − 1 + 2i)w(Gi) + (k − 1)(w(Gk) + w(Gk+1))

− (w(G1) + w(G2) + . . . + w(Gk)) + w(Gk+1)

=

k−1∑

i=1

(−k − 2 + 2i)w(Gi) + (k − 2)w(Gk) + k · w(Gk+1)

=

k+1∑

i=1

(−k − 2 + 2i)w(Gi)

=

k+1∑

i=1

(−(k + 1) − 1 + 2i)w(Gi).

This completes the proof. �

Remark 2.3. Let (G, w) be a connected weighted graph. Suppose that

x1, x2, . . . , xk (k > 3) are vertices in G such that x1x2 . . . xk is a path, and

for i = 1, 2, . . . , k − 1, xixi+1 is a cut edge of G. If s(x1) 6 s(x2), then

s(x2) < s(x3) < s(x4) < . . . < s(xk).

P r o o f. It suffices to show that s(x2) < s(x3). Let G1, G2, G3 be the compo-

nents of G − {x1x2, x2x3} such that xi ∈ V (Gi), i = 1, 2, 3. By Remark 2.1,

s(x1) − s(x2) = w(x1x2)((w(G2) + w(G3)) − w(G1)),

s(x2) − s(x3) = w(x2x3)(w(G3) − (w(G1) + w(G2))).

Since s(x1) 6 s(x2), we have w(G2) + w(G3) − w(G1) 6 0, which implies that

w(G3) − w(G1) − w(G2) < 0 for w(G2) > 0. Thus s(x2) < s(x3). �

The above remark for trees with constant weight functions appeared in [1, Theo-

rem 3.3].

Remark 2.4. The median of a weighted tree consists either of one single vertex

or two vertices which are adjacent.

P r o o f. This follows immediately from Remark 2.3. �

The following remarks concern branch-weights of weighted trees.

Remark 2.5. Let x be a vertex of a weighted tree (T, w) and B a component of

T − x such that bw(x) = w(B). Then

(1) bw(y) > bw(x) for each y ∈ V (T ) − (V (B) ∪ {x}),

(2) if y ∈ V (T ) − {x} and bw(y) 6 bw(x) then y ∈ V (B).
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P r o o f. (1) Let B′ be the component of T − y such that x ∈ V (B′). Then

V (B′) ⊃ {x} ∪ V (B). Hence bw(y) > w(B′) > w(B) = bw(x).

(2) This follows from (1). �

Remark 2.6. Let x1x2 . . . xk (k > 3) be a path in a weighted tree (T, w) where

bw(x1) 6 bw(x2). Then bw(x2) < bw(x3) < bw(x4) < . . . < bw(xk).

P r o o f. It suffices to show that bw(x2) < bw(x3). Let B be a component of

T − x2 such that bw(x2) = w(B). By Remark 2.5(2), x1 ∈ V (B). From x1 ∈ V (B)

and x2 /∈ V (B), we see that x3 /∈ V (B). Since B is a component of T − x2 such that

bw(x2) = w(B), by Remark 2.5(1), we conclude that bw(x3) > bw(x2). �

3. Main result

For a graph G and A ⊂ V (G), we use N(A) to denote the set

{x ∈ V (G) − A : x is adjacent to some vertex in A}.

Lemma 3.1. Let (T, w) be a weighted tree with w(e) = 1 for each e ∈ E(T ). For

each x ∈ N(M1(T )), let Tx denote the component of T − M1(T ) with x ∈ V (Tx).

Then we have

(1) s(x) − s(y) = 2w(Ty) − 2w(Tx) if x, y ∈ N(M1(T )) and x 6= y,

(2) M2(T ) = {x ∈ N(M1(T )) : w(Tx) > w(Ty) for all y ∈ N(M1(T ))}.

P r o o f. (1) By Remark 2.4, M1(T ) consists either of a single vertex or of two

adjacent vertices. Let x, y ∈ N(M1(T )) with x 6= y. We distinguish two cases.

Case 1. x, y are adjacent to the same vertex in M1(T ), say x, y are adjacent to

m ∈ M1(T ).

We see that Tx, Ty are the components of T −{xm, my} such that x ∈ V (Tx), y ∈

V (Ty). Applying Remark 2.2 to the path xmy, we obtain s(x) − s(y) = −2w(Tx) +

2w(Ty) since w(e) = 1 for all e ∈ E(T ).

Case 2. x, y are adjacent to distinct vertices in M1(T ), say, x is adjacent to m1,

y is adjacent to m2 where m1, m2 ∈ M1(T ) and m1 6= m2.

By Remark 2.4 m1, m2 are adjacent. Let T ′ = T − {xm1, m1m2, m2y}. We see

that Tx, Ty are components of T
′ such that x ∈ V (Tx), y ∈ V (Ty). Let T1, T2 be the

components of T ′ such that m1 ∈ V (T1), m2 ∈ V (T2). Applying Remark 2.2 to the

path xm1m2y, we obtain s(x) − s(y) = −3w(Tx) − w(T1) + w(T2) + 3w(Ty) again

since w(e) = 1 for all e ∈ E(T ). Since m1, m2 are in the median of T , we have, by

Remark 2.1, w(Tx)+w(T1) = w(T2)+w(Ty). Thus s(x)−s(y) = −2w(Tx)+2w(Ty).
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(2) From Remark 2.3, we see that M2(T ) ⊂ N(M1(T )). Thus M2(T ) = {x ∈

N(M1(T )) : s(x) 6 s(y) for all y ∈ N(M1(T ))}. By(1), for x, y ∈ N(M1(T )) with

x 6= y, we have s(x) 6 s(y) if and only if w(Tx) > w(Ty). Thus M2(T ) = {x ∈

N(M1(T )) : w(Tx) > w(Ty) for all y ∈ N(M1(T ))}. This completes the proof. �

Lemma 3.2. Let (T, w) be a weighted tree. For each x ∈ N(C1(T )), let Tx be

the component of T − C1(T ) with x ∈ V (Tx). Then we have

(1) bw(x) = w(T ) − w(Tx) if x ∈ N(C1(T )),

(2) C2(T ) = {x ∈ N(C1(T )) : w(Tx) > w(Ty) for all y ∈ N(C1(T ))}.

P r o o f. (1) Let x ∈ N(C1(T )). Suppose that x is adjacent to c where c ∈ C1(T ).

We see that Tx is the component of T−c with x ∈ V (Tx). By Proposition 1.1, bw(c) 6
1
2w(T ). Thus w(Tx) 6 bw(c) 6 1

2w(T ). Let A0, A1, . . . , Ak be the components

of T − x where c ∈ V (A0). Then V (Tx) = {x} ∪ V (A1) ∪ V (A2) ∪ . . . ∪ V (Ak),

which implies that for i = 1, 2, . . . , k we have w(Ai) < w(Tx) 6 1
2w(T ). Note also

that w(A0) = w(T ) − w(Tx) > 1
2w(T ). Hence bw(x) = max

06i6k
w(Ai) = w(A0) =

w(T ) − w(Tx).

(2) From Remark 2.6, we see that C2(T ) ⊂ N(C1(T )). Thus C2(T ) = {x ∈

N(C1(T )) : bw(x) 6 bw(y) for all y ∈ N(C1(T ))}. By(1), for x, y ∈ N(C1(T )) with

x 6= y, we have bw(x) 6 bw(y) if and only if w(Tx) > w(Ty). Thus C2(T ) = {x ∈

N(C1(T )) : w(Tx) > w(Ty) for all y ∈ N(C1(T ))}. This completes the proof. �

Since by Proposition 1.2 M1(T ) = C1(T ) for any weighted tree T , the main result

of this paper now follows from Lemmas 3.1(2) and 3.2(2).

Theorem 3.3. Let (T, w) be a weighted tree with w(e) = 1 for each e ∈ E(T ).

Then M2(T ) = C2(T ).

The above theorem cannot be extended to trees the edge weights of which are

not constant. Consider the following example. Let T be the tree in Fig. 1 with

w(a) = w(b) = w(c) = w(d) = w(e) = 1, w(ab) = w(bc) = w(de) = 1, w(bd) = 4.

Then s(a) = s(c) = 14, s(b) = 11, s(d) = 15, s(e) = 18; thus M2(T ) = {a, c}.

Further, bw(a) = bw(c) = bw(e) = 4, bw(d) = 3, bw(b) = 2; thus C2(T ) = {d}. We

have M2(T ) 6= C2(T ).

Also in a weighted tree, the vertices with the third smallest status need not be

the same as those with the third smallest branch-weight, even if the weight function

of the tree is a constant. Consider the following example. Let T be the tree in

Fig. 2 with constant vertex weight 1 and constant edge weight 1. Then s(a) = 26,

s(b) = 19, s(c) = 14, s(d) = 11, s(e) = s(f) = s(g) = s(h) = s(i) = 18, and

bw(a) = bw(e) = bw(f) = bw(g) = bw(h) = bw(i) = 8, bw(b) = 7, bw(c) = 6,
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Fig. 2

bw(d) = 3. Thus the vertices e, f , g, h, i are those with the third smallest status,

and the vertex b is the one with the third smallest branch-weight.
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