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GLOBAL AND NON-GLOBAL EXISTENCE OF SOLUTIONS TO A

NONLOCAL AND DEGENERATE QUASILINEAR PARABOLIC SYSTEM

Yujuan Chen, Nantong

(Received February 2, 2009)

Abstract. The paper deals with positive solutions of a nonlocal and degenerate quasilinear
parabolic system not in divergence form

ut = v
p
(

∆u+ a

∫

Ω

u dx

)

, vt = u
q
(

∆v + b

∫

Ω

v dx

)

with null Dirichlet boundary conditions. By using the standard approximation method, we
first give a series of fine a priori estimates for the solution of the corresponding approximate
problem. Then using the diagonal method, we get the local existence and the bounds of the
solution (u, v) to this problem. Moreover, a necessary and sufficient condition for the non-
global existence of the solution is obtained. Under some further conditions on the initial
data, we get criteria for the finite time blow-up of the solution.

Keywords: strongly coupled, degenerate parabolic system, nonlocal source, global exis-
tence, blow-up

MSC 2010 : 35K05, 35D55, 45K05

1. Introduction

In this paper we consider the positive solution of the following non-local and

degenerate problem not in divergence form:

(1.1)























ut = vp
(

∆u+ a
∫

Ω
u dx

)

, x ∈ Ω, t > 0,

vt = uq
(

∆v + b
∫

Ω v dx
)

, x ∈ Ω, t > 0,

u(x, t) = v(x, t) = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

This work was supported by PRC Grant NSFC (10671210), the foundation of Jiangsu
Education Commission (07KJD110166) and the postdoctoral project of Jiangsu prov-
ince (0702004C).
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where Ω is a bounded domain in R
N with smooth boundary ∂Ω, the parameters a,

b, p, q are positive constants and p, q > 1. The initial data u0(x) and v0(x) satisfy

(H1) u0(x), v0(x) ∈ C1(Ω), u0(x), v0(x) > 0 in Ω;

(H2) u0(x) = v0(x) = 0, ∂u0/∂ν < 0, ∂v0/∂ν < 0 on ∂Ω, where ν is the outward

normal vector on ∂Ω.

Such a problem can describe a variety of physical phenomena which arise, for

example, in the study of the flow of a fluid through a homogeneous isotropic rigid

porous medium or in the studies of population dynamics (see [1], [3], [5], [6], [7] and

references therein).

As for local problems, a lot of effort has been devoted in the past few years to the

study of the type

ut = f(u)(∆u+ au)

(see [2], [8], [9], [10], [13], [16], [17], [18]). The corresponding system

{

ut = f1(u)(∆u+ av), x ∈ Ω, t > 0,

vt = f2(v)(∆v + bu), x ∈ Ω, t > 0,

with the same initial and boundary conditions as the problem (1.1), has also been

investigated ([5], [14]). It is worth pointing out that in [15], Wang et al. investigated

the system

(1.2)

{

ut = vp(∆u+ au), x ∈ Ω, t > 0,

vt = uq(∆v + bv), x ∈ Ω, t > 0,

with null Dirichlet boundary conditions and positive initial conditions, where

p, q > 1. It was proved that when min{a, b} 6 λ1 then there exists a global positive

classical solution and no positive classical solution can blow up in finite time, whereas

when min{a, b} > λ1, there is no global positive classical solution if in addition the

initial data satisfy some further conditions, then the positive classical solution is

unique and blows up in finite time, where λ1 is the first eigenvalue of −∆ in Ω with

homogeneous Dirichlet boundary condition.

Furthermore, for nonlocal problems, the global existence and the blowing-up be-

havior of the solution have been investigated by many researchers too, but the situ-

ation becomes more complicated. In [6], Duan et al. established the local existence

of a solution and the finite-time blowup result for the system











ut = up

(

∆u+ a

∫

Ω

vr dx

)

, x ∈ Ω, t > 0,

vt = vq

(

∆v + b

∫

Ω

us dx

)

, x ∈ Ω, t > 0,
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where r, s > 1 and 0 < p, q < 1. The scalar case of (1.1), i.e.

ut = up

(

∆u+ a

∫

Ω

u dx

)

,

with the homogeneous Dirichlet boundary condition and positive initial data, has

been studied in [3], [4], where p > 0. It was proved that the solution blows up in

finite time if and only if µ > 1/a, where µ is defined in (1.4) below.

Motivated by the above papers, in this paper we consider the global existence and

finite blow-up of solutions to the problem (1.1). Necessary and sufficient conditions

will be given, see Theorem 1. Note that the problem (1.1) is not only degenerate and

strongly coupled but also not in the divergence form, hence the standard comparison

principle and upper and lower solutions method do not hold. In general, we do

not know how to extend the local classical solution in time t so that it becomes a

maximum defined classical solution since the uniqueness does not hold. We can only

prove the uniqueness of a positive classical solution to (1.1) by adding some further

conditions on the initial values.

Throughout this paper we say that (u, v) is a classical solution of the problem (1.1)

if (u, v) ∈ [C2,1(Ω × (0, T )) ∩ C(Ω × [0, T ))]2 for some T : 0 < T < ∞, and (u, v)

satisfies the differential equations in Ω × (0, T ) and the initial and boundary con-

ditions continuously. We say that a positive classical solution (u, v) of (1.1) blows

up in finite time if there exists T : 0 < T < ∞ such that (u, v) exists in (0, T ) and

lim
tրT

max
Ω

{u(·, t)+ v(·, t)} = ∞. We say that the problem (1.1) has no global positive

classical solution if there exist 0 < T2 6 T1 <∞ and two pairs of functions

(ui, vi) ∈ [C
2+β,1+β/2
loc (Ω × (0, Ti)) ∩ C(Ω × (0, Ti))]

2

satisfying lim
tրTi

max
Ω

{ui(·, t) + vi(·, t)} = ∞, such that any positive classical solution

(u, v) of (1.1) fulfils

u1(x, t) 6 u(x, t) 6 u2(x, t), v1(x, t) 6 v(x, t) 6 v2(x, t) in Ω × (0, T2)

provided that (u, v) exists in (0, T2). When the problem (1.1) has no global positive

classical solution, we cannot say that the positive classical solution must blow up in

finite time since, in general, it cannot be extend in time t.

The main purpose of this paper is to get criteria for the finite time blow-up of a

solution to the problem (1.1). SetQT = Ω×(0, T ), ST = ∂Ω×(0, T )with 0 < T <∞.

We denote by ϕ(x) the unique positive solution of the linear elliptic problem

(1.3) −∆ϕ(x) = 1, x ∈ Ω; ϕ(x) = 0, x ∈ ∂Ω.
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Let

(1.4) µ =

∫

Ω

ϕ(x) dx.

The following theorem is the main result of this paper.

Theorem 1. The solution (u, v) of (1.1) does not exist globally if and only if

(1.5) min{a, b} >
1

µ
.

The paper is organized as follows. In Section 2 we study the local existence of

a positive classical solution. Section 3 is devoted to the global existence result. In

Section 4 we study the finite time blow-up problem.

2. Comparison principle and local existence of solution

First, we state a comparison principle, of which the proof is standard.

Lemma 1. Suppose that w, z ∈ C2,1(QT ) ∩ C(QT ) and satisfy



































wt − d1∆w > c11w + c12z +

∫

Ω

c13(x, t)w(x, t) dx, (x, t) ∈ QT ,

zt − d2∆z > c21w + c22z +

∫

Ω

c23(x, t)z(x, t) dx, (x, t) ∈ QT ,

w(x, t) > 0, z(x, t) > 0, (x, t) ∈ ST ,

w(x, 0) > 0, z(x, 0) > 0, x ∈ Ω,

where cij = cij(x, t) and di = di(x, t) are continuous functions in QT and cij(x, t) > 0

(i 6= j), di(x, t) > 0 in QT , i = 1, 2, j = 1, 2, 3. Then w(x, t) > 0, z(x, t) > 0 on QT .

Since u = v = 0 on the boundary ∂Ω, the equation in (1.1) is not of strictly

parabolic type. The standard parabolic theory ([11], [12]), cannot be used directly

to prove the local existence of a solution to the problem (1.1). To overcome this

difficulty we will use the standard approximate method (see [15]). For ε > 0, consider

the approximate problem

(2.1)



































uεt = f
(1)
ε (vε)

(

∆uε + a

∫

Ω

uε dx− aε|Ω|

)

, x ∈ Ω, t > 0,

vεt = g
(1)
ε (uε)

(

∆vε + b

∫

Ω

vε dx− bε|Ω|

)

, x ∈ Ω, t > 0,

uε(x, t) = vε(x, t) = ε, x ∈ ∂Ω, t > 0,

uε(x, 0) = u0(x) + ε, vε(x, 0) = v0(x) + ε, x ∈ Ω,
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where |Ω| is the volume of Ω, f
(1)
ε and g

(1)
ε are smooth functions, f

(1)
ε > (ε/2)p and

g
(1)
ε > (ε/2)q and they satisfy

f (1)
ε (v) =

{

vp, v > ε,

(ε/2)p, v < ε/2,
g(1)

ε (u) =

{

uq, u > ε,

(ε/2)q, u < ε/2.

The standard parabolic theory shows that (2.1) admits a unique maximal defined

classical solution (uε, vε) which is defined on [0, T (ε)), where 0 < T (ε) 6 ∞. Apply-

ing Lemma 1 it is easy to prove that uε > ε, vε > ε, which gives f
(1)
ε (vε) = vp

ε and

g
(1)
ε (uε) = uq

ε. Hence (uε, vε) solves the problem

(2.2)



































uεt = vp
ε

(

∆uε + a

∫

Ω

uε dx− aε|Ω|

)

, x ∈ Ω, 0 < t < T (ε),

vεt = uq
ε

(

∆vε + b

∫

Ω

vε dx− bε|Ω|

)

, x ∈ Ω, 0 < t < T (ε),

uε(x, t) = vε(x, t) = ε, x ∈ ∂Ω, t > 0,

uε(x, 0) = u0(x) + ε, vε(x, 0) = v0(x) + ε, x ∈ Ω.

To discuss the convergence of (uε, vε), we should give some estimates of their lower

and upper bounds. Set M = max{max
Ω

u0(x),max
Ω

v0(x)} and let (f(t), g(t)) be the

unique solution of the ODE

(2.3)

{

f ′ = a|Ω|fgp, g′ = b|Ω|gf q, t > 0,

f(0) = g(0) = M + 1.

Then f(t), g(t) > M + 1. Denote by T ∗, 0 < T ∗ < ∞, its maximal existence time

(note that T ∗ <∞ must hold because f(t), g(t) blow up in finite time).

Applying Lemma 1, it is easy to prove the following lemma (cf. Lemma 1 in [15]).

Lemma 2. Let ε < 1, and let (uε, vε) be the solution of (2.2). Then for any fixed

T : 0 < T < min{T (ε), T ∗} we have

uε(x, t) 6 f(t), vε(x, t) 6 g(t), ∀ (x, t) ∈ Ω × [0, T ],

which implies that T (ε) > T ∗ for all ε < 1.

In the following we denote T∗ = T ∗/2. Now we give lower bounds for (uε, vε). Let

λ1 and ψ(x) > 0 (x ∈ Ω) be the first eigenvalue and the corresponding eigenfunction

of the eigenvalue problem

−∆ψ = λψ, x ∈ Ω; ψ = 0, x ∈ ∂Ω,
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and assume that max
Ω

ψ(x) = 1. Then λ1 > 0 and ∂ψ/∂ν < 0 on ∂Ω. By the

assumptions on (u0, v0) we see that there exists a positive constant k such that

(2.4) u0(x) > kψ(x), v0(x) > kψ(x), x ∈ Ω.

Lemma 3. Let ε < 1 and let (uε, vε) be the solution of (2.2). Then we have

uε(x, t), vε(x, t) > ke−̺tψ(x) + ε, ∀ (x, t) ∈ Ω × [0, T∗],

where ̺ = max{λ1f
q(T∗), λ1g

p(T∗)}.

P r o o f. Set w(x, t) = uε(x, t)−(ke−̺tψ(x)+ε), z(x, t) = vε(x, t)−(ke−̺tψ(x)+

ε). Since uε(x, t) 6 f(t) 6 f(T∗), vε(x, t) 6 g(t) 6 g(T∗) for all (x, t) ∈ Ω × [0, T∗],

it follows that

wt = vp
ε

(

∆uε + a

∫

Ω

uε dx− aε|Ω|

)

+ k̺e−̺tψ

= vp
ε

(

∆w + a

∫

Ω

w dx

)

+ vp
ε

(

ake−̺t

∫

Ω

ψ dx− kλ1e
−̺tψ

)

+ k̺e−̺tψ

> vp
ε

(

∆w + a

∫

Ω

w dx

)

+ ke−̺tψ(̺− λ1v
p
ε )

> vp
ε

(

∆w + a

∫

Ω

w dx

)

, (x, t) ∈ Ω × (0, T∗],

zt > uq
ε

(

∆z + b

∫

Ω

z dx

)

, (x, t) ∈ Ω × (0, T∗],

w(x, 0) > 0, z(x, 0) > 0, x ∈ Ω,

w(x, t) = 0, z(x, t) = 0, (x, t) ∈ ∂Ω × (0, T∗].

In view of Lemma 1 we have that w, z > 0. The proof is completed. �

In view of Lemma 2 and Lemma 3, applying the standard local Schauder estimates

(Theorem 7.1 of Chap. 7 of [11]) and the diagonal method we obtain that there exist

a subsequence {ε′} of {ε} and u, v ∈ C
2+α,1+α/2
loc (Ω × (0, T∗]) such that

(uε′ , vε′) −→ (u, v) in [C2+α,1+α/2(Ω∗ × [τ, T∗])]
2 as ε′ → 0+

for any Ω∗ ⊂⊂ Ω and 0 < τ < T∗. Hence (u, v) satisfies the differential equations of

the problem (1.1).

Fix ε0 : 0 < ε0 ≪ 1. For any Ω0 ⊂⊂ Ω and 0 < ε′ < ε0, thanks to Lemma 2 and

uε′(x, t) 6 f(t), vε′ (x, t) 6 g(t) on Ω0 × [0, T∗],
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the Lp theory and the imbedding theorem show that the Cα,α/2(Ω0 × [0, T∗]) norms

of uε′ and vε′ are uniformly bounded for all ε′ < ε0. And hence

(uε′ , vε′) −→ (u, v) in [Cβ,β/2(Ω0 × [0, T∗])]
2 (0 < β < α) as ε′ → 0+,

which implies that u, v ∈ C(Ω × [0, T∗]). Similarly to the arguments of [9], [15] we

can prove that (u, v) is continuous on ∂Ω × (0, T∗]. Using the initial and boundary

conditions of (2.2) we see that (u, v) satisfies the initial and boundary conditions

of (1.1), i.e.

(u, v) ∈ [C
2+β,1+β/2
loc (Ω × (0, T∗]) ∩ C(Ω × [0, T∗])]

2

is a classical solution of (1.1). Thus we have

Theorem 2. The problem (1.1) has a positive classical solution (u, v) ∈

[C
2+β,1+β/2
loc (Ω × (0, T∗]) ∩C(Ω × [0, T∗])]

2 for some β : 0 < β < 1.

However, we cannot get the uniqueness result in the general case.

3. Global existence results

In the next two sections we always assume that a > b. In this section we will prove

the global existence of a positive classical solution. Applying (H1) and (H2) we see

that there exists a large positive constant K such that

(3.1) u0(x) 6 Kϕ(x), v0(x) 6 Kϕ(x), x ∈ Ω,

where ϕ(x) is defined in (1.3).

Theorem 3. If b 6 1/µ, then the problem (1.1) has at least one global positive

classical solution (u, v). Moreover, all positive classical solutions must satisfy the

following estimates.

(i) If a 6 1/µ then

u(x, t), v(x, t) 6 Kϕ(x) on Ω × [0,∞);

(ii) if b 6 1/µ < a then

u(x, t) 6 Kϕ(x), v(x, t) 6 KMe̺t on Ω × [0,∞),

where the positive constant K satisfies (3.1), and ̺ = b|Ω|(KM)q, M = max
Ω

ϕ(x).
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P r o o f. For any given ε : 0 < ε < 1, let (uε, vε) be the unique positive classical

solution of (2.2) which is defined on Ω× [0, T (ε)) with T (ε) 6 ∞, and let the positive

constant K satisfy (3.1).

Step 1 : Upper bounds of (uε, vε).

(i) If a 6 1/µ, let w(x, t) = Kϕ(x) + ε − uε(x, t), z(x, t) = Kϕ(x) + ε− vε(x, t).

Similarly to the proof of Lemma 3 we can prove that w(x, t), z(x, t) > 0 on Ω ×

[0, T (ε)).

(ii) If b 6 1/µ < a, similarly to the proof of Lemma 3 we obtain that uε(x, t) 6

Kϕ(x) + ε on Ω × [0, T (ε)). Let z = KMe̺t + ε− vε, ̺ = b|Ω|(KM + ε)q. In view

of uε(x, t) 6 Kϕ(x) + ε 6 KM + ε we have that

zt = KM̺e̺t − vεt = uq
ε

(

∆z + b

∫

Ω

z dx

)

+KMe̺t(̺− b|Ω|uq
ε)

> uq
ε

(

∆z + b

∫

Ω

z dx

)

, (x, t) ∈ Ω × (0, T (ε)),

z(x, t) = KMe̺t > 0, (x, t) ∈ ∂Ω × (0, T (ε)),

z(x, 0) = KM − v0(x) > 0, x ∈ Ω.

By Lemma 1 we get that vε(x, t) 6 KMe̺t + ε on Ω × [0, T (ε)).

Step 2 : Lower bounds of (uε, vε).

We can prove

uε(x, t), vε(x, t) > kψ(x)e−rt + ε, ∀ (x, t) ∈ Ω × [0, T (ε)),

where r = max{λ1(KM + ε)q, λ1(KM + ε)p} if a 6 1/µ, and r = max{λ1(KM +

ε)q, λ1(KMe̺t + ε)p} if b 6 1/µ < a.

In fact, if a 6 1/µ, by Step 1 (i) we have uε, vε 6 Kϕ(x) + ε on Ω× [0, T (ε)). Set

w(x, t) = uε(x, t) − (ke−rtψ(x) + ε), z(x, t) = vε(x, t) − (ke−rtψ(x) + ε); it follows

that

wt = vp
ε

(

∆uε + a

∫

Ω

uε dx− aε|Ω|

)

+ kre−rtψ

= vp
ε

(

∆w + a

∫

Ω

w dx

)

+ vp
ε

(

ake−rt

∫

Ω

ψ dx− kλ1e
−rtψ

)

+ kre−rtψ

> vp
ε

(

∆w + a

∫

Ω

w dx

)

, (x, t) ∈ Ω × (0, T (ε)),

zt > uq
ε

(

∆z + b

∫

Ω

z dx

)

, (x, t) ∈ Ω × (0, T (ε)),

w(x, 0) > 0, z(x, 0) > 0, x ∈ Ω,

w(x, t) = 0, z(x, t) = 0, (x, t) ∈ ∂Ω × (0, T (ε)).

682



In view of Lemma 1 we have that w, z > 0. The proof of the case b 6 1/µ < a is

similar.

Step 3 : The upper bounds of (uε, vε) obtained by Step 1 show that (uε, vε) exists

globally, i.e. T (ε) = ∞ for all 0 < ε < 1. For any Ωn ⊂⊂ Ω and 0 < τ < Tn <∞, it

follows from the results of Steps 1 and 2 that there exist positive constants σ(n, τ)

and M(n, τ) such that

σ(n, τ) 6 uε, vε 6 M(n, τ) on Ωn × [τ, Tn]

for all 0 < ε < 1. Applying the standard local Schauder estimates ([11]) and the

diagonal method we conclude that there exist a subsequence {ε′} of {ε} and u, v ∈

C
2+α,1+α/2
loc (Ω × (0,∞)) such that

(uε′ , vε′) −→ (u, v) in [C2+α,1+α/2(Ω∗ × [τ, T0])]
2 as ε′ → 0+

for any Ω∗ ⊂⊂ Ω and 0 < τ < T0 < ∞. And hence (u, v) satisfies the differential

equations of (1.1) in Ω × (0,∞).

Similarly to the arguments of Section 2 we see that

(u, v) ∈ [C
2+α,1+α/2
loc (Ω × (0,∞)) ∩ C(Ω × [0,∞))]2

is a classical solution of (1.1).

Estimates (i) and (ii) can be proved in a way similar to that of Step 1. The proof

is completed. �

4. Blow-up results

Theorem 4. Assume that b > 1/µ. Then the problem (1.1) has no global

positive classical solution. If in addition the initial data satisfy (u0, v0) ∈ [C2(Ω)]2

and ∆u0 + a
∫

Ω
u0dx > 0, ∆v0 + b

∫

Ω
v0 dx > 0 in Ω, then the positive classical

solution of (1.1) is unique and blows up in finite time.

We divide the proof of Theorem 4 into two lemmas: Lemma 4 and Lemma 6.

Lemma 4. Assume that b > 1/µ and the initial data satisfy (u0, v0) ∈ [C2(Ω)]2.

If ∆u0 +a
∫

Ω u0 dx > 0, ∆v0 +b
∫

Ω v0 dx > 0 in Ω, then the positive classical solution

of (1.1) is unique and blows up in finite time.

To prove Lemma 4, we need the following lemma. A similar proof can be found

in [3].

683



Lemma 5. Let p > 0, and let u be the unique positive (local) solution of the

problem

(4.1)















ut = Aup

(

∆u +B

∫

Ω

u dx

)

, x ∈ Ω, t > 0,

u(x, t) = C, x ∈ ∂Ω, t > 0,

u(x, 0) = C, x ∈ Ω,

where A and C are positive constants. Then u blows up in finite time if B > 1/µ.

P r o o f of Lemma 4. Step 1 : Monotonicity of (u, v) in t.

Let ε ∈ (0, 1) and let (uε, vε) be the solution of (2.1). Then

(uε, vε) ∈ [C(Ω × [0, T (ε))) ∩ C
2+α,1+α/2
loc (Ω × (0, T (ε)))]2

(see Theorem 7.1 of Chap. 7 of [11]). Therefore, (uε, vε) satisfies (2.2). Let w = uεt,

z = vεt. Then we have, in the “weak” sense,

(4.2)
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
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

















































wt = pvp−1
ε z

(

∆uε + a

∫

Ω

uε dx− a|Ω|ε

)

+ vp
ε

(

∆w + a

∫

Ω

w dx

)

= vp
ε

(

∆w + a

∫

Ω

w dx

)

+ (p/vε)zv
p
ε

(

∆uε + a

∫

Ω

uε dx− a|Ω|ε

)

= vp
ε

(

∆w + a

∫

Ω

w dx

)

+ (pz/vε)w, x ∈ Ω, 0 < t < T (ε),

zt = uq
ε

(

∆z + b

∫

Ω

z dx

)

+ (qw/uε)z, x ∈ Ω, 0 < t < T (ε),

w(x, 0) = (v0(x) + ε)p

(

∆u0(x) + a

∫

Ω

u0(x) dx

)

> 0, x ∈ Ω,

z(x, 0) = (u0(x) + ε)q

(

∆v0(x) + b

∫

Ω

v0(x) dx

)

> 0, x ∈ Ω,

w(x, t) = z(x, t) = 0, x ∈ ∂Ω, 0 < t < T (ε).

In view of uε > ε, vε > ε and w, z ∈ C(Ω×[0, T (ε))), the Lp-theory and the Schauder

Theory imply that (w, z) is a classical solution of (4.2), i.e. w, z ∈ C(Ω× [0, T (ε)))∩

C2,1(Ω × (0, T (ε))). Lemma 1 shows that w > 0, z > 0, i.e. uεt > 0, vεt > 0. Since

(uε, vε) −→ (u, v) in [C
2+α,1+α/2
loc (Ω × (0, T ))]2 as ε −→ 0+,

we know that ut > 0, vt > 0 and hence u > u0(x), v > v0(x) in Ω × (0, T ).

Step 2 : The uniqueness.

Let (u, v) be the solution of (1.1) obtained by Theorem 2, then ut > 0, vt > 0 by

Step 1, which implies ∆u + a
∫

Ω
u dx > 0, ∆v + b

∫

Ω
v dx > 0. Let (ũ, ṽ), which is
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defined on Ω × [0, T̃ ), be another positive classical solution of (1.1) with the same

initial data (u0, v0). Set ξ = ũ − u, η = ṽ − v, then for any 0 < T0 < min{T, T̃} we

have

ξt = ũt − ut = ṽp

(

∆ũ+ a

∫

Ω

ũ dx

)

− vp

(

∆u+ a

∫

Ω

u dx

)

= ṽp

(

∆ξ + a

∫

Ω

ξ dx

)

+ (ṽp − vp)

(

∆u+ a

∫

Ω

u dx

)

= ṽp

(

∆ξ + a

∫

Ω

ξ dx

)

+

(

p

∫ 1

0

[v + s(ṽ − v)]p−1 ds

[

∆u + a

∫

Ω

u dx

])

η, (x, t) ∈ Ω × (0, T0),

ηt = ṽt − vt = ũq

(

∆η + b

∫

Ω

η dx

)

+

(

q

∫ 1

0

[u+ s(ũ − u)]q−1 ds

[

∆v + b

∫

Ω

v dx

])

ξ, (x, t) ∈ Ω × (0, T0),

ξ = η = 0, (x, t) ∈ ∂Ω × (0, T0) ∪ Ω × {0}.

Since ∆u + a
∫

Ω
u dx > 0, ∆v + b

∫

Ω
v dx > 0, Lemma 1 implies that ξ > 0, η > 0,

i.e. ũ > u, ṽ > v. Similarly, we have ũ 6 u, ṽ 6 v. Hence, ũ = u, ṽ = v. The

uniqueness is proved.

Step 3 : (u, v) blows up in finite time.

For any smooth subdomain Ω∗ ⊂⊂ Ω, denote by ϕ1(x) the unique positive solution

of the linear elliptic problem

(4.3) −∆ϕ1(x) = 1, x ∈ Ω∗; ϕ1(x) = 0, x ∈ ∂Ω∗.

Since b > 1/µ, by the continuity of the solution of (4.3) on the domain Ω∗ we can

choose Ω∗ such that b > 1/µ1, where µ1 =
∫

Ω∗

ϕ1(x) dx. Applying u > u0 > 0,

v > v0 > 0 in Ω we know that

u(x, t), v(x, t) > σ on Ω∗ × (0, T )

for some positive constant σ. It follows that

(4.4)
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
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







ut = vp

(

∆u+ a

∫

Ω

u dx

)

> σp−αvα

(

∆u+ a

∫

Ω

u dx

)

on Ω∗ × (0, T ),

vt = uq

(

∆v + b

∫

Ω

v dx

)

> σq−αuα

(

∆v + b

∫

Ω

v dx

)

on Ω∗ × (0, T ),

u(x, 0) = u0(x) > σ, v(x, 0) = v0(x) > σ in Ω∗,

u(x, t) > σ, v(x, t) > σ on ∂Ω∗ × (0, T ).
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Choose

α : 0 < α < 1, c : b > c > 1/µ1, l = min{σp−α, σq−α},

and let w be the unique positive solution of the problem

(4.5)















wt = lwα

(

∆w + c

∫

Ω

w dx

)

, x ∈ Ω∗, t > 0,

w(x, 0) = w0(x) = σ, x ∈ Ω∗,

w(x, t) = σ, x ∈ ∂Ω∗, t > 0.

Applying c > 1/µ1, we know that w blows up in finite time T
∗ (see Lemma 5). Since

the initial data w0 satisfies ∆w0 + c
∫

Ω
w0 dx = cσ|Ω| > 0, it follows that wt > 0,

i.e. ∆w + c
∫

Ωw dx > 0.

On the contrary, let us assume that (u, v) exists globally, i.e. T = ∞. Let

û = u− w, v̂ = v − w.

Then we have, by (4.4), (4.5), and c < b 6 a,

ût = ut − wt > σp−αvα

(

∆u+ a

∫

Ω

u dx

)

− lwα

(

∆w + c

∫

Ω

w dx

)

> lvα

(

∆u+ a

∫

Ω

u dx

)

− lwα

(

∆w + a

∫

Ω

w dx

)

= lvα

(

∆û+ a

∫

Ω

û dx

)

+ l(vα − wα)

(

∆w + a

∫

Ω

w dx

)

= lvα

(

∆û+ a

∫

Ω

û dx

)

+

(

lα

∫ 1

0

[w + s(v − w)]α−1 ds

[

∆w + a

∫

Ω

w dx

])

v̂,

x ∈ Ω∗, 0 < t < T ∗,

v̂t > luα

(

∆v̂ + b

∫

Ω

v̂ dx

)

+

(

lα

∫ 1

0

[w + s(u − w)]α−1 ds

[

∆w + a

∫

Ω

w dx

])

û,

x ∈ Ω∗, 0 < t < T ∗,

û(x, t) > 0, v̂(x, t) > 0, (x, t) ∈ ∂Ω∗ × (0, T ∗) ∪ Ω∗ × {0}.

Lemma 1 shows that û, v̂ > 0, i.e. u > w, v > w in Ω∗× (0, T ∗). It is a contradiction.

Therefore, (u, v) blows up in finite time since the uniqueness holds. The proof is

completed. �
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Lemma 6. Assume that b > 1/µ. Then the problem (1.1) does not have any

global positive classical solution.

P r o o f. Applying (H1) and (H2) we see that there exists a small constant κ

such that

u0(x) > κϕ(x), v0(x) > κϕ(x), x ∈ Ω,

where ϕ(x) is defined in (1.3). Now let the positive constant K satisfy (3.1), and let

(u, v) and (u, v) be the positive classical solutions of (1.1) with initial data (u0, v0) =

(Kϕ,Kϕ) and (u0, v0) = (κϕ, κϕ), respectively. Since

∆u0 + a

∫

Ω

u0 dx = K(aµ− 1) > 0, ∆v0 + b

∫

Ω

v0 dx = K(bµ− 1) > 0 in Ω,

∆u0 + a

∫

Ω

u0 dx = k(aµ− 1) > 0, ∆v0 + b

∫

Ω

v0 dx = k(bµ− 1) > 0 in Ω,

in view of Lemma 4 we see that (u, v) and (u, v) blow up in finite times T and T ,

respectively. Moreover,

∆u + a

∫

Ω

udx > 0, ∆v + b

∫

Ω

v dx > 0 in Ω × (0, T ),

∆u + a

∫

Ω

udx > 0, ∆v + b

∫

Ω

v dx > 0 in Ω × (0, T ).

Since

u0(x) = κϕ(x) 6 u0(x) 6 Kϕ(x) = u0(x),

v0(x) = κϕ(x) 6 v0(x) 6 Kϕ(x) = v0(x),

by the same arguments as those at the end of Step 3 of Lemma 4 we can prove that

T 6 T and

u(x, t) 6 u(x, t) 6 u(x, t), v(x, t) 6 v(x, t) 6 v(x, t) in Ω × (0, T ).

This shows that (u, v) cannot exist globally. Lemma 6 is proved. �
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