Mathematic Bohemica

Martin Doležal
A note on the three-segment problem

Mathematica Bohemica, Vol. 134 (2009), No. 2, 211-215
Persistent URL: http://dml.cz/dmlcz/140655

Terms of use:

© Institute of Mathematics AS CR, 2009

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

A NOTE ON THE THREE-SEGMENT PROBLEM

Martin Doležal, Praha

(Received April 13, 2008)

Abstract

We improve a theorem of C.L. Belna (1972) which concerns boundary behaviour of complex-valued functions in the open upper half-plane and gives a partial answer to the (still open) three-segment problem.

Keywords: three-segment problem, cluster sets
MSC 2010: 30D40, 26B99

Consider a function f defined in an open set G in the complex plane \mathbb{C} with values in the Riemann sphere \mathbb{W}. For an arbitrary set $A \subset G$ and for all $p \in \bar{A} \backslash A$, the cluster set $C(f, A, p)$ of f relative to the set A at the point p is the set of all points $w \in \mathbb{W}$ for which there exists a sequence $\left\{z_{k}\right\}_{k=1}^{\infty} \subset A$ such that $\lim _{k \rightarrow \infty} z_{k}=p$ and $\lim _{k \rightarrow \infty} f\left(z_{k}\right)=w$. If there exist three rectilinear segments S_{1}, S_{2} and S_{3} in G that have a common endpoint p such that $C\left(f, S_{1}, p\right) \cap C\left(f, S_{2}, p\right) \cap C\left(f, S_{3}, p\right)=\emptyset$, we say that f has the three-segment property at p. The following problem was posed in [1, Open question 1].

Problem 1. Does there exist a continuous complex-valued function in the open unit disk \mathbb{D} having the three-segment property at each point of a set of positive one-dimensional measure or of second category in the unit circle?

It seems to be very probable that this problem is equivalent to the following one.
Problem 2. Does there exist a continuous function from the open upper half plane $\mathbb{H}=\{z \in \mathbb{C}: \operatorname{Im}(z)>0\}$ into the Riemann sphere \mathbb{W} having the threesegment property at each point of a set of positive one-dimensional measure or of second category in \mathbb{R} ?

In this form, the 'three-segment problem' is stated in [2]. (Another formulation can be found in [4].)

First, let us introduce some terminology, slightly changing the terminology of [2]. A ray at $p \in \mathbb{R}$ with the direction $s \in(0, \pi)$ is the set $\{z \in \mathbb{C}: \arg (z-p)=s\}$. If λ_{1}, λ_{2} and λ_{3} are arbitrary functions from \mathbb{R} into the open interval $(0, \pi)$, then $S_{j}(p)$ is the ray at $p \in \mathbb{R}$ with the direction $\lambda_{j}(p), j=1,2,3$. Whenever $C\left(f, S_{1}(p), p\right) \cap$ $C\left(f, S_{2}(p), p\right) \cap C\left(f, S_{3}(p), p\right)=\emptyset$ for some function $f: \mathbb{H} \rightarrow \mathbb{W}$, we say that f has the three-segment property at p relative to the functions λ_{1}, λ_{2} and λ_{3}.

Now, we can equivalently reformulate Problem 2 as follows: Does there exist a continuous function f from the open upper half plane \mathbb{H} into the Riemann sphere \mathbb{W} and functions λ_{1}, λ_{2} and λ_{3} from \mathbb{R} into the open interval $(0, \pi)$ such that f has the three-segment property relative to the functions λ_{1}, λ_{2} and λ_{3} at each point of a set of positive one-dimensional measure or of second category in \mathbb{R} ?

The theorem of [2] gives a partial answer to this problem. This theorem says that for $f: \mathbb{H} \rightarrow \mathbb{W}$ continuous and λ_{1}, λ_{2} monotone and absolutely continuous on finite intervals, the set of all points at which f has the three-segment property relative to λ_{1}, λ_{2} and λ_{3} is of first category and measure zero in \mathbb{R} for arbitrary λ_{3}. However, the proof of this theorem contains a gap. The claim (which can be found on page 240, four lines from below) that g_{j} satisfies the hypotheses of the lemma is not proved. Moreover, an easy example (see Remark below) shows that this claim is incorrect. Nevertheless, using the ideas of [2] but changing and refining the arguments, we show that the result of [2] is correct. Furthermore, we generalize this result, proving the following theorem. In particular, we prove that the assumption of absolute continuity of λ_{1} and λ_{2} on finite intervals can be removed since every monotone function $\lambda: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable almost everywhere and has at most countably many discontinuities.

Theorem. Let $f: \mathbb{H} \rightarrow \mathbb{W}$ be continuous. Let λ_{1}, λ_{2} and λ_{3} be functions from \mathbb{R} into the open interval $(0, \pi)$. Let λ_{1} and λ_{2} be approximately differentiable a.e. on \mathbb{R}.
(1) Then the set $Q\left(f ; \lambda_{1}, \lambda_{2}, \lambda_{3}\right)$ of all points at which f has the three-segment property relative to λ_{1}, λ_{2} and λ_{3} is of measure zero in \mathbb{R}.
(2) If there exists a measure zero set $M \subset \mathbb{R}$ of first category such that $\lambda_{1} \mid(\mathbb{R} \backslash M)$ and $\lambda_{2} \mid(\mathbb{R} \backslash M)$ are continuous, then the set $Q\left(f ; \lambda_{1}, \lambda_{2}, \lambda_{3}\right)$ is also of first category in \mathbb{R}.

Proof. (1) Let us denote by m the Lebesgue measure on \mathbb{R}. Let \mathcal{B} be a countable basis for the usual topology on \mathbb{W}, let \mathcal{S} be the (countable) collection of all finite unions of the sets $B \in \mathcal{B}$ and let \mathcal{S}^{*} be the set of all 3-tuples $\left(G_{1}, G_{2}, G_{3}\right)$ of sets in \mathcal{S} for which $\bar{G}_{1} \cap \bar{G}_{2} \cap \bar{G}_{3}=\emptyset$. For each $\left(G_{1}, G_{2}, G_{3}\right) \in \mathcal{S}^{*}$ and all rational numbers α, β satisfying $0<\alpha<\beta<\pi$ and each rational $r>0$, let $Q\left(G_{1}, G_{2}, G_{3} ; \alpha, \beta ; r\right)$ be
the set of all points $p \in \mathbb{R}$ at which there exists a ray $\tilde{S}_{3}(p)$ with a direction $\tilde{\lambda}_{3}(p)$ such that
(i) $\alpha \leqslant \tilde{\lambda}_{3}(p) \leqslant \beta$,
(ii) $\lambda_{j}(p) \notin(\alpha-r, \beta+r), j=1,2$,
(iii) $f\left(S_{j}(p, r)\right) \subset \bar{G}_{j}, j=1,2$, where $S_{j}(p, r):=S_{j}(p) \cap\{z \in \mathbb{H}: \operatorname{Im}(z) \leqslant r\}$,
(iv) $f\left(\tilde{S}_{3}(p, r)\right) \subset \bar{G}_{3}$, where $\tilde{S}_{3}(p, r):=\tilde{S}_{3}(p) \cap\{z \in \mathbb{H}: \operatorname{Im}(z) \leqslant r\}$.

It is easy to see that $Q\left(f ; \lambda_{1}, \lambda_{2}, \lambda_{3}\right)$ is a subset of the countable union of all $Q\left(G_{1}, G_{2}, G_{3} ; \alpha, \beta ; r\right)$. Denote by Q_{0} one of the sets $Q\left(G_{1}, G_{2}, G_{3} ; \alpha, \beta ; r\right)$. The functions λ_{1} and λ_{2} are approximately continuous a.e. on \mathbb{R} and thus measurable. Hence we can find open sets $V_{n}, n \in \mathbb{N}$, such that $m\left(V_{n}\right)<1 / n$ and both $\lambda_{1} \mid\left(\mathbb{R} \backslash V_{n}\right)$, $\lambda_{2} \mid\left(\mathbb{R} \backslash V_{n}\right)$ are continuous. Using the continuity of f, we can easily see that $Q_{0}^{n}:=$ $Q_{0} \backslash V_{n}$ is closed and Q_{0} is measurable because $m\left(Q_{0} \backslash \bigcup_{n=1}^{\infty} Q_{0}^{n}\right)=0$. Let us assume that $m\left(Q_{0}\right)>0$. Applying [3, Theorem 3.1.16.] to the function $\lambda=\left(\lambda_{1}\left|Q_{0}, \lambda_{2}\right| Q_{0}\right)$: $Q_{0} \rightarrow \mathbb{R}^{2}$ (which is approximately differentiable a.e. on its domain) we obtain that there exists a continuously differentiable function $\tilde{\lambda}=\left(\tilde{\lambda}_{1}, \tilde{\lambda}_{2}\right): \mathbb{R} \rightarrow \mathbb{R}^{2}$ such that

$$
m\left(\left\{p \in Q_{0}: \lambda_{j}(p)=\tilde{\lambda}_{j}(p), j=1,2\right\}\right)>0
$$

Denote $A:=\left\{p \in Q_{0}: \lambda_{j}(p)=\tilde{\lambda}_{j}(p), j=1,2\right\}$ and choose a point $p_{0} \in A$ such that p_{0} is a point of density of A. Without loss of generality we may assume that $p_{0}=0$. Let $\tilde{S}_{3}(0)$ be a ray with a direction $\tilde{\lambda}_{3}(0)$ given by $0 \in Q_{0}$. Let us fix $j \in\{1,2\}$ and assume first that $\tilde{\lambda}_{3}(0)<\lambda_{j}(0)$. Whenever $\tilde{\lambda}_{j}(p) \in(0, \pi)$, we will denote by $\tilde{S}_{j}(p)$ the ray at p given by the direction $\tilde{\lambda}_{j}(p)$ and $\tilde{S}_{j}(p, r):=\tilde{S}_{j}(p) \cap\{z \in \mathbb{H}: \operatorname{Im}(z) \leqslant r\}$. The continuity of $\tilde{\lambda}_{j}$ implies that there exists $a_{j}>0$ such that $\tilde{\lambda}_{j}(p) \in(0, \pi)$ and $\tilde{S}_{3}(0) \cap \tilde{S}_{j}(p) \neq \emptyset$ for all $p \in\left(0, a_{j}\right)$. Hence we can define a function $\mu_{j}:\left(0, a_{j}\right) \rightarrow$ $\tilde{S}_{3}(0)$ by

$$
\left\{\mu_{j}(p)\right\}=\tilde{S}_{3}(0) \cap \tilde{S}_{j}(p)
$$

Next we define a function $g_{j}:\left[0, a_{j}\right) \rightarrow[0,+\infty)$ by $g_{j}(0)=0$ and $g_{j}(p)=\left|\mu_{j}(p)\right|$ for $p \in\left(0, a_{j}\right)$. It is easy to verify that for all $p \in\left[0, a_{j}\right)$,

$$
g_{j}(p)=p \frac{\sin \left(\tilde{\lambda}_{j}(p)\right)}{\sin \left(\tilde{\lambda}_{j}(p)-\tilde{\lambda}_{3}(0)\right)}
$$

and

$$
g_{j}^{\prime}(p)=\frac{\sin \left(\tilde{\lambda}_{j}(p)\right)}{\sin \left(\tilde{\lambda}_{j}(p)-\tilde{\lambda}_{3}(0)\right)}-p \frac{\tilde{\lambda}_{j}^{\prime}(p) \sin \left(\tilde{\lambda}_{3}(0)\right)}{\sin ^{2}\left(\tilde{\lambda}_{j}(p)-\tilde{\lambda}_{3}(0)\right)}
$$

The continuity of $\tilde{\lambda}_{j}$ and $\tilde{\lambda}_{j}^{\prime}$ implies that there exists $0<b_{j}<a_{j}$ such that if $q_{j}^{1}=\inf \left\{g_{j}^{\prime}(p): p \in\left[0, b_{j}\right]\right\}, q_{j}^{2}=\sup \left\{g_{j}^{\prime}(p): p \in\left[0, b_{j}\right]\right\}$, then $0<q_{j}^{1} \leqslant q_{j}^{2} \leqslant \frac{3}{2} q_{j}^{1}$
and $g_{j}(p)<r$ for all $p \in\left[0, b_{j}\right]$. Moreover, we can assume that $m(A \cap(0, b))>\frac{3}{4} b$ for all $b \in\left(0, b_{j}\right]$ because 0 is a point of density of A. Then clearly $m\left(g_{j}((0, b))\right)=$ $g_{j}(b) \leqslant q_{j}^{2} b \leqslant \frac{3}{2} q_{j}^{1} b$ for all $b \in\left(0, b_{j}\right]$. Since g_{j} is strictly increasing on $\left[0, b_{j}\right]$ we can use [5, Chapter VIII, 2., Lemma 3] obtaining

$$
m\left(g_{j}(A \cap(0, b))\right) \geqslant q_{j}^{1} m(A \cap(0, b))>\frac{3}{4} q_{j}^{1} b \geqslant \frac{1}{2} m\left(g_{j}((0, b))\right)
$$

for all $b \in\left(0, b_{j}\right]$. In the case $\tilde{\lambda}_{3}(0)>\lambda_{j}(0)$ we can define functions μ_{j} and g_{j} on the left neighbourhood of 0 by the same formulas as above and we similarly obtain that there exists $b_{j}>0$ such that

$$
m\left(g_{j}(A \cap(-b, 0))\right)>\frac{1}{2} m\left(g_{j}((-b, 0))\right)
$$

for all $b \in\left(0, b_{j}\right]$.
Now, we denote the domain of g_{j} by $D\left(g_{j}\right), j=1,2$, and find $b_{1}^{\prime} \in\left(-b_{1}, b_{1}\right) \cap D\left(g_{1}\right)$ and $b_{2}^{\prime} \in\left(-b_{2}, b_{2}\right) \cap D\left(g_{2}\right)$ such that $b_{1}^{\prime} \neq 0, b_{2}^{\prime} \neq 0$ and $g_{1}\left(b_{1}^{\prime}\right)=g_{2}\left(b_{2}^{\prime}\right)$. Then $g_{1}\left(\left(-b_{1}^{\prime}, b_{1}^{\prime}\right) \cap D\left(g_{1}\right)\right)=g_{2}\left(\left(-b_{2}^{\prime}, b_{2}^{\prime}\right) \cap D\left(g_{2}\right)\right)$ and it follows from the above estimates that the sets $g_{1}\left(A \cap\left(-b_{1}^{\prime}, b_{1}^{\prime}\right) \cap D\left(g_{1}\right)\right)$ and $g_{2}\left(A \cap\left(-b_{2}^{\prime}, b_{2}^{\prime}\right) \cap D\left(g_{2}\right)\right)$ are not disjoint. Thus there exist points $p_{1} \in A \cap\left(-b_{1}^{\prime}, b_{1}^{\prime}\right) \cap D\left(g_{1}\right)$ and $p_{2} \in A \cap\left(-b_{2}^{\prime}, b_{2}^{\prime}\right) \cap D\left(g_{2}\right)$ such that $\mu_{1}\left(p_{1}\right)=\mu_{2}\left(p_{2}\right) \in \tilde{S}_{3}(0, r)$. But we also have $\mu_{j}\left(p_{j}\right) \in \tilde{S}_{j}\left(p_{j}, r\right)=S_{j}\left(p_{j}, r\right)$, $j=1,2$. Therefore

$$
f\left(\mu_{1}\left(p_{1}\right)\right) \in \bar{G}_{1} \cap \bar{G}_{2} \cap \bar{G}_{3},
$$

which contradicts $\left(G_{1}, G_{2}, G_{3}\right) \in \mathcal{S}^{*}$. Thus $m\left(Q_{0}\right)=0$ and it follows that also $m\left(Q\left(f ; \lambda_{1}, \lambda_{2}, \lambda_{3}\right)\right)=0$.
(2) Let us assume now that there exists a measure zero set $M \subset \mathbb{R}$ of first category such that $\lambda_{1} \mid(\mathbb{R} \backslash M)$ and $\lambda_{2} \mid(\mathbb{R} \backslash M)$ are continuous. Let Q_{0} have the same meaning as above. It is easy to verify that $Q_{0} \cap(\mathbb{R} \backslash M)$ is closed in $\mathbb{R} \backslash M$ and thus $m\left(\overline{Q_{0} \cap(\mathbb{R} \backslash M)}\right)=0$. It follows that $Q_{0} \cap(\mathbb{R} \backslash M)$ is nowhere dense. Therefore Q_{0} is of first category and $Q\left(f ; \lambda_{1}, \lambda_{2}, \lambda_{3}\right)$ is also of first category.

Remark. In [2], the functions $\tilde{\lambda}_{1}$ and $\tilde{\lambda}_{2}$ are not introduced and near 0 , the functions

$$
g_{j}(p)=p \frac{\sin \left(\lambda_{j}(p)\right)}{\sin \left(\lambda_{j}(p)-\operatorname{dir} S_{3}(0)\right)}, \quad j=1,2
$$

(where $\operatorname{dir} S_{3}(0)=\lambda_{3}(0)<\lambda_{j}(0)=\operatorname{dir} S_{j}(0)$; there is a typo in [2] saying that $\left.\operatorname{dir} S_{3}(0)>\operatorname{dir} S_{j}(0)\right)$ are considered. It is claimed in [2, p. 240] that g_{j} satisfies the hypotheses of the lemma, in particular, g_{j} is monotone on $[0, a]$ for some $a>$ 0 . However, the properties of λ_{j} (λ_{j} is monotone, absolutely continuous on finite intervals and λ_{j}^{\prime} is approximately continuous at 0) do not imply the existence of such
$a>0$. Indeed, it is easy to construct a monotone function λ_{j} which is absolutely continuous on finite intervals and such that
(i) λ_{j}^{\prime} is approximately continuous at 0 ,
(ii) there exists a sequence $\left\{p_{n}\right\}_{n=1}^{\infty} \subset(0,+\infty)$ satisfying $\lim _{n \rightarrow \infty} p_{n}=0$ and $\lambda_{j}^{\prime}\left(p_{n}\right)=$ $\infty, n=1,2, \ldots$
Then, whenever $\lambda_{j}^{\prime}(p)$ exists, we have

$$
g_{j}^{\prime}(p)=\frac{\sin \left(\lambda_{j}(p)\right)}{\sin \left(\lambda_{j}(p)-\operatorname{dir} S_{3}(0)\right)}-p \frac{\lambda_{j}^{\prime}(p) \sin \left(\operatorname{dir} S_{3}(0)\right)}{\sin ^{2}\left(\lambda_{j}(p)-\operatorname{dir} S_{3}(0)\right)}
$$

and it follows that $g_{j}^{\prime}(0)>0$ and $g_{j}^{\prime}\left(p_{n}\right)=-\infty, n=1,2, \ldots$. Hence g_{j} is not monotone on $[0, a]$ for any $a>0$.

References

[1] F. Bagemihl, G. Piranian, G.S. Young: Intersections of cluster sets. Bul. Inst. Politeh. Iaşi, N. Ser. 5 (1959), 29-34.
[2] C. L. Belna: On the 3 -segment property for complex-valued functions. Czech. Math. J. 22 (1972), 238-241.
[3] H. Federer: Geometric Measure Theory. Springer, Berlin, 1996.
[4] C. Freiling, P.D. Humke, M. Laczkovich: One old problem, one new, and their equivalence. Tatra Mt. Math. Publ. 24 (2002), 169-174.
[5] I. P. Natanson: Theory of Functions of a Real Variable. Ungar, New York, 1955.
Author's address: Martin Doležal, Charles University in Prague, Faculty of Mathematics and Physics, Department of Mathematical Analysis, Sokolovská 83, 18675 Praha 8-Karlín, Czech Republic, e-mail: dolezal@karlin.mff.cuni.cz.

