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OSCILLATION OF A HIGHER ORDER NEUTRAL DIFFERENTIAL

EQUATION WITH A SUB-LINEAR DELAY TERM AND

POSITIVE AND NEGATIVE COEFFICIENTS

Julio G. Dix, San Marcos, Dillip Kumar Ghose, Radhanath Rath, Orissa

(Received November 21, 2008)

Abstract. We obtain sufficient conditions for every solution of the differential equation

[y(t)− p(t)y(r(t))](n) + v(t)G(y(g(t)))− u(t)H(y(h(t))) = f(t)

to oscillate or to tend to zero as t approaches infinity. In particular, we extend the results
of Karpuz, Rath and Padhy (2008) to the case when G has sub-linear growth at infinity.
Our results also apply to the neutral equation

[y(t)− p(t)y(r(t))](n) + q(t)G(y(g(t))) = f(t)

when q(t) has sign changes. Both bounded and unbounded solutions are consideted here;
thus some known results are expanded.

Keywords: oscillatory solution, neutral differential equation, asymptotic behaviour

MSC 2010 : 34C10, 34C15, 34K40

1. Introduction

This article concerns the oscillation of solutions to the neutral functional differen-

tial equation

(1.1) (y(t) − p(t)y(r(t)))(n) + v(t)G(y(g(t))) − u(t)H(y(h(t))) = f(t),

where n is an integer greater than 1, the functions f , g, h, p, r are in C([0,∞),R),

the functions u, v are in C([0,∞), [0,∞)), the functions G and H are in C(R,R),

and p is a function with n continuous derivatives. The delay functions g, h, r are
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non-decreasing with g(t) 6 t, h(t) 6 t, r(t) 6 t and these functions approach ∞ as
t → ∞.
Let t0 > 0 and t−1 := min{r(t0), g(t0), h(t0)}. By a solution of (1.1) we mean

a function y ∈ C([t−1,∞),R) such that y(t) − p(t)y(r(t)) is n times continuously

differentiable on [t0,∞) and the neutral equation (1.1) is satisfied for t > t0.

In this work we assume the existence of solutions and study only their qualitative

behaviour. For results on existence and uniqueness of solutions, we refer the reader

to [4].

Given an initial function ϕ ∈ C([t−1, t0],R), we assume that there exists a unique

solution to (1.1) satisfying y(t) = ϕ(t) for t ∈ [t−1, t0]. Such a solution is said to

be non-oscillatory if it is eventually positive or eventually negative; otherwise it is

called oscillatory.

The function G in (1.1) is said to have linear growth (or to be linear) at infinity,

if lim
x→∞

|G(x)|/x is a positive constant. G is super-linear if lim
x→∞

|G(x)|/x = ∞, and
G is sub-linear if lim

x→∞

|G(x)|/x = 0.

Oscillation and non-oscillation of neutral differential equations have been studied

by many authors during the previous two decades [6], [10], [11], [13], [14], [21], [9],

[24]. However, there are only a few publications on the oscillatory behaviour of higher

order (n > 2) neutral differential equations with positive and negative coefficients.

In a recent paper Karpuz et al [6] obtained results assuming that G is linear or

super-linear; see Theorem 2.1 below. In this article, we omit the superlinear growth

condition on G. By doing this, our results also apply to the neutral differential

equation

(1.2) (y(t) − p(t)y(r(t)))(n) + q(t)G(y(g(t))) = f(t),

where q is allowed to change sign; see Section 3. The majority of the existing

publications have results for q positive, and very few for q having sign changes;

see [1], [2], [12], [16], [17], [18], [19], [21], [23]. The main difficulty is that when q(t)

is oscillatory, then for a non-oscillatory solution y(t) of (1.2), the function (y(t) −
p(t)y(r(t))(n) − f(t) may be oscillatory. To the best of our knowledge, when q(t)

changes sign, (1.2) has been studied only for n = 1; see [3]. Thus, our results extend

and generalize some results from [3], [6], [21].
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2. Main results

In the sequel, unless otherwise specified, when we write a functional inequality, it

will be assumed to hold for all t sufficiently large. Our results will use the following

hypotheses:

(H0) lim inf
x→∞

G(x) > 0, lim sup
x→−∞

G(x) < 0;

(H1) xG(x) > 0 for x 6= 0,

(H2) H is bounded;

(H3)
∫

∞

t0
v(t) dt = ∞;

(H4)
∫

∞

t0
tn−1u(t) dt < ∞;

(H5) there exists a bounded function F such that F (n)(t) = f(t);

(H6) the function F in (H5) satisfies lim
t→∞

F (t) = 0.

Note that (H6) is satisfied for example if
∫

∞

0 tn−1|f(t)| dt < ∞.

2.1. Results for unbounded solutions. First we state a theorem that assumes

G being linear or superlinear.

Theorem 2.1 [6, Theorem 2.4]. Assume that G is nondecreasing and that there

exist positive constants p1, p2 such that

(2.1) −1 < p1 6 p(t) 6 0 ∀t or 0 6 p(t) 6 p2 < 1 ∀t.

Also assume (H1)–(H2), (H4)–(H5),
∫

∞

t0

tn−2v(t) dt = ∞ (n > 2),(2.2)

lim inf
t→∞

g(t)/t > 0,(2.3)

lim inf
x→∞

G(x)/x > 0, lim inf
x→−∞

G(x)/x > 0.(2.4)

Then every unbounded solution of (1.1) is oscillatory.

The following example shows that (2.4) is necessary in the setting of the above

theorem.

E x am p l e 2.2. Consider the neutral equation

(2.5) (y(t) − cy(t − 1))′′′ + v(t)y1/3(t − 1) − u(t)H(y(t − 2)) = 0

for t > 4, where v(t) = 3(t−6 + t−3/2 − c(t − 1)−3/2)/(8
√

t − 1), H(y) = y/(y2 + 1),

u(t) = 3(1 + (t − 2)3)/(8t6(t − 2)3/2), and 0 < p(t) ≡ c < 1/2 or −1 < p(t) ≡ c < 0.

Note that G(y) = y1/3 which is sub-linear. Clearly, the conditions for Theorem 2.1

are satisfied except for (2.4), and the solution y(t) = t3/2 is unbounded and non-

oscillatory.
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Now we state our main result, without assuming that G is non-decreasing and

without conditions (2.2)–(2.4). In fact, we replace (2.2) by (H3), which is more

restrictive than (2.2) when n > 3. However, these two conditions are the same when

n = 2.

Theorem 2.3. Assume (H0)–(H5). For p(t) satisfying (2.1), every unbounded

solution of (1.1) is oscillatory.

P r o o f. For the sake of contradiction, assume that there exists an unbounded

solution y which is eventually positive. Because g, h, r approach∞ as t → ∞, there
exists t0 such that y(t) > 0, y(h(t)) > 0, y(g(t)) > 0, y(r(t)) > 0 for t > t0. Define

(2.6) k(t) =
(−1)n−1

(n − 1)!

∫

∞

t

(s − t)n−1u(s)H(y(h(s))) ds for t > t0.

By assumptions (H2) and (H4) the above integral converges, thus k(t) is a well

defined real-valued function, and

(2.7) lim
t→∞

k(t) = 0.

Note that the nth derivative of k is k(n)(t) = −u(t)H(y(h(t))). For simplicity of

notation, we define

(2.8) w(t) = y(t) − p(t)y(r(t)) + k(t) − F (t),

where F (n)(t) = f(t). Then from (1.1),

(2.9) w(n)(t) = −v(t)G(y(g(t))).

Then by (H1) we have w(n)(t) 6 0. By (H3), w(n)(t) is not identically zero in any

interval [t1,∞). As in [8, Lemma 5.2.1], we can show that there exists t1 > t0 such

that w, w′, . . . , w(n−1) are monotonic and of constant sign on [t1,∞). However, we

do not know yet that w > 0.

Since y is positive and unbounded, there exists an increasing sequence {aj} such
that

lim
j→∞

aj = ∞, lim
j→∞

y(aj) = ∞, with y(aj) = max
t16s6aj

y(s).

By (2.7), for each ε > 0 there exists N0 such that

k(aj) < ε for j > N0.
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Since g(t), h(t), r(t) approach ∞ as t → ∞, there exists N1 > N0 such that:

aj , g(aj), h(aj), r(aj) > t1 for j > N1.

By (H5), there is an upper bound η for |F |. Using that y(t) > 0, the definition of

{aj} and that r(t) 6 t, we have: for the case 0 6 p(t) 6 p2 < 1,

w(aj) = y(aj) − p(aj)y(r(aj)) + k(aj) − F (aj) > (1 − p2)y(aj) − ε − η, j > N1;

and for the case −1 < p1 6 p(t) 6 0,

w(aj) = y(aj) − p(aj)y(r(aj)) + k(aj) − F (aj) > y(aj) − ε − η, j > N1.

Taking limits in both the inequalities above, we have lim
j→∞

w(aj) = ∞. Since
w, w′, . . . , w(n−1) are monotonic and of constant sign, it follows that w > 0 and

w′ > 0. Now by [8, Lemma 5.2.1], w(n) 6 0 and w > 0 imply w(n−1)(t) > 0 for

t > t1.

Next we show that y is bounded below by a positive constant, which will be used

for bounding the G term from below.

Using that w is positive and increasing and that r(t) 6 t, we have for the case

−1 < p1 6 p(t) 6 0,

(1 + p1)w(t) 6 w(t) + p1w(r(t)) 6 w(t) + p(t)w(r(t))

= y(t) + k(t) − F (t) + p(t)[−p(r(t))y(r(r(t))) + k(r(t)) − F (r(t))];

and for the case 0 6 p(t) 6 p2 < 1,

w(t) 6 w(t) + p(t)w(r(t))

= y(t) + k(t) − F (t) + p(t)[−p(r(t))y(r(r(t))) + k(r(t)) − F (r(t))].

Since p(t) and p(r(t)) have the same sign and y > 0 in each of the two inequalities

above, and 1 − p2 6 1, we have

(1 − p2)w(t) 6 y(t) + ε + η + p2ε + p2η, for t > t1.

Since lim
t→∞

w(t) = ∞, it follows that lim
t→∞

y(t) = ∞. Then there exists t2 > t1

such that for t > t2, y(t), y(g(t)), y(h(t)), y(r(t)) are bounded below by a positive

constant. By (H0)–(H1), for s > t2, G(y(g(s))) is bounded below by a positive

constant α. Integrating (2.9) we obtain

w(n−1)(t) = w(n−1)(t2) +

∫ t

t2

−v(s)G(y(g(s))) ds 6 w(n−1)(t2) − α

∫ t

t2

v(s) ds.
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Note that by (H3) the right-hand side approaches −∞, while the left-hand side is
positive. This contradiction implies that the solution cannot be unbounded and

eventually positive.

Now assume that the solution y is unbounded and eventually negative. Because

g, h, r approach ∞ as t → ∞, there exists t0 such that y(t) < 0, y(h(t)) < 0,

y(g(t)) < 0, y(r(t)) < 0 for t > t0. Define w(t) as in (2.8). Then w(n)(t) > 0 and it

is not identically zero in any interval [t1,∞). As in [8, Lemma 5.2.1], we can show

that there exists t1 > t0 such that w, w′, . . . , w(n−1) are monotonic and of constant

sign on [t1,∞). However, we do not know yet that w < 0.

Since y is negative and unbounded, there exists an increasing sequence {aj} such
that

lim
j→∞

aj = ∞, lim
j→∞

y(aj) = −∞, with y(aj) = min
t16s6aj

y(s).

Since g(t), h(t), r(t) approach ∞ as t → ∞, there exists N1 > N0 such that:

aj , g(aj), h(aj), r(aj) > t1 for j > N1.

By (H5) there is an upper bound η for |F |. Using that y(t) < 0, the definition of

{aj}, and that r(t) 6 t, we have: For the case 0 6 p(t) 6 p2 < 1,

w(aj) = y(aj) − p(aj)y(r(aj)) + k(aj) − F (aj) 6 (1 − p2)y(aj) + ε + η, j > N1;

and for the case −1 < p1 6 p(t) 6 0,

w(aj) = y(aj) − p(aj)y(r(aj)) + k(aj) − F (aj) 6 y(aj) + ε + η, j > N1.

Taking limits in both the inequalities above, we have lim
j→∞

w(aj) = −∞. Since
w, w′, . . . , w(n−1) are monotonic and of constant sign, it follows that w < 0 and

w′ < 0. Now by [8, Lemma 5.2.1], w(n) > 0 and w < 0 imply w(n−1)(t) < 0 for

t > t1.

Using that w is negative and increasing, and that r(t) 6 t, we have: For the case

−1 < p1 6 p(t) 6 0,

(1 + p1)w(t) > w(t) + p1w(r(t)) > w(t) + p(t)w(r(t))

= y(t) + k(t) − F (t) + p(t)[−p(r(t))y(r(r(t))) + k(r(t)) − F (r(t))];

and for the case 0 6 p(t) 6 p2 < 1,

w(t) > w(t) + p(t)w(r(t))

= y(t) + k(t) − F (t) + p(t)[−p(r(t))y(r(r(t))) + k(r(t)) − F (r(t))].
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Since p(t) and p(r(t)) have the same sign and y < 0 in each of the two inequalities

above, and 0 < 1 + p1 6 1, we have

w(t) > y(t) − ε − η + p1ε + p1η, for t > t1.

Since lim
t→∞

w(t) = −∞, it follows that lim
t→∞

y(t) = −∞. Then there exists t2 > t1

such that for t > t2, y(t), y(g(t)), y(h(t)), y(r(t)) are bounded above by a negative

constant. By (H0)–(H1), for s > t2, G(y(g(s))) is bounded above by a negative

constant δ. Integrating (2.9), we obtain

w(n−1)(t) = w(n−1)(t2) +

∫ t

t2

−v(s)G(y(g(s))) ds > w(n−1)(t2) − δ

∫ t

t2

v(s) ds.

Note that by (H3) the right-hand side approaches +∞, while the left-hand side is
negative. This contradiction implies that the solution cannot be unbounded and

eventually negative. This completes the proof. �

The necessity of (H3) in the above theorem can be shown using Example 2.2. Note

that by setting p(t) = 0, Theorems 2.1, 2.3 apply to the equation

y(n)(t) + v(t)G(y(g(t))) − u(t)H(y(h(t))) = f(t).

Also note that Theorems 2.1, 2.3 answer the open problem posed in [23, p. 195]; i.e.,

to study oscillatory behaviour of unbounded solutions of (1.1) when p(t) satisfies

(2.1).

2.2. Results for bounded solutions. The superlinearity conditions (2.4) and

(H0) are not needed in this subsection because the solution y does not approach±∞.
The next result is a modification of [6, Theorem 2.10], we omit the assumption that

G is non-decreasing.

Theorem 2.4. Assume (H1)–(H2), (H4)–(H6), that the delayed argument r(t) is

strictly increasing, and that

(2.10)

∫

∞

t0

tn−1v(t) dt = ∞.

Then every bounded solution of (1.1) is oscillatory or tends to zero as t → ∞, for
each of the following four cases:

(2.11)
p4 6 p(t) 6 p3 < −1 ∀t; −1 < p1 6 p(t) 6 0 ∀t;

0 6 p(t) 6 p2 < 1 ∀t; 1 < p5 6 p(t) 6 p6 ∀t,

where p1, p2, p3, p4, p5, p6 are constants.
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P r o o f. We follow the steps in [6, Theorem 2.10]. By contradiction assume y

is an eventually positive solution of (1.1) which does not tend to zero as t → ∞.
Then there exists a t0 such that for t > t0, y(t), y(h(t)), y(g(t)), y(r(t)) are positive.

Define w(t) by (2.8). Then, as above, w(n) 6 0 and w, w′, . . . , w(n−1) are monotonic

and of constant sign on some interval [t1,∞). Let λ := lim
t→∞

w(t) which exists as a

finite number because w is monotonic and bounded. Integrating (2.9) n times, we

obtain

w(t) − λ =
(1)n−1

(n − 1)!

∫

∞

t

(s − t)n−1v(s)G(y(g(s))) ds.

Since w is bounded, the above integral is convergent. This in turn, by (2.10), implies

lim inf
s→∞

G(y(g(s))) = 0. As G(x) 6= 0 for x 6= 0, we have lim inf
s→∞

y(g(s)) = 0 and

because lim
t→∞

g(t) = ∞, we have lim inf
t→∞

y(t) = 0.

Since lim
t→∞

w(t) exists, k(t), F (t) approach zero and p(t) is bounded, it follows that

lim
t→∞

y(t)−p(t)y(r(t)) exists as a finite number. A result in [23, Lemma 1] shows that

lim inf
s→∞

y(s) = 0 implies lim
t→∞

y(t) − p(t)y(r(t)) = 0 under each of the assumptions in

(2.11), with r(t) strictly increasing. Therefore λ = lim
t→∞

w(t) = 0.

For p(t) 6 0 (including p(t) 6 p3 < −1) we have w(t) > y(t) + k(t) − F (t) and

0 = lim
t→∞

w(t) > lim sup
t→∞

y(t) > 0.

For 0 6 p(t) 6 p2 < 1 we have w(t) > y(t) − p2y(r(t)) + k(t) − F (t) and

0 = lim
t→∞

w(t) > lim sup
t→∞

[y(t) − p2y(r(t))]

> lim sup
t→∞

y(t) + lim inf
t→∞

[−p2y(r(t))]

= (1 − p2) lim sup
t→∞

y(t) > 0.

For 1 < p5 6 p(t) 6 p6 we have w(t) 6 y(t) − p5y(r(t)) + k(t) − F (t) and

0 = lim
t→∞

w(t) 6 lim inf
t→∞

[y(t) − p5y(r(t))]

6 lim sup
t→∞

y(t) + lim inf
t→∞

[−p5y(r(t))]

= (1 − p5) lim sup
t→∞

y(t) 6 0.

Therefore, under each of the four hypotheses in (2.11), lim sup
t→∞

y(t) = 0. Therefore,

bounded eventually positive solutions must approach zero.

The proof for bounded eventually negative solutions is similar to the proof above;

so we omit it. The proof is complete. �
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2.3. Results for bounded or unbounded solutions.

Theorems 2.3 and 2.4 are combined to give a general result as follows.

Theorem 2.5. Assume (H0)–(H6) and that r(t) is strictly increasing. Then every

solution of (1.1) is oscillatory or tends to zero as t → ∞, for p(t) satisfying (2.1).

The following oscillation result does not assume that r(t) is increasing, but restricts

p(t) furthermore than the theorem above.

Theorem 2.6. Assume (H0)–(H6) and that 0 6 p(t) 6 p2 < 1. Then every

solution of (1.1) is oscillatory or tends to zero as t → ∞.

P r o o f. By contradiction assume y is an eventually positive solution of (1.1)

which does not tend to zero as t → ∞. Then there exists a t0 such that for t > t0,

y(t), y(h(t)), y(g(t)), y(r(t)) are positive and lim sup
t→∞

y(t) > 0. Define w(t) by (2.8).

Then, as above, w(n) 6 0 and w, w′, . . . , w(n−1) are monotonic and of constant sign

on some interval [t1,∞). We do not know that w > 0 yet. Since 0 6 p(t) 6 p2 < 1

and y > 0, we have

w(t) > y(t) − p2y(r(t)) + k(t) − F (t).

Taking the limit superior, using that w is monotonic and that k(t) and F (t) converge

to zero, we obtain

λ = lim
t→∞

w(t) > (1 − p2) lim sup
t→∞

y(t) > 0.

Then w(t) is positive for t large enough. By [8, Lemma 5.2.1], w(n) 6 0 and w > 0

imply the existence of t1 such that w(n−1)(t) > 0 for t > t1. Next we show that

lim inf
t→∞

y(t) > 0, which will be used for bounding G(y(g(s))) from below by a positive

constant. Using that 0 6 p(t) and y > 0, we have

w(t) 6 y(t) + k(t) − F (t).

Taking the limit inferior, using that w is monotonic and that k(t) and F (t) approach

zero, we have

0 < λ = lim
t→∞

w(t) 6 lim inf
t→∞

y(t).

Then there exists a t2 > t1 such that for t > t2, y(t), y(h(t)), y(g(t)), y(r(t)) are

bounded below by a positive constant. By (H0)–(H1), for s > t2, G(y(g(s))) is

bounded below by a positive constant α. Integrating (2.9), we obtain

w(n−1)(t) = w(n−1)(t2) +

∫ t

t2

−v(s)G(y(g(s))) ds 6 w(n−1)(t2) − α

∫ t

t2

v(s) ds.
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Note that by (H3) the right-hand side approaches −∞, while the left-hand side is
positive. This contradiction implies that the solution cannot be eventually positive

without approaching zero.

Now assume that y is eventually negative and does not tend to zero as t →
∞. Then there exists a t0 such that for t > t0, y(t), y(h(t)), y(g(t)), y(r(t)) are

negative and lim inf
t→∞

y(t) < 0. Define w(t) by (2.8). Then w(n) > 0. As above,

w, w′, . . . , w(n−1) are monotonic and of constant sign on some interval [t1,∞). Since

0 6 p(t) 6 p2 < 1 and y < 0, we have

w(t) 6 y(t) − p2y(r(t)) + k(t) − F (t).

Taking the limit inferior, using that w is monotonic and that k(t) and F (t) approach

zero, we have

λ = lim
t→∞

w(t) 6 (1 − p2) lim inf
t→∞

y(t) < 0.

Then w(t) < 0 for t large enough. Now by [8, Lemma 5.2.1], w(n) > 0 and w < 0

imply the existence of t1 such that w(n−1)(t) < 0 for t > t1. Next we show that

lim sup
t→∞

y(t) < 0, which will be used for bounding G(y(g(s))) from above by a negative

constant. Using that 0 6 p(t) 6 p2 < 1 and y < 0, we obtain

w(t) > y(t) + k(t) − F (t).

Taking the limit superior, using that w is monotonic and that k(t) and F (t) approach

zero, we have

0 > λ = lim
t→∞

w(t) > lim sup
t→∞

y(t).

Then there exists a t2 > t1 such that for t > t2, y(t), y(h(t)), y(g(t)), y(r(t)) are

bounded above by a negative constant. By (H0)–(H1), for s > t2, G(y(g(s))) is

bounded above by a negative constant δ. Integrating (2.9), we arrive at

w(n−1)(t) = w(n−1)(t1) +

∫ t

t1

−v(s)G(y(g(s))) ds > w(n−1)(t1) − δ

∫ t

t1

v(s) ds.

Note that by (H3) the right-hand side approaches∞, while the left-hand side is neg-
ative. This contradiction implies that an eventually negative solution must approach

zero as t → ∞. This completes the proof. �

The following example illustrates some of our main results.
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E x am p l e 2.7. Consider the neutral functional differential equation with positive

and negative coefficients, for t > 1,

(2.12) [y(t) − e−5t/3y(t/3)]′′′ + (e−t + 1)G(y(t/2)) − 8e−t(e−t + 1)H(y(t/4)) = 0,

whereG(x) = x2 sgn(x)/(1+x2) andH(x) = x4 sgn(x)/(1+x4). Here sgn(x) assumes

values −1, 0, 1 for x < 0, x = 0, x > 0, respectively. Clearly, all the conditions of

Theorems 2.3, 2.6 and 2.4 are satisfied by the neutral equation (2.12). As such, by

these theorems, (2.12) has a solution y(t) = e−t, which tends to zero as t → ∞.
Note that in (2.12), G is sublinear; as such, none of the results published before this

article can be applied to this neutral equation.

In the next result we remove the barrier at −1 for p(t). However, we introduce

additional hypotheses.

Theorem 2.8. Assume (H0)–(H2), (H4)–(H6), p4 6 p(t) 6 0, and let the delay

functions satisfy g(r(t)) = r(g(t). Also assume that

(2.13)

∫

∞

t0

min{v(t), v(r(t))} dt = ∞;

that there exists a positive constant δ such that for x, y, z > 0,

(2.14) G(x + y) 6 δ(G(x) + G(y)), G(zx) 6 G(z)G(x);

and that for x, y < 0 and z > 0,

(2.15) G(x + y) > δ(G(x) + G(y)), G(zx) > G(z)G(x).

Then every solution of (1.1) is oscillatory or tends to zero as t → ∞.

P r o o f. By contradiction assume y is an eventually positive solution of (1.1)

which does not tend to zero as t → ∞. Then there exists a t0 such that for t > t0, y(t),

y(h(t)), y(g(t)), y(r(t)) are positive and lim sup
t→∞

y(t) > 0. Define w(t) by (2.8). Then,

as above, w(n) 6 0 and w, w′, . . . , w(n−1) are monotonic and of constant sign on some

interval [t1,∞). From p(t) 6 0 and y > 0 it follows that w(t) > y(t) + k(t) − F (t).

Taking the limit we have

λ = lim
t→∞

w(t) > lim sup
t→∞

y(t) > 0.

Since k(t) and F (t) approach zero, y(t)− p(t)y(r(t)) is bounded below by a positive

constant for all t large enough. Using y(t)−p4y(r(t)) > y(t)−p(t)y(r(t)), lim
t→∞

g(t) =
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∞, and g(r(t)) = r(g(t)), it follows that y(g(t))− p4y(g(r(t))) is also bounded below

by a positive constant on some interval [t2,∞). Then by (H0)–(H1) there exists a

positive constant α such that α 6 G(y(g(t)) − p4y(g(r(t)))). Using (2.14) we obtain

α 6 G(y(g(t)) − p4y(g(r(t))))

6 δ[G(y(g(t))) + G(−p4)y(g(r(t)))]

6 δ[G(y(g(t))) + G(−p4)G(y(g(r(t))))].

From (2.9) we have

w(n)(t) + G(−p4)w
(n)(r(t))

6 −min{v(t), v(r(t))}[G(y(g(t))) + G(−p4)G(y(g(r(t))))]

6 −min{v(t), v(r(t))}α/δ

Integrating, we arrive at

w(n−1)(t) + G(−p4)w
(n−1)(r(t))

6 w(n−1)(t2) + G(−p4)w
(n−1)(r(t2)) − (α/δ)

∫ t

t2

min{v(s), v(r(s))} ds.

Taking the limit as t → ∞, by (H3) and (2.12) we obtain that the right-hand side
approaches −∞ while the left-hand side is positive. This contradiction proves that
eventually positive solutions must converge to zero. For eventually negative solutions,

we proceed as above. Thus the proof is complete. �

As prototypes of functions G satisfying the conditions (H0), (H1), (2.14)–(2.15),

we have G(x) = |x|λ sgn(x) and G(x) = (β + |x|µ)|x|λ sgn(x) with λ > 0, µ > 0,

λ + µ > 1, β > 1. For verifying these conditions, we may use the well known

inequality [5, p. 292]

xp + yp
>

{

(x + y)p, 0 6 p < 1,

21−p(x + y)p, 1 6 p.

Clearly, (2.12) implies (H3), but not the other way around. For example v(t) =

max{0, sin(t)} and r(t) = t − π yield
∫

∞

0 v(t) dt = ∞ and
∫

∞

0 v(r(t)) dt = ∞ but
∫

∞

0
min{v(t), v(r(t))} dt = 0. However, when v is monotonic, (2.12) is equivalent to

(H3).

A result similar to Theorem 2.8 is shown in [6, Theorem 2.20]. There it is assumed

that
∫

∞

t0

tn−2 min{v(t), v(r(t))} dt = ∞

which is less restrictive than (2.12). This is a trade off for G being non-decreasing

and of superlinear growth there.
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R em a r k 2.9. Note that, even in the particular cases of our results for u ≡ 0 in

(1.1), i.e., for the equation

[y(t) − p(t)y(r(t))](n) + v(t)G(y(g(t))) = f(t),

Theorems 2.3, 2.6, 2.4 and 2.8 generalize the results in [17], [18]. Due to this gener-

alization, particularly, by relaxing the conditions that G is non-decreasing and super

linear, it is now possible to apply these results to the oscillatory and asymptotic

behaviour of the higher-order neutral equation (1.2) with an oscillating coefficient

q(t) in our next section, which was not hitherto possible.

3. Application to neutral equations with oscillating coefficients

In this section we find sufficient conditions for every solution of the higher order

(n > 2) neutral differential equation

(3.1) [y(t) − p(t)y(r(t))](n) + q(t)G(y(g(t))) = f(t)

to oscillate or tend to zero as t → ∞, where q(t) is allowed to change sign. Let

q+(t) = max{q(t), 0} and q−(t) = max{−q(t), 0}. Then q(t) = q+(t)− q−(t) and the

above equation can be written as

(3.2) [y(t) − p(t)y(r(t))](n) + q+(t)G(y(g(t))) − q−(t)G(y(g(t))) = f(t).

Now we proceed as in the previous section by setting v(t) = q+(t), u(t) = q−(t) and

H(x) = G(x). Assumptions (H3) and (H4) become

∫

∞

t0

q+(t) dt = ∞,

∫

∞

t0

tn−1q−(t) dt < ∞,

which are feasible conditions. Therefore, the study of (3.1) reduces to the study of

(1.1) in Theorems 2.3, 2.4, 2.6, 2.4. However, Theorem 2.1 cannot be applied because

(H2) and (2.4) are incompatible conditions.

For the results in this section we need G to be bounded, continuous, and to satisfy

(H0) and (H1). The prototype of such a function G(y) is y2n sgn(y)/(1 + y2n). To

emphasize the need for condition (H4) in the results in this section, we consider the

equation

y′′(t) + q(t)y(t − 2π) = 0,

where q(t) = (sin(t) − cos2(t)), n = 2 and p(t) = 0. Then q+(t) = (sin(t))+ and

q−(t) = ((sin(t))− + cos2(t)). Note that
∫

∞

0 tq−(t) dt = ∞ and that the solution

y(t) = exp(sin(t)) neither oscillates nor tends to zero as t → ∞.
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F i n a l c o mm e n t s. Since (H2) and (2.4) are incompatible, it would be inter-

esting to study the oscillation of solutions to (1.1) or to (3.1), by either relaxing the

conditions or by considering the corresponding linear equations.

While studying (1.1) and (3.1), we assumed (H4). However, we do not know

yet what would happen if these conditions are not met. Hence it would be very

interesting to do research in this direction.

We observe that in the majority of the results for forced equations, non-oscillatory

solutions tend to zero at ∞. Can we change this asymptotic behaviour of the non-
oscillatory solutions by imposing additional conditions on the coefficient functions of

(1.1) or (3.1)?

A c k n ow l e d g em e n t. The authors are thankful and obliged to the referee for

his/her various suggestions how to improve the presentation of this paper.
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