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A NOTE ON THE THREE-SEGMENT PROBLEM
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Abstract. We improve a theorem of C. L.Belna (1972) which concerns boundary be-
haviour of complex-valued functions in the open upper half-plane and gives a partial answer
to the (still open) three-segment problem.
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Consider a function f defined in an open set G in the complex plane C with values

in the Riemann sphere W. For an arbitrary set A ⊂ G and for all p ∈ Ā \ A, the

cluster set C(f, A, p) of f relative to the set A at the point p is the set of all points

w ∈ W for which there exists a sequence {zk}∞k=1
⊂ A such that lim

k→∞

zk = p and

lim
k→∞

f(zk) = w. If there exist three rectilinear segments S1, S2 and S3 in G that

have a common endpoint p such that C(f, S1, p) ∩ C(f, S2, p) ∩ C(f, S3, p) = ∅, we

say that f has the three-segment property at p. The following problem was posed in

[1, Open question 1].

P r o b l e m 1. Does there exist a continuous complex-valued function in the open

unit disk D having the three-segment property at each point of a set of positive

one-dimensional measure or of second category in the unit circle?

It seems to be very probable that this problem is equivalent to the following one.

P r o b l e m 2. Does there exist a continuous function from the open upper half

plane H = {z ∈ C : Im(z) > 0} into the Riemann sphere W having the three-

segment property at each point of a set of positive one-dimensional measure or of

second category in R?

In this form, the ‘three-segment problem’ is stated in [2]. (Another formulation

can be found in [4].)
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First, let us introduce some terminology, slightly changing the terminology of [2].

A ray at p ∈ R with the direction s ∈ (0, π) is the set {z ∈ C : arg(z − p) = s}. If

λ1, λ2 and λ3 are arbitrary functions from R into the open interval (0, π), then Sj(p)

is the ray at p ∈ R with the direction λj(p), j = 1, 2, 3. Whenever C(f, S1(p), p) ∩

C(f, S2(p), p) ∩ C(f, S3(p), p) = ∅ for some function f : H → W, we say that f has

the three-segment property at p relative to the functions λ1, λ2 and λ3.

Now, we can equivalently reformulate Problem 2 as follows: Does there exist a

continuous function f from the open upper half plane H into the Riemann sphereW

and functions λ1, λ2 and λ3 from R into the open interval (0, π) such that f has the

three-segment property relative to the functions λ1, λ2 and λ3 at each point of a set

of positive one-dimensional measure or of second category in R?

The theorem of [2] gives a partial answer to this problem. This theorem says

that for f : H → W continuous and λ1, λ2 monotone and absolutely continuous

on finite intervals, the set of all points at which f has the three-segment property

relative to λ1, λ2 and λ3 is of first category and measure zero in R for arbitrary

λ3. However, the proof of this theorem contains a gap. The claim (which can

be found on page 240, four lines from below) that gj satisfies the hypotheses of the

lemma is not proved. Moreover, an easy example (see Remark below) shows that this

claim is incorrect. Nevertheless, using the ideas of [2] but changing and refining the

arguments, we show that the result of [2] is correct. Furthermore, we generalize this

result, proving the following theorem. In particular, we prove that the assumption

of absolute continuity of λ1 and λ2 on finite intervals can be removed since every

monotone function λ : R → R is differentiable almost everywhere and has at most

countably many discontinuities.

Theorem. Let f : H → W be continuous. Let λ1, λ2 and λ3 be functions from

R into the open interval (0, π). Let λ1 and λ2 be approximately differentiable a.e.

on R.

(1) Then the set Q(f ; λ1, λ2, λ3) of all points at which f has the three-segment

property relative to λ1, λ2 and λ3 is of measure zero in R.

(2) If there exists a measure zero set M ⊂ R of first category such that λ1|(R \M)

and λ2|(R \ M) are continuous, then the set Q(f ; λ1, λ2, λ3) is also of first

category in R.

P r o o f. (1) Let us denote bym the Lebesgue measure onR. Let B be a countable

basis for the usual topology on W, let S be the (countable) collection of all finite

unions of the sets B ∈ B and let S∗ be the set of all 3-tuples (G1, G2, G3) of sets in

S for which G1 ∩G2 ∩ G3 = ∅. For each (G1, G2, G3) ∈ S∗ and all rational numbers

α, β satisfying 0 < α < β < π and each rational r > 0, let Q(G1, G2, G3; α, β; r) be
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the set of all points p ∈ R at which there exists a ray S̃3(p) with a direction λ̃3(p)

such that

(i) α 6 λ̃3(p) 6 β,

(ii) λj(p) /∈ (α − r, β + r), j = 1, 2,

(iii) f(Sj(p, r)) ⊂ Gj , j = 1, 2, where Sj(p, r) := Sj(p) ∩ {z ∈ H : Im(z) 6 r},

(iv) f(S̃3(p, r)) ⊂ G3, where S̃3(p, r) := S̃3(p) ∩ {z ∈ H : Im(z) 6 r}.

It is easy to see that Q(f ; λ1, λ2, λ3) is a subset of the countable union of all

Q(G1, G2, G3; α, β; r). Denote by Q0 one of the sets Q(G1, G2, G3; α, β; r). The

functions λ1 and λ2 are approximately continuous a.e. on R and thus measurable.

Hence we can find open sets Vn, n ∈ N, such that m(Vn) < 1/n and both λ1|(R\Vn),

λ2|(R \ Vn) are continuous. Using the continuity of f , we can easily see that Qn
0

:=

Q0 \Vn is closed and Q0 is measurable because m
(

Q0 \
∞
⋃

n=1

Qn
0

)

= 0. Let us assume

that m(Q0) > 0. Applying [3, Theorem 3.1.16.] to the function λ = (λ1|Q0, λ2|Q0) :

Q0 → R
2 (which is approximately differentiable a.e. on its domain) we obtain that

there exists a continuously differentiable function λ̃ = (λ̃1, λ̃2) : R → R
2 such that

m({p ∈ Q0 : λj(p) = λ̃j(p), j = 1, 2}) > 0.

Denote A := {p ∈ Q0 : λj(p) = λ̃j(p), j = 1, 2} and choose a point p0 ∈ A such that

p0 is a point of density of A. Without loss of generality we may assume that p0 = 0.

Let S̃3(0) be a ray with a direction λ̃3(0) given by 0 ∈ Q0. Let us fix j ∈ {1, 2} and

assume first that λ̃3(0) < λj(0). Whenever λ̃j(p) ∈ (0, π), we will denote by S̃j(p)

the ray at p given by the direction λ̃j(p) and S̃j(p, r) := S̃j(p)∩{z ∈ H : Im(z) 6 r}.

The continuity of λ̃j implies that there exists aj > 0 such that λ̃j(p) ∈ (0, π) and

S̃3(0) ∩ S̃j(p) 6= ∅ for all p ∈ (0, aj). Hence we can define a function µj : (0, aj) →

S̃3(0) by

{µj(p)} = S̃3(0) ∩ S̃j(p).

Next we define a function gj : [0, aj) → [0, +∞) by gj(0) = 0 and gj(p) = |µj(p)| for

p ∈ (0, aj). It is easy to verify that for all p ∈ [0, aj),

gj(p) = p
sin(λ̃j(p))

sin(λ̃j(p) − λ̃3(0))

and

g′j(p) =
sin(λ̃j(p))

sin(λ̃j(p) − λ̃3(0))
− p

λ̃′

j(p) sin(λ̃3(0))

sin2(λ̃j(p) − λ̃3(0))
.

The continuity of λ̃j and λ̃′

j implies that there exists 0 < bj < aj such that if

q1

j = inf{g′j(p) : p ∈ [0, bj]}, q2

j = sup{g′j(p) : p ∈ [0, bj]}, then 0 < q1

j 6 q2

j 6 3

2
q1

j
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and gj(p) < r for all p ∈ [0, bj]. Moreover, we can assume that m(A ∩ (0, b)) > 3

4
b

for all b ∈ (0, bj ] because 0 is a point of density of A. Then clearly m(gj((0, b))) =

gj(b) 6 q2

j b 6 3

2
q1

j b for all b ∈ (0, bj ]. Since gj is strictly increasing on [0, bj] we can

use [5, Chapter VIII, 2., Lemma 3] obtaining

m(gj(A ∩ (0, b))) > q1

j m(A ∩ (0, b)) > 3

4
q1

j b > 1

2
m(gj((0, b)))

for all b ∈ (0, bj]. In the case λ̃3(0) > λj(0) we can define functions µj and gj on the

left neighbourhood of 0 by the same formulas as above and we similarly obtain that

there exists bj > 0 such that

m(gj(A ∩ (−b, 0))) > 1

2
m(gj((−b, 0)))

for all b ∈ (0, bj ].

Now, we denote the domain of gj byD(gj), j = 1, 2, and find b′
1
∈ (−b1, b1)∩D(g1)

and b′
2
∈ (−b2, b2) ∩ D(g2) such that b′

1
6= 0, b′

2
6= 0 and g1(b

′

1
) = g2(b

′

2
). Then

g1((−b′
1
, b′

1
)∩D(g1)) = g2((−b′

2
, b′

2
)∩D(g2)) and it follows from the above estimates

that the sets g1(A∩ (−b′
1
, b′

1
)∩D(g1)) and g2(A∩ (−b′

2
, b′

2
)∩D(g2)) are not disjoint.

Thus there exist points p1 ∈ A∩(−b′
1
, b′

1
)∩D(g1) and p2 ∈ A∩(−b′

2
, b′

2
)∩D(g2) such

that µ1(p1) = µ2(p2) ∈ S̃3(0, r). But we also have µj(pj) ∈ S̃j(pj , r) = Sj(pj , r),

j = 1, 2. Therefore

f(µ1(p1)) ∈ G1 ∩ G2 ∩ G3,

which contradicts (G1, G2, G3) ∈ S∗. Thus m(Q0) = 0 and it follows that also

m(Q(f ; λ1, λ2, λ3)) = 0.

(2) Let us assume now that there exists a measure zero set M ⊂ R of first cat-

egory such that λ1|(R \ M) and λ2|(R \ M) are continuous. Let Q0 have the same

meaning as above. It is easy to verify that Q0 ∩ (R \M) is closed in R \M and thus

m(Q0 ∩ (R \ M)) = 0. It follows that Q0 ∩ (R \ M) is nowhere dense. Therefore Q0

is of first category and Q(f ; λ1, λ2, λ3) is also of first category. �

R em a r k. In [2], the functions λ̃1 and λ̃2 are not introduced and near 0, the

functions

gj(p) = p
sin(λj(p))

sin(λj(p) − dirS3(0))
, j = 1, 2,

(where dir S3(0) = λ3(0) < λj(0) = dirSj(0); there is a typo in [2] saying that

dir S3(0) > dir Sj(0)) are considered. It is claimed in [2, p. 240] that gj satisfies

the hypotheses of the lemma, in particular, gj is monotone on [0, a] for some a >

0. However, the properties of λj (λj is monotone, absolutely continuous on finite

intervals and λ′

j is approximately continuous at 0) do not imply the existence of such
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a > 0. Indeed, it is easy to construct a monotone function λj which is absolutely

continuous on finite intervals and such that

(i) λ′

j is approximately continuous at 0,

(ii) there exists a sequence {pn}∞n=1
⊂ (0, +∞) satisfying lim

n→∞

pn = 0 and λ′

j(pn) =

∞, n = 1, 2, . . . .

Then, whenever λ′

j(p) exists, we have

g′j(p) =
sin(λj(p))

sin(λj(p) − dirS3(0))
− p

λ′

j(p) sin(dir S3(0))

sin2(λj(p) − dirS3(0))

and it follows that g′j(0) > 0 and g′j(pn) = −∞, n = 1, 2, . . . . Hence gj is not

monotone on [0, a] for any a > 0.
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