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Abstract. Let X be a complex space of dimension n, not necessarily reduced, whose
cohomology groups H1(X,O), . . . , Hn−1(X,O) are of finite dimension (as complex vector
spaces). We show that X is Stein (resp., 1-convex) if, and only if, X is holomorphically
spreadable (resp., X is holomorphically spreadable at infinity).
This, on the one hand, generalizes a known characterization of Stein spaces due to Siu,

Laufer, and Simha and, on the other hand, it provides a new criterion for 1-convexity.
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1. Introduction

Let X = (X,OX) be a complex space, not necessarily reduced. A coherent sheaf

F on X is called Φ-acyclic if the cohomology groups Hj(X,F), j > 1, are of finite

dimension (as complex vector spaces). If OX is Φ-acyclic (resp., acyclic), then we call

X structurally Φ-acyclic (resp., structurally acyclic). For instance, every Stein space

is structurally acyclic; but there are such non Stein spaces like the mixed product

P
k × C

l.

Gunning ([9], p. 157) raised the question to characterize structurally acyclic com-

plex spaces. This belongs to the circle of ideas going back to Serre’s characterization

of Steinness of open sets in C
n precisely when they are structurally acyclic ([16]).

Our main results, which are listed below, partially answer the above question. We

prove:
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Theorem 1. Let X be a complex space of dimension n. Then X is Stein if, and

only if, the following two conditions hold:

(a) The cohomology groupsH1(X,O), . . . , Hn−1(X,OX) are of finite dimension (as

complex vector spaces).

(b) There is a holomorphic map with fibres Stein f : X −→ S from X into a

holomorphically spreadable complex space S.

Proposition 1. Let X be a complex space of dimension n such that the coho-

mology groups H1(X,O), . . . , Hn−1(X,O) are of finite dimension. Then X is Stein

if, and only if, X is holomorphically spreadable.

In particular, X is Stein if X can be realized as a branched Riemann domain over

another Stein space.

This proposition (see also the subsequent remark 1) improves several similar results

from [2], [12], [17] [18] (resp., [11]) where the case of Riemann domains over Cn or

Stein manifolds (resp., Stein spaces) is treated. It is perhaps important to point

out that all of the papers quoted above have used essentially the fact that X is a

non-branched Riemann domain.

Theorem 2. Let X be a complex space of dimension n such that the cohomology

groups Hj(X,O), j = 1, . . . , n − 1, are of finite dimension. Then X is 1-convex if,

and only if, X is holomorphically spreadable at infinity.

Remark 1. Here we mention some general results related to the hypotheses of our

theorems. Let Y be a complex space of dimension n. Let F be a coherent sheaf F on

Y . Then, for any integer k > 1, the complex dimension of Hk(Y,F) is either finite

or uncountable ([18]). Besides Hk(Y,F) vanishes if k > n, and Hn(Y,F) vanishes if

Y has no compact irreducible component of dimension n, and has finite dimension

if there are finitely many compact irreducible components of dimension n (see [19]).

Therefore in our hypotheses we could have relaxed the cohomology condition of

finiteness by asking that they are at most of countable dimension and only in the

range less than dimX .

Suppose now that Y is holomorphically spreadable. Alessandrini [1] showed the

following: Let q be an integer > 1 − profY F . If Hq+r(Y,F) = 0 for all r = 1, 2, . . .,

then Hq(Y,F) is either zero or has infinite dimension. (Note that in [1] this the-

orem was stated for Y holomorphically separable; but her proof adapts easily to

this more general case. However, there are examples of holomorphically spreadable

complex spaces for which global holomorphic functions do not separate points; see,

for instance, [10].)
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This implies that if Y is structurally Φ-acyclic and holomorphically spreadable,

then Y is, in fact, structurally acyclic.

2. Preliminaries

Let X = (X,OX) be a complex space, not necessarily reduced. A curve, surface,

etc., will be a complex space of the appropriate pure dimension.

We say that X is holomorphically spreadable at a point x0 ∈ X if there are finitely

many holomorphic functions f1, . . . , fk on X (k might depend on x0) such that the

analytic set {f1 = f1(x0), . . . , fk = f(x0)} contains x0 as an isolated point.

It can be readily seen that the set Σ of all points x ∈ X such that X is not

holomorphically spreadable at x is analytic.

Following the standard pattern, the space X is said to be holomorphically spread-

able (resp., holomorphically spreadable at infinity) if Σ is the empty set (resp., Σ is

compact).

Lemma 1 ([22]). If X is holomorphically spreadable at infinity, then Σ is excep-

tional1 in X .

Remark 2. If X is holomorphically spreadable and {Ai}i∈I is a locally finite

family of irreducible analytic sets of positive dimension, then there exists a global

holomorphic function f on X such that, for all i, f |Ai
is not the constant function.

(As a matter of fact, the set of all such functions f is dense in O(X) with respect to

the canonical topology; but we shall not need this fact.)

A complex spaceX is said to be a branched Riemann domain over another complex

space S if there is a holomorphic map π : X −→ S with fibres discrete. If π is locally

biholomorphic, then (X, π) is called a Riemann domain (or a spread) over S.

A deep theorem due to Grauert [6] states that any holomorphically spreadable

complex space X of dimension n can be realized as a branched Riemann domain

over Cn.

Examples. (i) Any non-singular Stein curve may be realized as a Riemann do-

main over C (see [7]).

(ii) The smooth Stein surface

X = {(x : y : z) ∈ P
2 ; x2 + y2 + z2 6= 0}

cannot be realized as a non-branched Riemann domain over C2 (see [5]).

1A compact analytic set A without isolated points in a complex space X is called ex-
ceptional if A admits a holomorphically convex open neighborhood in which A is the
maximally compact analytic set.
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Because we are dealing with not necessarily reduced structures, we shall need

the subsequent characterization of injectivity of multiplication by a holomorphic

function. First, let us recall the singular sets of a coherent sheaf F on a complex space

X . For a non-negative integer k, consider the set Sk(F) := {x ∈ X ; prof Fx 6 k}.

Then each Sk(F) is an analytic set in X of dimension 6 k (see [15]). In particular

S0(F) is discrete in X .

Proposition 2 ([21]). For a holomorphic function f on a complex space X the

following statements are equivalent:

• For each x ∈ X , the germ fx is not a zero-divisor in Fx.

• For each non-negative integer k, dim ({f = 0} ∩ Sk(F)) < k.

This proposition will be used in conjuction with Remark 2.

Recall also that the topology of the cohomology group H0(X,F) is defined by a

locally finite Stein covering {Ui} of X and presentations

Opi

Ui
−→ F|Ui

−→ 0.

From [4] we quote Lemma 2.3.2.

Lemma 2. Let X be a Stein space and K ⊂ X compact. Let Ω ⋐ X be a Runge

open set containing K. Put L := Ω. Let also F , G be coherent sheaves on X , and

µ : F −→ G a surjective OX -morphism.

Then there is a constant C > 0 such that, for any s ∈ H0(X,G) and any constant

τ > 0, there is a section s̃ ∈ H0(X,F) such that µ(s̃) = s and

‖s̃‖K 6 C‖s‖L + τ.

Lemma 3. Let X be a Stein space and D a Stein open set in X . Then the pair

(X, D) is Runge if it is so with respect to the reduced structure.

P r o o f. First we recall a fact about Fréchet spaces whose proof is left to the

reader (a standard exercise in functional analysis).

Let {(Ek, αk)}k be a projective system of Fréchet spaces such that each αk :

Ek+1 −→ Ek is continuous and surjective; let E be its projective limit endowed

with the projective limit topology. Then E is a Fréchet space.

Similarly, consider {(Fk, βk)}k and F . Suppose that there are continuous mappings

uk : Ek −→ Fk with dense images such that, for all k, βk ◦ uk+1 = uk ◦ αk. Let

u : E −→ F be the canonical induced map. Then u is continuous and has dense

image.
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Now, taking into account the known fact that a complex space is Stein if and only

if its reduction is Stein, and since X and D may be written as limits of increasing

sequences {Xν}, {Dν} of Stein open subsets such that, for all ν, the pair (Xν , Dν)

is Runge with respect to redOX , granting the above fact we may assume that there

exists a positive integer m such that Nm+1 = 0, where N is the ideal sheaf of

germs of nilpotent functions. Notice also that, for integers j = 1, 2, . . ., the sheaves

N j/N j+1 are coherent with respect to the reduced structure on X , and from the

exact sequences

0 −→ N j/N j+1 −→ O/N j+1 −→ O/N j −→ 0,

by decreasing reccurence (start with j = m) and some further standard facts on

Fréchet spaces, we obtain that the restriction maps

H0(X,O/N j) −→ H0(D,O/N j)

have dense image. Hence H0(X,OX) −→ H0(D,OX) has dense image in view of

the above discussion. �

Corollary 1. Let X be a holomorphically convex space and π : X −→ C
n a

holomorphic map. Let r > 0 and consider Ω to be a union of connected components

of the open set {‖π‖ < r}. Then, for any coherent sheaf F on X , the restriction

map H0(X,F) −→ H0(Ω,F) has dense image.

P r o o f. Here ‖π‖ = max(|π1|, . . . , |πn|), where π = (π1, . . . , πn). Then the

proof follows immediately from Lemma 3 using the Remmert reduction and Grauert’s

Coherence Theorem. �

Finally, we mention that X is said to be 1-convex if X is holomorphically convex

with a maximally compact analytic set.

Thanks to Narasimhan ([13]), 1-convexity of X is equivalent to each of the follow-

ing two statments:

(•) The space X is a “proper modification of a Stein space Y in a finite number of

points”, i.e. there exists a proper holomorphic map π : X −→ Y with π∗(OX) = OY

(in particular π is surjective and has connected fibers) and a finite set B ⊂ Y such

that π induces a biholomorphism between X \ π−1(B) and Y \ B.

(•) Every coherent sheaf F on X is Φ-acyclic.
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3. An auxiliary result

In this section we prove the following proposition that will be used in the proof

of Theorem 1. Note that, although it is close to results in [4], it requires a careful

analysis and for its proof we need the generalized Remmert reduction theorem due

to Wiegmann [23].

Proposition 3. Let X be a complex space which has a holomorphic function

f : X −→ C with fibers 1-convex. If H1(X,O) has finite dimension, then X is

holomorphically convex.

Remark 3. For X = C × P
1 and f : X −→ C induced by the first projection

one checks readily that H1(X,O) = 0 and f has fibres compact, a fortiori 1-convex.

Clearly X is holomorphically convex but it fails to be an increasing union of 1-

convex open subspaces. This shows that we cannot improve the conclusion of the

above proposition.

Before starting the proof of the proposition, we note the following. For a complex

space X = (X,OX) and a complex subalgebra B of H0(X,OX) we say that X is

B-convex if K̂B is compact whenever K ⊂ X is compact, where

K̂B :=
{
x ∈ X ; ∀ f ∈ B, |f(x)| 6 max

y∈K
|f(y)|

}
.

Standard holomorphic convexity is recovered as H0(X,OX)-convexity. It is per-

haps important to notice that if X is holomorphically convex and B has finite codi-

mension in H0(X,OX), then X is B-convex.

Also for K = {x1, . . . , xm}, it is straightforward to check that K̂B is analytic and

in fact it equals

K̂B =
⋂

f∈B

( m⋃

j=1

{f = f(xj)}

)
.

Theorem 3 ([23]). Let X be B-convex. Then there exists (up to isomorphism) a

unique Stein space (Y,OY ) and a holomorphic morphism

(p, p∗) : (X,OX) −→ (Y,OY )

such that p is proper, surjective, and the induced algebra homomorphism

σ : H0(Y,OY ) =: A −→ H0(X,OX)

is continuous and B ⊂ σ(A). Besides, if B is closed in H0(X,OX), then B = σ(A).
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P r o o f of Proposition, beginning. For this it will be convenient to use the

notation that if t ∈ C, Xt := {f = t} (regarded as an analytic set in X) and OXt
is

the analytic sheaf restriction of OX/(f − t) to Xt. Thus (Xt,OXt
) is the full fiber

f−1(t).

Let µt : OX −→ OX denote the morphism induced by the multiplication by f − t;

its kernel Kt becomes a coherent OXt
-module. Thus, At := Supp(Kt) is analytic and

contained in Xt. In fact

At = {x ∈ X ; (f − t)x is a zero divisor in OX,x}.

SinceXt is 1-convex andKt is OXt
-coherent, Kt is Φ-acyclic; in particularH

2(Xt,Kt)

has finite dimension. Now granting the short exact sequence

0 −→ Kt −→ OX −→ (f − t) −→ 0

and because H1(X,OX) has finite dimension by hypothesis, we deduce easily that

H1(X, (f−t)) has finite dimension, too. Furthermore, from the short exact sequence,

0 −→ (f − t) −→ OX −→ OX/(f − t) −→ 0

one gets that the image Bt of γt : H0(X,OX) −→ H0(Xt,OXt
) has finite codimen-

sion; hence Xt is Bt-convex.

Notice also that, if P is a non-constant holomorphic polynomial in one complex

variable, then P (f) has the same properties as f , that is its fibers are 1-convex.

Moreover, we can choose P such that P (f)H1(X,OX) = 0. So, from now on we

assume that f, besides the hypothesis of Proposition 3, annihilates H1(X,OX). �

Lemma 4. Let K be compact subset of X . Then there exists a finite set Λ in

C and a compact neighborhood L of K in X with the following property. For any

t ∈ C \ Λ there exists Ct > 0 such that: for any h ∈ H0(Xt,OXt
) and any τ > 0

there exists H ∈ H0(X,OX) that extends fh and such that

‖H‖K 6 τ + Ct‖fh‖L∩Xt
.

P r o o f (Sketch). This follows as in ([4], Lemma 2.5) or ([22], Lemma 6) with

some changes which we briefly mention.

First, asH1(X,OX) has finite dimension, corresponding to a locally finite covering

U = {Ui}i∈I of X by relatively compact Stein open sets, one gets finitely many 1-

cocycles {ξ
(r)
ij }ij ∈ Z1(U ,OX), r = 1, . . . , m, inducing a base of cohomology classes
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for the complex vector space H1(U ,OX). This induces a continuous surjective map

of Fréchet spaces

α : C0(U ,OX) ⊕ C
m −→ Z1(U ,OX),

given by

α({gi}i, λ) = δ({gi}i) +
∑

k

λkξ
(k)
ij ,

where δ is the usual coboundary map.

The second point to be taken care of is, because OX might have nilpotents, to

use the singular sets of OX since multiplying by f does not induces an injective

endomorphism of OX . The finite set Λ comes from this fact and is constructed as

follows. Let D be the union of those Uα with Uα ∩ K 6= ∅. Clearly D is relatively

compact in X . Now, for each integer m > 0 let {Amj}j∈Jm
be the irreducible

components of dimensionm of Sm(OX) which intersectsD on which redf is constant,

say tmj . The set Λ is the union of all tmj . �

P r o o f of the Proposition, concluded. Let K be a compact set in X . We show

that K̂ (computed with respect toH0(X,OX)) is compact. By Lemma 4 there exist a

finite set Λ in C containing 0 (otherwise we add 0 to Λ) and a compact neighborhood

L of K such that, for any t ∈ C \ Λ one has:

(4) K̂O(X) ∩ Xt ⊆ L̂t

Bt

, where Lt := L ∩ Xt.

Moreover, since K̂O(X) ∩ Xt is compact for all t ∈ C, enlarging L, if necessary, we

may suppose that (4) holds true for all complex numbers t.

Now we claim that, for any t0 ∈ C, there exist a compact set F in X and ε > 0

such that:

(5) L̂t

Bt

⊆ F, for all t ∈ C with |t − t0| 6 ε.

Clearly this claim concludes the proof.

In order to verify (5), there is no loss of generality if we take t0 ∈ Λ, say t0 = 0.

(For t0 6∈ Λ the argument is similar and somewhat easier so we omit the checking in

this case.)

Then, because X0 is B0-convex, L̂0

B0

is compact. By Theorem 3 there exist a

Stein space Y and a proper morphism of complex spaces

(p, p∗) : (X0,OX0
) −→ (Y,OY )

such that p is proper, surjective, and σ(H0(Y,OY )) = B0, where

σ : H0(Y,OY ) −→ H0(X0,OX0
)
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is induced by p∗. Since (Y,OY ) is Stein, there exists (see [8]) an almost-proper2

holomorphic map θ : Y −→ C
n, θ = (θ1, . . . , θn), where n = dim(Y ).

Let r > 0 be such that θ(p(K ∩ X0)) ⊂ ∆(r), where ∆(r) := {z ∈ C
n ; ‖z‖ < r}.

Since θ1 ◦ p, . . . , θn ◦ p belong to B0, there is a holomorphic map π : X −→ C
n such

that θ ◦ p = π|X0
. Pictorially we have a diagram:

X ⊃ X0

π|X0 $$I

I

I

I

I

I

I

I

I

p
// Y

θ

��

C
n

Further, from [8] (see p. 220) there are finitely many compact components of A′ :=

θ−1(∆(r)) meeting p(L0); let A′
0 be their union. By standard topological arguments

(see [14], pp. 111–112) there exists a relatively compact open neighborhood W of A′
0

in Y with A′ ∩ ∂W = ∅. Put V0 := p−1(W ). Then V0 is a relatively compact open

set in X0 containing A := θ−1(A′) and such that A ∩ ∂V0 = ∅. Since p is surjective,

we deduce that p(∂V0) ⊂ ∂W . Let V be a relatively compact open set in X such

that V ∩ X0 = V0 and A ∩ ∂V = ∅. Thus |π| > r on X0 ∩ ∂V and L0 ⊂ V . Take

ε > 0 such that |π| > r on Xt ∩ ∂V and Lt ⊂ V for |t| < ε. Thus, for such t, the

open set Ωt ⊂ Xt,

Ωt := {x ∈ Xt ∩ V ; ‖π‖ < r}

contains Lt and equals a union of connected components of the open set {x ∈ Xt ;

‖π‖ < r} ⊂ Xt. Note that Ωt ⊂ V for t as above. By Corollary 1, the restriction

map

H0(Xt,OXt
) −→ H0(Ωt,OXt

)

has dense image, hence L̂t

O(Xt)
⊂ Ωt. Finally, setting F := V ∪ L̂0

B0

concludes the

claim; hence the proof of the proposition. �

2A continuous map π : X −→ Y between locally compact topological spaces is said to be
almost-proper (see [8]) if every connected component of π−1(K) is compact whenever
K ⊂ Y is compact.
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4. Proofs of Theorems 1 and 2

Proof of Theorem 1. Let π : X −→ S be a holomorphic map with fibres Stein

such that S is holomorphically spreadable. The proof is divided into three steps.

Step 1. Here we recall a standard fact on Koszul’s complex. Let R be a com-

mutative ring with unit 1. Let a1, . . . , ak be elements of R. They give the Koszul

complex

0 −→ Λ0Rk α1−→ Λ1Rk α2−→ . . . −→ Λk−1Rk αk−→ ΛkRk −→ 0.

Note that Λ0Rk ≃ R and ΛkRk ≃ R. The above complex is given as follows:

Let e1, . . . , ek be the canonical basis of Rk as R-module, e1 = (1, 0, . . . , 0), etc.

Put ω = a1e1 + . . . + akek. Then a basis of ΛjRk consists of the wedge products

ei1 ∧ . . . ∧ eij
where 1 6 i1 < . . . < eij

6 k and αj+1(η) = ω ∧ η.

We claim that Kerαj/Im αj−1 is an R/(a1, . . . , ak)-module.

Indeed, we put α0 = 0. It suffices to show that if ξ ∈ Kerαj , then a1ξ ∈ Im αj−1.

Write ξ = ξ′ + e1 ∧ ξ′′, where ξ′ ∈ ΛjRk and ξ′′ ∈ Λj−1Rk does not contain e1. The

condition αj(ξ) = 0 means that ω ∧ ξ = 0, or (a1e1 + . . . + akek)∧ (ξ′ + e1 ∧ ξ′′) = 0,

which gives a1ξ
′ = (a2e2 + . . . + akek) ∧ ξ′′. Therefore a1ξ = ω ∧ ξ′′ as desired.

Step 2. Here we show that X is holomorphically spreadable.

Observe that, for each s0 ∈ S, there is a holomorphic map g : S −→ C
k such that

g−1(g(s0)) is discrete in S. This follows readily from the definition and standard

arguments. Clearly we may assume that g(s0) = 0. Let f := g ◦ π. Thus f−1(0)

is Stein; we regard this as a complex space (Z,OZ). In fact, Z := {f = 0} and

OZ := (OX/I)|Z , where I is the ideal subsheaf of OX generated by f1, . . . , fk.

Now, to conclude this step it suffices to show that, for any point a ∈ Z, there

exist holomorphic functions h1, . . . , hr on X such that a is isolated in the fibre of

(h1|Z , . . . , hr|Z) over h(a).

To verify this we consider the associated Koszul complex of sheaves induced by

f1, . . . , fk:

0 −→ Λ0Ok
X

α1−→ Λ1Ok
X

α2−→ . . . −→ Λk−1Ok
X

αk−→ ΛkOk
X −→ 0.

In a canonical way, we view αk as the morphism from Ok
X into OX induced by

f1, . . . , fk, that is αk(g1, . . . , gk) = f1g1 + . . . + fkgk. Hence Im αk can be identified

with the ideal subsheaf of OX generated by f1, . . . , fk.

The above Koszul complex can be splitted into short exact sequences,

0 −→ Kerαν −→ Λν−1Ok
X −→ Im αν −→ 0
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and

0 −→ Im αν−1 −→ Kerαν −→ Ker αν/Im αν−1 −→ 0

for ν = 1, 2, . . . , k (with the convention that α0 = 0).

Now from step 1 and since Kerα1 and Kerαν/Im αν−1 are OZ-coherent sheaves

the Cartan’s vanishing theorem for Stein spaces, we deduce readily in a standard way

that Im αν is Φ-acyclic for all ν. In particular H1(X, Imαk) has finite dimension.

Hence the image B of the restriction map H0(X,OX) −→ H0(Z,OZ) has finite

codimension in H0(Z,OZ). Since Z is Stein, a fortiori holomorphically convex, the

space Z results B-convex. Therefore the holomorphically convex hull of any point

of Z computed with respect to B is a compact analytic set, hence it is a finite set;

whence step 2.

Step 3. Here we conclude the proof of Theorem 1 by induction over the dimension

n of X .

First note that granting Remark 2 and Proposition 2, there exists a discrete set T

in X and a holomorphic function h on X such that the germ (h − λ)x is not a zero

divisor in OX,x, for every x ∈ X \ T and λ ∈ C.

Now fix t ∈ C and let Y = (Y,OY ) be the complex space given by Y = {h = t} (as

analytic set) and structural sheaf OY := (OX/(h − t))|Y . Note that dim(Y ) < n.

Let µ : OX −→ OX be given by multiplication with h− t. Then Kerµ has discrete

support (contained in T ). It follows that (h − t), the ideal sheaf generated by h − t

in OX , is Φ-acyclic.

On the one hand, from this, remark 1 and the short exact sequence

0 −→ (h − t) −→ OX −→ OX/(h − t) −→ 0

we get immediately that Y is structurally Φ-acyclic. On the other hand π induces a

holomorphic map from Y into S with fibers Stein; the inductive step follows applying

Proposition 3, whence the proof of the theorem. �

Proof of Theorem 2. Since ΣX is exceptional in X , there is a complex space

(Y,OY ) and a proper holomorphic map π : X −→ Y with π⋆(OX) ≃ OY , A :=

π(ΣX) is a finite set of points in Y , and π induces a biholomorphism between X \ΣX

and Y \ A. Clerly this implies that Y is holomorphically spreadable.

We claim that the cohomology groups Hj(Y,OY ), j = 1, . . . , n − 1, are of finite

dimension. To see this, let V be a Stein open neighborhood of A in Y (which exists

since A is a finite set). Put U = π−1(V ). Since U ′ := X \ ΣX is biholomorphic

to V ′ := Y \ A via π, the Mayer-Vietoris sequence applied to Y = V ′ ∪ V and

X = U ′ ∪ U gives a commutative diagram with exact rows (coefficients in OY and
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OX , respectively) from which we infer readily by the “Five lemma” that the canonical

map Hj(Y,OY ) −→ Hj(X,OX) is injective for j = 1 and bijective for j > 1, whence

the the above claim. Thus Y is Stein by Theorem 1, whence Theorem 2. �
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