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Abstract. We explore (weak) continuity properties of group operations. For this purpose,
the Novak number and developability number are applied. It is shown that if (G, ·, τ ) is a
regular right (left) semitopological group with dev(G) < Nov(G) such that all left (right)
translations are feebly continuous, then (G, ·, τ ) is a topological group. This extends several
results in literature.
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1. Introduction

A topological group is a group with a topology such that both its multiplication

and inversion are continuous. The problem of finding weaker and less restrictive

conditions that can be used to characterize a group topology has many precedents in

literature. The first result in this line was given by Montgomery [23] for groups that

are Polish and the multiplication is separately continuous. It suggests a question

as to when a separately continuous multiplication is continuous and further when

the operation of taking the inverse is continuous. In the past seventy years, a lot of

papers have appeared in connection with these problems. Recently, Ferri, Hernández

and Wu [13] have considered a group equipped with a Baire metrizable topology and

used weaker conditions on left and right translations to characterize a group topology.

They used Frolík’s feeble continuity (or somewhat continuity) under the name of
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for the hospitality of the School of Computing and Mathematical Sciences during his
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“almost continuity”, see the definition below. It turns out that the study of the

latter question involves topological games, and it has a great impact on topological

dynamics and the theory of Banach spaces, see [9], [20] and [22] for more information.

In the meantime, Arhangel’skii and Reznichenko [3] also considered the problem as

to when a paratopological group is a topological group. As seen in [3], these types

of studies involve more and more of various types of almost continuous functions. In

fact, the role that weak continuity properties play here is not surprising. It can be

tracked back to the early papers on separate vs. joint continuity, see [27] and [28]

for historical remarks. All these fore-mentioned facts motivate us to conduct further

investigation on weak continuity properties of group operations. This is the main

purpose of the present paper.

To proceed further, we need to introduce some notation and terminology. In the

sequel, a topologized group is a triple (G, ·, τ), where (G, ·) is a group and (G, τ) is a

topological space. The neutral element of (G, ·) is denoted by e. We shall use m to

denote the multiplication of (G, ·), i.e., m(g, h) = g · h for g, h ∈ G. For any h ∈ G,

let λh : G → G be the left translation, i.e., λh(g) = m(h, g) for all g ∈ G. Similarly,

we use ̺h : G → G to denote the right translation defined by ̺h(g) = m(g, h). If

τ makes all left (right) translations continuous, then we call (G, ·, τ) a left (right)

semitopological group. Further, if τ makes all λh and ̺h continuous, (G, ·, τ) is called

a semitopological group. In the case that τ makes m (jointly) continuous, (G, ·, τ) is

called a paratopological group. The inversion of (G, τ) is denoted by i. We should

note that (G, ·, τ) is semitopological if and only if τ is invariant to translations.

Similarly, (G, ·, τ) is left (right) semitopological if and only if τ is invariant to left

(right) translations. The Novák number [6] of a topological space (G, τ), denoted

by Nov(G), is defined by

Nov(G) = min{κ : G can be covered by 6 κ nowhere dense sets}.

Evidently, (G, τ) is of second category if and only if Nov(G) > ℵ1; and (G, τ) is Baire

if and only if Nov(O) > ℵ1 for every nonempty open set O ⊆ G. The developability

number of (G, τ), denoted by dev(G), is defined by

dev(G) = min{κ : there is a family {Uα : α < κ} of open covers

such that {st(x, Uα) : α < κ} is a local base for x ∈ G},

where st(x, Uα) :=
⋃

{U : x ∈ U ∈ Uα}. A regular space (G, τ) is a Moore space

if and only if dev(G) = ℵ0, and ω1 + 1 with the order topology is a space with

dev(ω1+1) = ℵ1. The weight and character of a topological space (G, τ) are denoted

by w(G) and χ(G) respectively. It is easy to see that χ(G) 6 dev(G) for any space

(G, τ).

134



This paper is organized as follows. In Section 2, we discuss various weak continuity

properties of semitopological and paratopological groups. It is pointed out that the

weakest condition that makes a paratopological group (G, ·, τ) a topological group

is the semi-precontinuity of i. Moreover, it is also pointed out that conditions in

Lemma 1.2 and Lemma 1.3 in [3] are indeed equivalent, and cardinal functions dev(G)

and Nov(G) can be used to derive some automatic continuity property of left and

right semitopological groups. Then, these discoveries are used in Section 3 to find

weaker conditions on the left and right translations to characterize a group topology.

Our main theorem in Section 3 extends several results in [3], [29], etc, and several

examples are given to show the subtle difference between weak continuity properties

of group operations. In the last section, a number of open questions are posed.

2. Weak continuity in topologized groups

Let us begin this section with some definitions. Given a topological space X and

a subset A ⊆ X , in the sequel, A and intA stand for the closure and interior of A

in X respectively. Recall that a function f : X → Y from a space X into another

space Y is said to be
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for each neighborhood V of f(x). Then f is continuous, nearly continuous, quasi-

continuous, semi-precontinuous, feebly continuous if it has the respective property

at each point, that is, if and only if for each open set V ⊆ Y we have respec-

tively f−1(V ) ⊆ int f−1(V ), f−1(V ) ⊆ int f−1(V ), f−1(V ) ⊆ int f−1(V ), f−1(V ) ⊆

int f−1(V ), int f−1(V ) 6= ∅ if f−1(V ) 6= ∅. The concept of quasi-continuous func-

tions first appeared in [18] for real functions of several real variables. By definition,

quasi-continuous functions are feebly continuous, but in general the converse does

not hold. There are nearly continuous functions which are not even feebly continu-

ous, and there are quasi-continuous functions which are not nearly continuous. The

notion of semi-precontinuous functions is based on a concept in [1]. Quasi-continuous

and nearly continuous functions are semi-precontinuous.
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Lemma 2.1. Let (G, ·, τ) be a semitopological group.

(a) i is quasi-(nearly, semi-pre) continuous if and only if it is quasi- (nearly, semi-

pre) continuous at a point x0.

(b) m is quasi-(nearly, semi-pre) continuous if and only if it is quasi- (nearly,

semi-pre) continuous at a point (x0, y0).

Quasi-continuity was used by Kenderov et al to study when a paratopological

group is topological, and they showed in [19] that a paratopological group is a topo-

logical group if and only if its inversion is quasi-continuous. To obtain conditions

which make a paratopological group (G, ·, τ) a topological group, Arhangel’skii and

Reznichenko [3] proved the following lemma.

Lemma 2.2 ([3]). Suppose that (G, ·, τ) is a paratopological group such that

e ∈ intU−1 for each open neighborhood U of the neutral element e of G. Then

(G, ·, τ) is a topological group.

In our terminology, we can say that each paratopological group (G, ·, τ) whose

inversion is semi-precontinuous at e is a topological group. Indeed, this fact is equiv-

alent to Lemma 1.2 of [3], which asserts that if a paratopological group (G, ·, τ) is not

topological, then there is a neighborhood U of e such that U ∩U−1 is nowhere dense.

Our next theorem summarizes all these facts where weak continuity properties play

roles.

Theorem 2.3 ([3], [19]). For a paratopological group (G, ·, τ), the following state-

ments are equivalent:

(a) The inversion i of (G, ·, τ) is semi-precontinuous at e.

(b) (G, ·, τ) is a topological group.

(c) For every open neighbourhood U of e, e ∈ intU ∩ U−1.

(d) For every open neighbourhood U of e, intU ∩ U−1 6= ∅.

(e) The inversion i of (G, ·, τ) is quasi-continuous at e.

Corollary 2.4. A paratopological group (G, ·, τ) is a topological group if and only

if its inversion i is nearly continuous at e.

Remark 2.5. It is important to note that the condition (e) of Theorem 2.3

cannot be replaced by the weaker condition that the inversion i is feebly continuous.

Indeed, there are paratopological but not topological groups whose inversions are

feebly continuous, for example, the Sorgenfrey line, totally bounded paratopological

groups. A paratopological group with feebly continuous inversion is called saturated

by Guran in [16]. In many aspects, saturated paratopological groups behave like

topological groups, we refer to [4] and [5]. Guran [16] also asked if a Baire regular
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paratopological group must be saturated. The general case of this question was

answered negatively by Ravsky [31]. However, Cao and Greenwwood [11] showed

that its answer is affirmative with the appearance of a countable π-network.

In the light of Theorem 2.3, one may consider the following “dual” problem: Let

(G, ·, τ) be a topologized group such that i is continuous. Must semi-precontinuity

and continuity of m be equivalent? Unfortunately, the answer is negative as shown

by the following examples.

Example 2.6. (a) Let (Z2, +) be the group of integers modulo 2 with the usual

operation of addition, i.e., Z2 = {0̄, 1̄}. Let τs = {∅, {0̄},Z2} be the Sierpiński

topology on Z2. It is shown in [7] that m is quasi-continuous. Furthermore, one can

also prove that m is nearly continuous and i is continuous. Since (Z2, +) is abelian

and λ1̄ is not continuous, (Z2, ·, τs) is neither a left nor a right semitopological group.

(b) Let τcf be the co-finite topology on R. It is well-known that τcf is a T1-topology.

We consider the topologized group (R, +, τcf), where + is the usual addition on R.

It is easy to see that i is continuous. For any nonempty open subset V of (R, τcf),

m
−1(V ) has empty interior in (R×R, τcf × τcf) but m−1(V ) = R×R. It follows that

m
−1(V ) ⊆ intm−1(V ), and thus m is nearly continuous but not quasi-continuous

(not even feebly continuous). Furthermore, one can check easily that all left and

right translations are continuous. Therefore, (R, +, τcf) is a semitopological (but not

paratopological) group.

Example 2.7. There exists a topologized abelian group (G, +, τ) which is a Ty-

chonoff space such that i is continuous, m is quasi-continuous but neither nearly

nor separately continuous. Let (G, +) be the set of reals with the usual addition.

Equip (G, +) with the following topology τ : rational numbers are isolated points and

neighborhoods of irrational numbers are standard Euclidean ones. Then (G, τ) is a

Tychonoff space, see [12, Example 5.1.22]. Clearly, i is continuous, as the inverse of a

rational number is rational and the inverse of an irrational number is irrational. Let

x be any irrational number and y any rational number. Then the translation by x

is discontinuous at y − x. Thus, (G, +, τ) is not semitopological. Finally, we claim

that m is quasi-continuous but not nearly continuous. Let x, y, z ∈ G and z = x + y.

If z is irrational, then clearly m is continuous at (x, y). Suppose that z is rational.

If x is rational, then y is also rational, so (x, y) is isolated in G×G and m is contin-

uous at (x, y). In case that x is irrational, then m
−1({z}) = {(u, z − u) : u ∈ G} is

closed in G×G and intm
−1({z}) = {(u, z−u) : u ∈ Q}. Since intm

−1({z}) is dense

in m
−1({z}), m is quasi-continuous but not nearly continuous at (x, y).

Remark 2.8. In summary, we see that there are examples of topologized abelian

groups:
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(a) T0-group which is not semitopological, i is continuous, m is both nearly con-

tinuous and quasi-continuous.

(b) T1-semitopological group, i is continuous, m is nearly continuous, but not

feebly continuous.

(c) Tychonoff group which is not semitopological, i is continuous, m is quasi-

continuous, but not nearly continuous. These facts raise the question whether there

exist some better examples. Note that a Hausdorff paratopological group can fail to

be regular. Consider (R2, +) equipped with the “semidisc topology” τB, where the

family of the sets

Bε = {(x, y) ∈ R
2 : x2 + y2 < ε, y > 0} ∪ {(0, 0)} with ε > 0

is a local base at the element (0, 0) of R2 for the topology τB, and the neighborhoods

of other points are translations of neighborhoods of (0, 0). It was pointed out by

Tkachenko in [36] that (R2, +, τB) is a Hausdorff paratopological group, but it is

not regular. Furthermore, he also mentioned in [36] that it is still an open problem

whether every regular paratopological group must be a Tychonoff space.

Next, we give an example of a topologized group with a completely metrizable

topology and continuous inversion, such that the feeble continuity and near (quasi-)

continuity of its multiplication are not equivalent.

Example 2.9. There exists a topologized group such that i is continuous and m is

feebly continuous, but m is not semi-precontinuous. Let (R, +) be the group of reals

with the usual addition. We equip R with the metric d defined by

d(x, y) =

{

0, if x = y;

max{|x|, |y|}, x 6= y.

It is shown in [32] that (R, d) is a complete metric space. Let τ be the topology

generated by d on R. The neighborhoods of 0 in (R, τ) are the same as those in the

Euclidean topology. It can be checked easily that i is continuous. To see that m is

feebly continuous, for every nonempty open set V of (R, d) pick an arbitrary point

a ∈ V . Since every point in (R, τ) except 0 is isolated, the set m
−1({a}) = {(x, y) ∈

R × R : x + y = a} has nonempty interior, and so does m
−1(V ). This shows that

m is feebly continuous. Note that m
−1({1}) = {(x, y) ∈ R× R : x + y = 1} is closed

in R× R, and that

intm−1({1}) = {(x, y) ∈ R× R : x + y = 1} \ {(0, 1), (1, 0)}

is also closed in R × R. It follows that m
−1({1}) 6⊆ intm−1({1}). Thus, m is not

semi-precontinuous.
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Theorem 2.10. Let (G, ·, τ) be a left or right semitopological group such that

dev(G) < Nov(G). Then i is nearly continuous at e.

P r o o f. Suppose that (G, ·, τ) is a left semitopological group with dev(G) <

Nov(G). Let V be an open neighborhood of e. We shall show that V −1 is also a

neighborhood of e. Assume that dev(G) = κ, and let {Uα : α < κ} be a family of

open covers of G such that for any x ∈ G, {st(x, Uα) : α < κ} is a neighborhood

base of x. For each α < κ we define

Aα := {x ∈ G : st(x, Uα) ⊆ x · V }.

Since (G, τ) is a left semitopological group, x · V is an open set for each x ∈ X .

Thus, for each x ∈ X there is an α < κ such that st(x, Uα) ⊆ x · V . This implies

that G =
⋃

{Aα : α < κ}. Moreover, as dev(G) < Nov(G), int(Aα) 6= ∅ for some

α < κ. Thus, there are a point x0 ∈ G and β < κ such that st(x0, Uβ) ⊆ Aα. Let

V be the canonical common refinement of Uβ and Uα. Set U = st(x0, V ). Then for

each z ∈ U ∩ Aα we have

x0 ∈ st(z, V ) ⊆ st(z, Uα) ⊆ z · V,

therefore z−1x0 ∈ V , so x−1

0
z ∈ V −1, hence x−1

0
· (U ∩ Aα) ⊆ V −1. On the other

hand, U ⊆ Aα implies that U ⊆ U ∩ Aα. As a consequence,

e ∈ x−1

0
· U ⊆ x−1

0
· U ∩ Aα ⊆ x−1

0
· (U ∩ Aα) ⊆ V −1.

Since U is an open neighborhood of x0, x
−1

0
· U is an open neighborhood of e. We

have shown that V −1 is also a neighborhood of e, and therefore i is nearly continuous

at e. �

Corollary 2.11. Let (G, ·, τ) be a left or right semitopological group such that

(G, τ) is a Baire and Moore space. Then i is nearly continuous at e.

Lemma 2.12 ([17], p. 95). Let X be any infinite dimensional linear topological

space of the second category. Then X contains a maximal proper linear subspace Y

that is of the second category in X . Moreover,

(a) Y does not have the Baire property;

(b) if X is an infinite dimensional complete metric (or normed) space it must

contain a subspace that is infinite dimensional, of the second category and metric

(or normed) but not complete.
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Next, we use Lemma 2.12 to construct a left semitopological group whose inversion

is nearly continuous but not quasi-continuous.

Example 2.13. There exists a Baire and metric left semitopological group which

is not a right semitopological group, and whose inversion is nearly continuous but not

feebly continuous. Let us consider the Banach space c0 of all sequences convergent to

zero with the sup-norm. It is known that c0 is infinite dimensional. By Lemma 2.12,

it contains a maximal proper subspace G0 which is of the second category and does

not have the Baire property. Since G0 is a topological group, it is a Baire space as it

is of the second category. Let us fix β ∈ c0 \G0 and define G := G0 ∪ (β +G0). Note

that G with the topology τ inherited from c0 is a metric space. The subspace G0 is

dense and Baire in G, thus (G, τ) is a metric Baire space. Since β /∈ G0, we have

G0 ∩ (β + G0) = ∅. Consider the operation “⋆” defined by

a ⋆ b =

{

a + b, if a ∈ G0;

a − b, if a ∈ β + G0.

One can check that the operation “⋆” is well-defined on G and (G, ⋆) in fact forms a

group. Furthermore, it is not difficult to see that the inversion i : G → G is defined

as

i(a) =

{

−a, if a ∈ G0;

a, if a ∈ β + G0.

First, we claim that (G, ⋆, τ) is a left semitopological group but not a right semitopo-

logical group. Indeed, if a ∈ G0, b ∈ G and {bn : n ∈ N} is an arbitrary sequence

in G with lim
n→∞

bn = b, then we have

lim
n→∞

(a ⋆ bn) = lim
n→∞

(a + bn) = a + b = a ⋆ b.

Similarly, if we take a ∈ β + G0, b ∈ G and {bn : n ∈ N} is an arbitrary sequence

in G with lim
n→∞

bn = b, then

lim
n→∞

(a ⋆ bn) = lim
n→∞

(a − bn) = a − b = a ⋆ b.

This verifies that G is a left semitopological group. Now, take b ∈ G, b 6= 0 and a

sequence {an : n ∈ N} ⊆ β + G0 such that an → 0. Then 0 ⋆ b = b and an ⋆ b =

an − b → −b. Thus, (G, ⋆, τ) is not a right semitopological group.

Now, we show that i is nearly continuous. Let V be a neighborhood of i(a), where

a ∈ G, i.e., V is of the form W ∩ G, where W is open in c0. We consider two cases.

Suppose that a ∈ β + G0. In this case, since β + G0 is dense in c0, we have

V −1 ⊇ W ∩ (β + G0) ⊇ W ∩ G = V.
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This shows that i is nearly continuous at each a ∈ β + G0. On the other hand, if

a ∈ G0 then i(a) = −a. In this case, G0 is dense in c0, thus

V −1 ⊇ (−W ) ∩ (−G0) = (−W ) ∩ G0 ⊇ −W
c0

∩ G ⊇ −W ∩ G,

where −W
c0

is the closure of −W in c0. It follows that V −1 contains an open

neighborhood of a in G, i.e., i is nearly continuous at each a ∈ G0. Finally, we show

that i is not feebly continuous. Take a point x0 ∈ G such that ‖x0‖ = 1, and consider

the open ball W = B(x0, 1/2) in c0 centered at x0 with radius 1/2. Let V = W ∩G.

Then,

i
−1(V ) = V −1 = (−W ∩ G0) ∪ (W ∩ (β + G0)).

Since (−W )∩W = ∅, G0 and β + G0 are disjoint dense subsets of G, the interior of

i
−1(V ) in G is empty. Hence, i is not feebly continuous.

Note that in Example 2.13, (G, τ) is a metric and Baire space, but i is not feebly

continuous. We will see in Section 3 that the reason why this happens is that (G, ⋆, τ)

fails to be a semitopological group (i.e., not a right semitopological group, as it is a

left semitopological group).

3. The main result

In this section we investigate when a topologized group (G, ·, τ) is a topological

group. Let X, Y, Z be three topological spaces, and let f : X ×Y → Z be a function

from X × Y into Z. Recall that f is called quasi-continuous with respect to y [26]

at (x, y) if for every open neighborhood W of f(x, y) and every open neighborhood

U × V of (x, y), there are an open neighborhood V ′ of y and a nonempty open set

U ′ ⊆ U such that f(U ′ × V ′) ⊆ W . Quasi-continuity with respect to the second

variable plays an important role in the theory of separate vs. joint continuity. It

is called strong quasi-continuity in [10] and [19], where it is applied to the study

of the problem when a semitopological group is a topological group. In general,

quasi-continuity and quasi-continuity with respect to the second variable are two

distinct notions for the multiplication operation m of a topologized group (G, ·, τ).

For example, let (Z2, ·, τ) be the topologized group given in Example 2.6. We have

seen that m is quasi-continuous. However, it can be checked readily that m is not

quasi-continuous with respect to the second variable at the point (1̄, 1̄) ∈ Z2 × Z2.

The next lemma is essentially proved in [26, Theorem 1], where X and Y are

assumed to be Baire and first countable respectively, and D = Y . Hence, its proof

is omitted. Results similar to this one can be found in [10, Theorem 1] and [19,

Lemma 1], where some properties defined by topological games are used.
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Lemma 3.1 ([26]). Let f : X × Y → Z be a function from the product space

X × Y into a regular space Z such that f(x, ·) : Y → Z is continuous for all x ∈ X ,

and there is a dense subset D ⊆ Y such that f(·, y) : X → Z is quasi-continuous for

all y ∈ D. If Nov(O) > χ(Y ) for every nonempty open subset O ⊆ X , then f is

quasi-continuous with respect to y at every point (x, y) ∈ X × D.

Lemma 3.2. Let (G, ·, τ) be a left or right semitopological group. ThenNov(G) =

Nov(O) for every nonempty open set O ⊆ G.

P r o o f. It is clear that Nov(O) 6 Nov(G) for any nonempty open subset O ⊆ G.

Now, for any fixed nonempty open subset O ⊆ G, suppose Nov(O) = κ. Pick up

any point x ∈ O. For any point y ∈ G, since λy·x−1 is continuous, (y · x−1) · O is

an open neighborhood of y with Nov((y · x−1) · O) = κ. Thus, G has an open cover

U = {Uα : α ∈ I} such that Nov(Uα) = κ for all α ∈ I. Let V = {Vβ : β ∈ J}

be a maximal disjoint open family (not necessarily a cover) which refines U . Then

G \
⋃

{Vβ : β ∈ J} is nowhere dense in G and Nov(Vβ) 6 κ for all β ∈ J . Suppose

Vβ =
⋃

{Aβ,γ : γ < κ}, where each Aβ,γ is nowhere dense in G. Since {Vβ : β ∈ J}

is a pairwise disjoint open family, each Aγ =
⋃

{Aβ,γ : β ∈ J} is nowhere dense in G.

It follows that

G =
(

⋃

{Aγ : γ < κ}
)

∪
(

G \
⋃

{Vβ : β ∈ J}
)

.

Thus, we have shown that Nov(G) = κ. �

Theorem 3.3. Let (G, ·, τ) be a topologized group endowed with a regular topol-

ogy τ such that dev(G) < Nov(G). If all left (right) translations are feebly continuous

and all right (left) translations are continuous, then (G, ·, τ) is a topological group.

P r o o f. Suppose that all left translations are feebly continuous and all right

translations are continuous. By Theorem 2.10, the inversion i of (G, ·, τ) must be

nearly continuous at e. Thus, by Corollary 2.4, we are done if we can show that

(G, ·, τ) is a paratopological group. Assume that dev(G) = κ. Then there exists

an ordered family {Uα : α < κ} of open covers of (G, τ) such that for any x ∈ G,

{st(x, Uα) : α < κ} is a neighborhood base of x.

We first prove that (G, ·, τ) is a semitopological group. It suffices to show that for

any fixed h ∈ G, λh is continuous at an arbitrary point g ∈ G. For this purpose, for

each α < κ we define

O(λh, α) :=
⋃

{V : V ⊆ G is open, and λh(V ) ⊆ P for some P ∈ Uα}.

Clearly, O(λh, α) is open in (G, τ). Further, O(λh, α) is also dense in (G, τ). To see

this, let U ⊆ G be a nonempty open set. Since λh−1 is feebly continuous, int(λh(U))
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is nonempty. Thus, we can choose a nonempty open set W and P ∈ Uα such that

W ⊆ h · U and W ⊆ P . On the other hand, λh is also feebly continuous. Thus, we

can choose a nonempty open set V such that V ⊆ λh−1(W ). Then V ⊆ U ∩O(λh, α).

Since Nov(G) > κ, we have

⋂

{O(λh, α) : α < κ} 6= ∅.

Also, it is clear that λh is continuous at every point of
⋂

{O(λh, α) : α < κ}. To

show that λh is continuous at g, choose a point s ∈ G such that

g · s ∈
⋂

{O(λh, α) : α < κ}.

Then λh is continuous at g · s. Note that for any s ∈ G, ̺s−1 and ̺s are continuous.

Further, we have λh = ̺s−1 ◦λh ◦ ̺s. This implies that λh is continuous at the point

g ∈ G.

Next, we show that (G, ·, τ) is a paratopological group. By Lemma 3.2 and

Lemma 3.1, m is quasi-continuous with respect to y at every point (x, y) ∈ G × G.

Now, for any given point y ∈ G and for every α < κ define

O(m, α) :=
⋃

{U : U ⊆ G is an open subset, and m(U × V ) ⊆ P

for some open neighborhood V of y and P ∈ Uα}.

Using quasi-continuity of m with respect to the second variable, it can be shown

that for each α < κ, O(m, α) is a dense and open set in (G, τ). Moreover,

since Nov(G) > κ, we have
⋂

{O(m, α) : α < κ} 6= ∅. It is clear that m is (jointly)

continuous at (x, y) for any point x ∈
⋂

{O(m, α) : α < κ}. Hence, (G, ·, τ) is a

paratopological group. �

Corollary 3.4. Let (G, ·, τ) be a topologized group such that (G, τ) is a Baire

Moore space. If all left ( right) translations are feebly continuous and all right (left)

translations are continuous, then (G, ·, τ) is a metrizable topological group.

Theorem 3.3 and Corollary 3.4 extends several results in literature.

Corollary 3.5 ([29]). Every Baire andMoore semitopological group is a paratopo-

logical group.

According to [34, p. 66], the next result is due to an unpublished work of Rez-

nichenko.

Corollary 3.6. Every semitopological group which is a Baire metrizable space is

a topological group.
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The class of strongly Baire spaces was introduced in [19]. It was shown that every

strongly Baire semitopological group is a topological group. It is easy to show that

every Baire Moore space is strongly Baire. Thus, Corollary 3.5 and Corollary 3.6

can also be derived from the results in [19]. Recall that a topological space is sym-

metrizable [2] if its topology is generated by a symmetric, i.e., a distance function

satisfying all the usual axioms for a metric, except for the triangle inequality.

Corollary 3.7 ([3]). Every symmetrizable Hausdorff Baire paratopological group

is a metrizable topological group.

P r o o f. It was shown in [21] that every symmetrizable paratopological group is

a Moore space. Therefore, the conclusion follows from Corollary 3.4. �

Example 2.9 shows that in general the conclusion of Theorem 3.3 does not hold for

topologized groups when both left and right translations are feebly continuous, under

the same assumption on the topology. Our next example shows that in general the

conclusion of Theorem 3.3 does not hold for topologized groups even when both left

and right translations are quasi-continuous, and the topology is separable, metrizable

and Baire.

Example 3.8. There exists a topologized group (G, ·, τ) with a separable, metriz-

able and Baire topology such that m is separately quasi-continuous, but (G, ·, τ) is

not a paratopological group. Let G = [0, 1) be the half-open and half-closed unit

interval of R equipped with the multiplication

x · y =

{

x + y, if x + y < 1;

x + y − 1, if x + y > 1.

Let τ be the Euclidean topology on G. Then it is clear that (G, τ) is a separable

metric Baire space, and (G, ·) is a group with e = 0.

We first verify that m is quasi-continuous with respect to y at every point (x, y) ∈

G × G. At any point (x, y) with x + y 6= 1, m is continuous. Suppose that (x, y)

is a point with x + y = 1. Then m(x, y) = 0. For any 0 < ε < 1 and every

neighborhood U × V of (x, y) we can find δ1, δ2 > 0 such that (x − δ1, x + δ1) ⊆ U ,

(y − δ1, y + δ2) ⊆ V and 0 < δ1 − δ2 < ε. Let U ′ = (x + 1

2
(δ1 + δ2), x + δ1) and

V ′ = (y − δ2, y + δ2). Then it can be checked that m(U ′ × V ′) ⊆ [0, ε). This verifies

the claim. However, m is not continuous at (1

2
, 1

2
). To see this, for each n ∈ N let

xn = yn = 1

2
−1/(n + 1). Then (xn, yn) → (1

2
, 1

2
) but m(xn, yn) = 1−2/(n + 1) does

not converge to m(1

2
, 1

2
). In fact, m is not continuous at any point on the line segment

{(x, y) ∈ G × G : x + y = 1}. Therefore, (G, ·, τ) is not a paratopological group.
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Further, we can show that i is not continuous at e either. In fact, let xn = 1/(n + 1).

Then xn → e and i(xn) = 1−1/(n + 1). However, {i(xn) : n ∈ N} does not converge

to e.

4. Open questions

In this section we give some additional remarks which are related to the results in

the previous two sections, and pose several open questions.

Remark 4.1. First, Corollary 3.4 should be compared with Theorem 1.1 in [34],

which says that if a group G with a metric, separable and Baire topology such that

̺h is Baire measurable for densely many h ∈ G and λg is continuous for all g ∈

G, then G is a topological group. As mentioned in [34], there is an example of a

group and a compact metric topology on it such that λg is continuous for all g but

the multiplication is discontinuous. This shows that the assumption about feeble

continuity in Theorem 3.3 cannot be dropped. Furthermore, Theorem 3.3 should

also be compared with Theorem 1 in [13], which claims the following: For a Baire

metrizable group G, if there is a dense set S of the second category in G such that

the right translations ̺s and ̺s−1 are continuous for all s ∈ S and also for each

s ∈ G, there is a residual set Rs of G such that the left translation λs is feebly

continuous on Rs, λs(Rs) is residual and λs−1 is feebly continuous on λs(Rs), then

G is a topological group.

Question 4.2. Can we relax hypothesis: “all right translations are continuous”

in Theorem 3.3 to the condition: “there is a dense subset S of the second category

in G such that the right translations ̺s and ̺s−1 are continuous for all s ∈ S”?

It is unclear to the authors whether the conclusion of Corollary 3.7 is still valid

for semitopological groups. In addition, it is unclear whether every symmetrizable

semitopological group must be a Moore space either. These motivate us to pose the

following natural question.

Question 4.3. Must every symmetrizable Hausdorff Baire semitopological group

be a topological group?

Remark 4.4. Note that in Example 3.8, m is continuous at any point (x, y)

with x + y 6= 1. This outcome is somehow not surprising. If (G, ·, τ) is a topologized

group with a separable, metrizable and Baire topology τ such that all left and right

translations are quasi-continuous, then by Theorem 2 of [24], m is quasi-continuous.

Now, G × G is a separable, metrizable and Baire space, hence by a classical result,
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the set of points of continuity of m is a dense Gδ-set in G × G. Furthermore, by

a result of Neubrunn in [25], if (G, ·, τ) is a topologized group with a topology τ

such that w(G) < Nov(G), all left (right) translations are feebly continuous and

all right (left) translations are quasi-continuous, then m is feebly continuous. As a

consequence, under the same assumption on τ , if all left and right translations are

quasi-continuous, then m is quasi-continuous. In [24], a separately feebly continuous

function f : [−1, 1]× [−1, 1] → R which is not feebly continuous is constructed.

Question 4.5. Let (G, ·, τ) be a topologized group with a separable, metrizable

and Baire topology τ such that all left and right translations are feebly continuous.

Must m be feebly continuous?

If the answer to Question 4.5 is affirmative, then we conclude that the set C(m)

of points of continuity of m is somewhere dense, and thus C(m) 6= ∅. Hence, we can

view Question 4.5 as an analog of Talagrand’s question in [35]. Finally, we conclude

the paper with one more question.

Question 4.6. Let (G, ·, τ) be a topologized group with a Polish topology τ such

that all left and right translations are quasi-continuous. Must (G, ·, τ) be a topolog-

ical group?
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