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ON THE SECOND LAPLACIAN SPECTRAL

MOMENT OF A GRAPH
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Abstract. Kragujevac (M.L. Kragujevac: On the Laplacian energy of a graph, Czech.
Math. J. 56 (131 ) (2006), 1207–1213) gave the definition of Laplacian energy of a graph G

and proved LE(G) > 6n−8; equality holds if and only if G = Pn. In this paper we consider
the relation between the Laplacian energy and the chromatic number of a graph G and give
an upper bound for the Laplacian energy on a connected graph.
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1. Introduction

Let G = (V, E) be a simple connected graph with vertex set V = {v1, v2, . . . , vn}
and edge set E. Denote by di the degree of a vertex vi of the graph G. Without loss

of generality, we assume d1 > d2 > . . . > dn and denote by π(G) = (d1, d2, . . . , dn)

the degree sequence of G. Let A(G) be the adjacency matrix of G and L(G) =

D(G)−A(G) the Laplacian matrix of the graph G where D(G) = diag(d1, d2, . . . , dn)

is the diagonal matrix of vertex degrees of G. Denote its Laplacian eigenvalues by

µ1(G) > µ2(G) > . . . > µn(G) = 0 (or µ1 > µ2 > . . . > µn = 0).

The energy of a graph G is defined as the sum of the absolute values of all the

eigenvalues of A(G). This quantity has a long known chemical application, for details

see the surveys ([4]–[6]). Recently, Kragujevac [7] gave the definition of the Laplacian

energy of a graph G as

(1) LE(G) =

n∑

i=1

µ2
i (G) =

n−1∑

i=1

µ2
i (G).

Supported by the National Science Foundation of China 10871166.

401



In fact, the quantity was named “Laplacian energy”. However, this quantity is

simply the well-known “second spectral moment” (of the Laplacian eigenvalues) or,

more colloquially, “second Laplacian spectral moment”. Furthermore, Laplacian

eigenvalues obey the well-known relations

(2)

n∑

i=1

µi(G) = 2m,

n∑

i=1

µ2
i (G) = 2m +

n∑

i=1

d2
i (G)

where m = |E(G)|. Kragujevac ([7]) proved

LE(G) > 6n − 8,

where equality holds if and only if G = Pn. In this paper we consider the relation

between LE(G) and its chromatic number, and give a strict upper bound of LE(G).

2. The Laplacian energy of G and its chromatic number

In order to obtain our main result in this section, the following notation and

lemmas are necessary.

Definition 2.1. For a graph G, the chromatic number of G, denoted by χ(G),

is the minimum number of colors needed to color the vertices of G so that no two

adjacent vertices have the same color.

Lemma 2.1 ([1]). For any graph G with χ(G) = k, G has at least k vertices vi

with di > k − 1 (1 6 i 6 k).

Lemma 2.2 ([2]). For any graph G we have

χ(G) 6 ∆ + 1;

the equality holds if and only if G = C2n+1 or G = Kn.

Lemma 2.3 ([3]). For any graph G, if G1 is a subgraph of G,

µi(G1) 6 µi(G).

Now, we formulate and prove the result of this section.
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Theorem 2.1. Let G be a connected graph with χ(G) = k. Then

LE(G) > k2(k − 1),

and the equality holds if and only if G = K1, G = C3 or G = Kn.

P r o o f. By (1), (2) and Lemma 2.1, we obtain

LE(G) =
n∑

i=1

µ2
i (G) = 2m +

n∑

i=1

d2
i =

n∑

i=1

di +
n∑

i=1

d2
i

> k(k − 1) + k(k − 1)2 = k2(k − 1).

Next, we prove equality. We first prove necessity.

Case 1 : G = K1.

SPL(G) = {0}, χ(G) = k = 1, so LE(G) = 0 = k2(k − 1).

Case 2 : G = C3.

SPL(G) = {3, 3, 0}, χ(G) = k = 3, so LE(G) = 18 = k2(k − 1).

Case 3 : G = Kn.

SPL(G) = {n, . . . , n
︸ ︷︷ ︸

n−1

, 0}, χ(G) = k = n, so LE(G) = 0 = k2(k − 1).

We prove sufficiency.

Case 1 : G = C2n+1 (n > 2) is an odd cycle; then χ(G) = k = 3. Since P2n+1 is a

subgraph of G, by Lemma 2.3 we have

µ1(G) > µ1(P2n+1) > µ1(P5) =
5 +

√
5

2
,

µ2(G) > µ2(P2n+1) > µ2(P5) =
3 +

√
5

2
.

So we obtain

LE(G) =

n∑

i=1

µ2
i (G) > µ2

1(G) + µ2
2(G) > µ2

1(P2n+1) + µ2
2(P2n+1)

> µ2
1(P5) + µ2

2(P5) = 11 + 4
√

5 > 9.

Case 2 : G is neither Kn nor C2n+1.

403



By Lemma 2.2, we have

k < ∆ + 1 < n.

Let χ(G) = k, then by Lemma 2.1, G has at least k vertices vi with di > k − 1

(1 6 i 6 k). So

LE(G) =
n∑

i=1

µ2
i (G) = 2m +

n∑

i=1

d2
i =

n∑

i=1

di +
n∑

i=1

d2
i

> k(k − 1) + k(k − 1)2 + 2(n − k) = k2(k − 1) + 2(n − k) > k2(k − 1).

�

3. The Laplacian energy of L(G) and L(G)

We will consider connected graphs with the maximal Laplacian energy in the class

of all connected graphs with n > 2 vertices.

Theorem 3.1. Let G = (V, E) be a connected graph with |V (G)| = n (n > 2),

|E(G)| = m and ∆(G) 6 d. Then

1. the Laplacian energy of G satisfies

(3) LE(G) 6 (2m − n)d + 4m;

2. the equality of (3) holds if and only if

π(G) = {d, . . . , d
︸ ︷︷ ︸

s>1

, 1, . . . , 1
︸ ︷︷ ︸

n−s

}

where π(G) is the degree sequence of G.

P r o o f. Considering the inequality

(di − 1)(di − d) 6 0 (1 6 i 6 n)

we have

n∑

i=1

(di − 1)(di − d) 6 0 =⇒
n∑

i=1

d2
i 6 (d + 1)

n∑

i=1

di − dn(4)

=⇒
n∑

i=1

d2
i 6 2m(d + 1) − dn.
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So we have

LE(G) =

n∑

i=1

µ2
i (G) = 2m +

n∑

i=1

d2
i 6 2m + 2m(d + 1) − dn = (2m − n)d + 4m.

Now we discuss how to attain the equality. We know the equality in (4) holds if and

only if

di = 1 or di = d (1 6 i 6 n),

that is to say,

π(G) = {d, . . . , d
︸ ︷︷ ︸

s>1

, 1, . . . , 1
︸ ︷︷ ︸

n−s

},

and the proof is completed. �

Next, we depict the graphs of s = 1, 2, 3 and 4 where s is the number of vertices

of degree d. First we give some notation.

Definition 3.1.

(1) Let T (n1, . . . , nt) be the tree of order t+
t∑

i=1

ni obtained from Pt : v1v2 . . . vt by

adding ni new pendant edges at vi (1 6 i 6 t).

(2) Let T (∗, T (a, b), ∗, . . . , ∗) be the tree obtained from Pt : v1v2 . . . vt and T (a, b)

by identifying v2 and v, where v is a vertex of degree a + 1 in T (a, b), and then

attaching some (arbitrary) trees to other vertices.

For example, T (s, t), T (3, T (2, 2), 2) in Fig. 1.

s t

T (s, t) T (3, T (2, 2), 2)

Fig. 1

Definition 3.2.

(1) Let U3(i, j, k) be the unicyclic graph obtained from C3 : v1v2v3v1 by attaching

i, j, k new pendant edges to v1, v2 and v3, respectively (see Fig. 2).
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j

k i
v1

v2

v3

U3(i, j, k)

v1

v2

v3

U3(T (n − 6, 2), 0, 0)

v1

v2

v3

U3(T (0, n − 4), 0, 0)

Fig. 2

Similarly, we introduce U4(i, j, k, l). Let U4(i, j, k, l) be the unicyclic graph ob-

tained from C4 : v1v2v3v4v1 by attaching i, j, k, l new pendant edges to v1, v2, v3

and v4, respectively.

(2) Let U3(T (a, b), ∗, ∗) be the unicyclic graph obtained from C3 : v1v2v3v1 and

T (a, b) by identifying v1 and v, where v is a vertex of degree a + 1 in T (a, b),

and then attaching some (arbitrary) trees to v2 and v3.

For example, U3(T (n − 6, 2), 0, 0), U3(T (0, n− 4), 0, 0) in Fig. 2.

Definition 3.3.

(1) Let B4(t1, . . . , t4) be the bicyclic graph obtained from B4 : v1v2v3v4v1 (see

Fig. 3) by attaching ti new pendant edges to vi (1 6 i 6 4), respectively.

(2) Let B4(T (a, b), ∗, . . . , ∗) be the bicyclic graph obtained from B4 : v1v2v3v4v1

and T (a, b) by identifying v1 and v, where v is a vertex of degree a + 1 in

T (a, b), and then attaching some (arbitrary) trees to vi (2 6 i 6 4).

For example, B4(0, 0, 3, 1) and B4(T (0, 2), 0, 2, 0) in Fig. 3. Now we depict the

extremal graphs with 1 6 s 6 4 where s is the number of vertices of degree d.

v1

v2

v3

v4

B4 B4(0, 0, 3, 1) B4(T (0, 2), 0, 2, 0)

Fig. 3
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Theorem 3.2. If π(G) = {d, . . . , d
︸ ︷︷ ︸

s>1

, 1, . . . , 1
︸ ︷︷ ︸

n−s

}, then

G ∈ {K1,d−1, T (d − 1, d − 1), T (d − 1, d − 2, d − 1), U3(d − 2, d − 2, d − 2),

T (d − 1, d − 2, d − 2, d − 1), T (d − 1, T (0, d− 1), d − 1), U3(d − 2, d − 2,

T (d − 3, d − 1)), U4(d − 2, d − 2, d − 2, d − 2), B4(d − 2, d − 3, d − 2, d − 3)},

where 1 6 s 6 4.

P r o o f. We discuss the following cases according to s.

(1) s = 1. Then

π(G) = {d, 1, . . . , 1
︸ ︷︷ ︸

n−1

},

so G = K1,d−1.

(2) s = 2. Then

π(G) = {d, d, 1, . . . , 1
︸ ︷︷ ︸

n−2

},

so G = T (d − 1, d − 1).

(3) s = 3. Then

π(G) = {d, d, d, 1, . . . , 1
︸ ︷︷ ︸

n−3

},

so G ∈ {T (d − 1, d − 2, d − 1), U3(d − 2, d − 2, d − 2)}.
(4) s = 4. Then

π(G) = {d, d, d, d, 1, . . . , 1
︸ ︷︷ ︸

n−4

},

so G is one of the graphs {T (d− 1, d− 2, d− 2, d− 1), T (d− 1, T (d− 3, d− 1),

d − 1), U3(d − 2, d − 2, T (d − 3, d − 1)), U4(d − 2, d − 2, d − 2, d − 2), B4(d − 2,

d − 3, d − 2, d − 3)}. �

Next, we give the relation between L(G) and L(G).

Lemma 3.1. Let L(G) be the Laplacian matrix of a graph G. Then there exists

a orthogonal matrix P such that

P−1LP = diag(µ1, . . . , µn),

P−1JP = diag(0, . . . , 0, n),

where µi (1 6 i 6 n) are the Laplacian eigenvalues of G and J = (jik) is a matrix of

order n with jik = 1 for 1 6 i, k 6 n.
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P r o o f. Since (D − A)e = 0, where e = (1, . . . , 1)T
1×n, we assume that P =

(P1, . . . , Pn) where Pi (1 6 i 6 n) are mutual orthogonal unit eigenvectors of L(G)

and LPi = µiPi (1 6 i 6 n). Then we have

P−1LP = diag(µ1, . . . , µn),

P−1JP = diag(0, . . . , 0, n).

�

By Lemma 3.1 we obtain immediately the following lemma.

Lemma 3.2. Let G be a graph and G its complement, and let µ1 > µ2 > . . . >

µn = 0 be the eigenvalues of L(G). Then

(1) L(G) + L(G) = L(Kn) = nI − J ;

(2) {n− µn−1, . . . , n − µ1, 0} are the eigenvalues of L(G).

P r o o f. (1) is obvious. By Lemma 3.1 we have

P−1L(G)P = P−1(nI)P − P−1JP − P−1L(G)P

= diag(n, . . . , n) − diag(0, . . . , 0, n) − diag(µ1, . . . , µn−1, 0)

= diag(n − µ1, . . . , n − µn−1, 0),

and the results follows. �

We consider the relation between LE(G) and LE(G).

Theorem 3.3. Let G = (V, E) be a connected graph with |V (G)| = n, |E(G)| =

m and ∆(G) 6 d, and let G be the complement of G. Then

(1) LE(G) − LE(G) = 4mn− n2(n − 1);

(2) [n(n − 1) − 2m](n − d) 6 LE(G) 6 n(n − 1)2 − 2m(n − 1).

P r o o f. We assume that d1, . . . , dn and µ1 > . . . > µn are the degrees of G

and its Laplacian eigenvalues, respectively. Since G is the complement of G, then

Lemma 3.2 yields that

µn−i = n − µi (1 6 i 6 n − 1).
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By (1) and (2) we obtain

LE(G) =

n∑

i=1

µ2
i =

n−1∑

i=1

µ2
i =

n−1∑

i=1

[n − µn−i]
2 =

n−1∑

i=1

[n2 − 2nµn−i + µ2
n−i]

= n2(n − 1) − 2n

n−1∑

i=1

µn−i + LE(G)

= n2(n − 1) − 2n

n−1∑

i=1

[n − µi] + LE(G)

= LE(G) + 4mn − n2(n − 1).

By (1), we have

LE(G) =

n∑

i=1

µ2
i (G) = 2|E(G)| +

n∑

i=1

d
2

i

6 2|E(G)| +
n∑

i=1

(n − 2)di

6 2[C2
n − m][n − 2 + 1] = n(n − 1)2 − 2m(n − 1).

On the other hand,

LE(G) =
n∑

i=1

µ2
i (G) = 2|E(G)| +

n∑

i=1

d
2

i

> 2|E(G)| +
n∑

i=1

(n − d − 1)di

= 2[C2
n − m](n − d − 1 + 1) = [n(n − 1) − 2m](n − d).

�
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