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Abstract. This paper deals with an interpolation problem in the open unit disc D of
the complex plane. We characterize the sequences in a Stolz angle of D , verifying that the
bounded sequences are interpolated on them by a certain class of not bounded holomorphic
functions on D , but very close to the bounded ones. We prove that these interpolating
sequences are also uniformly separated, as in the case of the interpolation by bounded
holomorphic functions.
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1. Introduction

Let l∞ be the space of all bounded sequences of complex numbers. We write (zn)

for any sequence in D. As usual, we will put c for all positive constants. Lip(zn)

denotes the space of all complex functions Φ on (zn) such that

|Φ(zk) − Φ(zm)| 6 c|zk − zm|, ∀k,m ∈ N.

H∞ is the space of all bounded holomorphic functions on D. We denote by A the

disc algebra and by Lip the Lipschitz class on D, that is,

Lip = {f ∈ A : |f(z) − f(w)| 6 c|z − w|, ∀z, w ∈ D} .

Recall that f ∈ Lip is equivalent to f ′ ∈ H∞.

Let ψ(z, w) = |z − w|/|1 − zw| be the pseudo-hyperbolic distance between z, w ∈

D. The Blaschke product in D with zeros at (zn) is the function in H∞ defined by

B(z) =
∏

n∈N

|zn|

zn

z − zn

1 − znz
.
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We denote by Bm and Bm,k the Blaschke products in D with zeros at (zn) \ {zm}

and (zn) \ {zm, zk}, respectively. The Stolz angle with vertex at the point η ∈ ∂D

and aperture β > 0 is the set

Sβ(η) = {z ∈ D : |z − η| < (1 + β)(1 − |z|)}.

Finally, (zn) is called uniformly separated if

|Bm(zm)| > c, ∀m ∈ N.

The well known Carleson’s theorem ([2]) asserts for a sequence (zn) that given

any (wn) ∈ l∞, there exists f ∈ H∞ such that f(zn) = wn, ∀n ∈ N, if and only if

(zn) is uniformly separated. If h ∈ H∞ and (zn) is the zero set of the function h,

then h = Bg, where B is the Blaschke product in D with zeros at (zn) and g is a

function in H∞ not vanishing on (zn). Now, if we differentiate B and ‘integrate’ g

to ‘compensate’, rather, take f ∈ Lip, then it is possible to pose a new interpolation

problem for a bounded sequence, that consists of finding an interpolating function

in the form B′f , instead of a function in H∞. More precisely,

Definition 1. (zn) is called a balanced interpolating sequence, if given any

(wn) ∈ l∞, there exists f ∈ Lip such that (B′f)(zn) = wn, ∀n ∈ N.

Our result is the following one:

Theorem 1. (zn) in a Stolz angle is a balanced interpolating sequence if and only

if it is uniformly separated.

In view of this theorem, the uniformly separated sequences continue being the

interpolating sequences for l∞, though we consider a weaker space of interpolating

functions.

2. Proof of the theorem

P r o o f. Let (zn) be a balanced interpolating sequence in a Stolz angle Sβ(η).

For m ∈ N fixed, let (wn) be defined by: wm = 1; wk = 0, if k 6= m. As (wn) ∈ l∞,

we take f ∈ Lip such that (B′f)(zn) = wn, ∀n ∈ N.

For a given f ∈ Lip vanishing on (zn) \ {zm}, it is proved in [4] that

|f(z)| 6 c|z − zk||Bm,k(z)|, ∀k ∈ N, k 6= m.
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Writing this inequality for z = zm and taking zk as the point of (zn) nearest to

zm in the Euclidean distance, say zm′ , we have

(1)
1

|B′(zm)|
6 c|zm − zm′ | |Bm,m′(zm)|, ∀m ∈ N.

It is straightforward to obtain

(2) |B′(zm)| =
|Bm(zm)|

1 − |zm|2
, ∀m ∈ N.

Using (2), the expression (1) becomes

|Bm(zm)|

1 − |zm|2
|zm − zm′ | |Bm,m′(zm)| > c, ∀m ∈ N.

Since 1 − |zm|2 > 1 − |zm| > c|zm − η| and |Bm,m′(zm)| < 1, then we have

|Bm(zm)| > c
|zm − η|

|zm − zm′ |
, ∀m ∈ N.

From this inequality, it follows immediately that |Bm(zm)| > c, ∀m ∈ N, that is,

(zn) is uniformly separated.

Now, let (zn) be uniformly separated in a Stolz angle and (wn) ∈ l∞. We take

h ∈ H∞ such that h(zn) = wn, ∀n ∈ N and see that h/B′ ∈ Lip(zn).

We will use that any g ∈ H∞ satisfies the following inequalities (see [1] for (5)):

|g(z) − g(w)| 6 cψ(z, w), ∀z, w ∈ D.(3)

|g′(z)| 6
c

1 − |z|2
, ∀z ∈ D.(4)

|g′(z)(1 − |z|2) − g′(w)(1 − |w|2)| 6 cψ(z, w), ∀z, w ∈ D.(5)

For zk, zm ∈ (zn), the triangle inequality gives

(6)
∣

∣

∣

h(zk)

B′(zk)
−

h(zm)

B′(zm)

∣

∣

∣
6

|h(zk) − h(zm)|

|B′(zm)|
+

|h(zk)| |B′(zm) −B′(zk)|

|B′(zk)| |B′(zm)|
.

Taking into account (2), for a uniformly separated sequence it holds

|B′(zi)| >
c

1 − |zi|2
, ∀i ∈ N,

and then, the sum in (6) is bounded by

(7) c|h(zk) − h(zm)|(1 − |zm|2) + c|h(zk)||B′(zm) −B′(zk)|(1 − |zk|
2)(1 − |zm|2).
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Using (3), the first summand in (7) is bounded by

cψ(zk, zm)(1 − |zm|2) 6 cψ(zk, zm)(1 − |zm|) 6 c|zk − zm|.

By the triangle inequality, the second summand in (7) is bounded by

c{|B′(zk)|(1 − |zk|
2)|(1 − |zk|

2) − (1 − |zm|2)|

+ |B′(zm)(1 − |zm|2) −B′(zk)(1 − |zk|
2)|(1 − |zk|

2)},

and using (4) and (5), by

c
{

| |zm| − |zk| | (|zm| + |zk|) + ψ(zk, zm)(1 − |zk|
2)

}

6 c|zk − zm|.

Thus h/B′ ∈ Lip(zn). For a sequence (zn) in a Stolz angle, it is proved in [3] that

given any Φ ∈ Lip(zn), there exists f ∈ Lip such that f(zn) = Φ(zn), ∀n ∈ N, if and

only if (zn) is the union of two uniformly separated sequences. Hence, there exists

f ∈ Lip, such that f(zn) = h(zn)/B′(zn), ∀n ∈ N, that is, (fB′)(zn) = wn, ∀n ∈ N,

and consequently, (zn) is a balanced interpolating sequence. �
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