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Abstract. Utilizing the theory of fixed point index for compact maps, we establish new
results on the existence of positive solutions for a certain third order boundary value prob-
lem. The boundary conditions that we study are of nonlocal type, involve Stieltjes integrals
and are allowed to be nonlinear.
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1. Introduction

In a very interesting paper [6], Graef and Webb studied the existence of multiple

solutions for the nonlinear third order differential equation

(1.1) u′′′(t) = g(t)f(t, u(t)), t ∈ (0, 1),

subject to the nonlocal boundary conditions (BCs)

(1.2) u(0) = 0, u′(p) = 0, u′′(1) = λ[u′′],

where p ∈ [1/2, 1] and λ[·] is a linear functional on the space C[0, 1] given by a

Stieltjes integral, namely

(1.3) λ[v] =

∫ 1

0

v(s) dΛ(s),
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with dΛ a signed measure. The formulation (1.3) is quite general and includes, as

special cases,

λ[v] =

m
∑

i=1

λiv(ξi) and λ[v] =

∫ 1

0

λ(s)v(s) ds,

that is, m-point and integral conditions.

Nonlocal boundary conditions, in the case of third order equations, have been

studied recently by several authors, see for example the papers by Anderson and

Davis [1], Clark and Henderson [4], Palamides and Palamides [24], Palamides and

Smyrlis [25], Wang and Ge [26], Yang [31], Yao [33] and references therein.

One motivation given in [6] is that the BCs (1.2) can be seen as a generalization

of the BCs that occur in a third order problem studied by Graef and Yang [7] and

extended to the higher order case by Graef, Henderson and Yang [8].

The methodology in [6] is to rewrite the BVP (1.1)–(1.2) as a Hammerstein integral

equation of the form

(1.4) u(t) =

∫ 1

0

kλ(t, s)g(s)f(s, u(s)) ds.

In order to establish existence and nonexistence results for the equation (1.4), Graef

and Webb make use of a careful analysis of the Green function kλ combined with an

earlier theory developed by Webb and co-authors [29], [30].

Furthermore, in the paper [6], by making use of the results of [29] that deal with

perturbed Hammerstein integral equations of the form

(1.5) u(t) = γ(t)α̃[u] + δ(t)β̃[u] +

∫ 1

0

k(t, s)g(s)f(s, u(s)) ds,

the more general nonlocal BCs

u(0) = α̃[u], u′(p) = 0, u′′(1) + β̃[u] = λ[u′′],

where α̃[·] and β̃[·] are linear functionals on C[0, 1] given by Stieltjes integrals with

signed measures, are studied.

In [14] Infante, motivated by earlier work of Guidotti and Merino [9], Infante and

Webb [17], [18], Webb [27], [28], and Palamides, Infante and Pietramala [23], studied

a thermostat model with nonlinear controllers. The approach used in [14] relied on

an extension of the results of [29], valid for equations of the type (1.5), to the context

of nonlinear perturbations of the form

(1.6) u(t) = γ(t)H1(α[u]) + δ(t)H2(β[u]) +

∫ 1

0

k(t, s)g(s)f(s, u(s)) ds,
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whereH1, H2 are continuous functions such that there exist h11, h12, h21, h22 ∈ [0,∞)

with

(1.7) h11v 6 H1(v) 6 h12v and h21v 6 H2(v) 6 h22v

for every v > 0. Unlike the results of [29], due to some inequalities involved in the

theory, the functionals α[·] and β[·] are assumed to be given by positive measures.

Here we focus on the boundary value problem (BVP)

u′′′(t) = g(t)f(t, u(t)), t ∈ (0, 1),

u(0) = H1(α[u]), u′(p) = H2(β[u]), u′′(1) = λ[u′′], p ∈ [1/2, 1],

where the functions H1, H2 and the functionals α[·] and β[·] are as above.

BVPs with nonlinear BCs have been studied recently by several authors, see for

example the papers by Cabada, Minhós and Santos [3], Franco and O’Regan [5],

Infante [11], [12], [14], Infante and Pietramala [16], Kong and Wang [19], Minhós

[22], Yang [32] and references therein.

Here we utilize some of the results of [6] to show that our BVP fits exactly the

framework of [14].

We prove, via the classical fixed point index theory, the existence of multiple

positive solutions.

2. Some preliminary results on the integral equation

We first recall some results from [14]. The assumptions made on the terms that

occur in the perturbed Hammerstein integral equation

u(t) = γ(t)H1(α[u]) + δ(t)H2(β[u]) +

∫ 1

0

k(t, s)g(s)f(s, u(s)) ds := Tu(t),

are as follows:

• f : [0, 1] × [0,∞) → [0,∞) is continuous.

• k : [0, 1] × [0, 1] → [0,∞) is continuous.

• There exist a subinterval [a, b] ⊆ [0, 1], a function Φ ∈ L∞[0, 1], and a constant

c1 ∈ (0, 1] such that

k(t, s) 6 Φ(s) for t ∈ [0, 1] and almost every s ∈ [0, 1],

k(t, s) > c1Φ(s) for t ∈ [a, b] and almost every s ∈ [0, 1].

• gΦ ∈ L1[0, 1], g > 0 a.e., and
∫ b

a
Φ(s)g(s) ds > 0.
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• A, B are functions of bounded variation. Here dA and dB are positive measures

and we use the notation

KA(s) :=

∫ 1

0

k(t, s) dA(t) and KB(s) :=

∫ 1

0

k(t, s) dB(t).

• γ ∈ C[0, 1], γ(t) > 0, h12α[γ] < 1. There exists c2 ∈ (0, 1] such that

γ(t) > c2‖γ‖ for t ∈ [a, b].

• δ ∈ C[0, 1], δ(t) > 0, h22β[δ] < 1. There exists c3 ∈ (0, 1] such that

δ(t) > c3‖δ‖ for t ∈ [a, b].

• D2 := (1 − h12α[γ])(1 − h22β[δ]) − h12h22α[δ]β[γ] > 0.

Under the above hypotheses, the compact operator T leaves invariant the cone

(2.1) K =
{

u ∈ C[0, 1], u > 0: min
t∈[a,b]

u(t) > c‖u‖
}

,

where c = min{c1, c2, c3}. This type of cone was used first by Krasnosel’skĭı, see e.g.

[20], and D. Guo, see e.g. [10], and later by several authors.

We utilize the classical fixed point index theory for compact maps (see for example

[2] or [10]) and we work with the following open bounded sets (relative to K):

K̺ = {u ∈ K : ‖u‖ < ̺}, V̺ =
{

u ∈ K : min
a6t6b

u(t) < ̺
}

.

The set V̺ is equal to the set called Ω̺/c in [21] (here c is from (2.1)). A key feature

of these sets is that they can be nested, that is

K̺ ⊂ V̺ ⊂ K̺/c.

We make use of the quantity

D1 := (1 − h11α[γ])(1 − h21β[δ]) − h11h21α[δ]β[γ],

and observe that the condition D2 > 0 implies D1 > 0.

The following lemma gives a condition allowing the index to be 0 on the set V̺.
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Lemma 1 [14]. Assume that there exists ̺ > 0 such that

f̺,̺/c

(

(c2‖γ‖

D1
(1 − h21β[δ]) +

c3‖δ‖

D1
h11β[γ]

)

∫ b

a

KA(s)g(s) ds(2.2)

+
(c2‖γ‖

D1
h21α[δ] +

c3‖δ‖

D1
(1 − h11α[γ])

)

∫ b

a

KB(s)g(s) ds +
1

M

)

> 1,

where

f̺,̺/c = inf
{f(t, u)

̺
: (t, u) ∈ [a, b] × [̺, ̺/c]

}

and
1

M
= inf

t∈[a,b]

∫ b

a

k(t, s)g(s) ds.

Then the fixed point index, iK(T, V̺), is 0.

The next result gives a sufficient condition for the index to be 1 on the set K̺.

Lemma 2 [14]. Assume that there exists ̺ > 0 such that

f0,̺

(

(‖γ‖

D2
(1 − h22β[δ]) +

‖δ‖

D2
h12β[γ]

)

∫ 1

0

KA(s)g(s) ds(2.3)

+
(‖γ‖

D2
h22α[δ] +

‖δ‖

D2
(1 − h12α[γ])

)

∫ 1

0

KB(s)g(s) ds +
1

m

)

< 1,

where

f0,̺ = sup
{f(t, u)

̺
: (t, u) ∈ [0, 1]× [0, ̺]

}

and
1

m
= sup

t∈[0,1]

∫ 1

0

k(t, s)g(s) ds.

Then iK(T, K̺) = 1.

3. The boundary value problem

Now we turn our attention to the BVP

u′′′(t) = g(t)f(t, u(t)), t ∈ (0, 1),(3.1)

u(0) = H1(α[u]), u′(p) = H2(β[u]), u′′(1) = λ[u′′], p ∈ [1/2, 1].(3.2)

In what follows we assume that λ[1] < 1 and by a solution of the BVP (3.1)–(3.2)

we mean a solution of the corresponding perturbed integral equation

(3.3) u(t) = H1(α[u]) + tH2(β[u]) +

∫ 1

0

kλ(t, s)g(s)f(s, u(s)) ds,
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where kλ is the Green function associated to the BCs

u(0) = 0, u′(p) = 0, u′′(1) = λ[u′′],

that is,

kλ(t, s) :=
(

tp −
1

2
t2

)(

1 +
Λ(s)

1 − λ[1]

)

− t(p − s)χ[0,p](s) +
(t − s)2

2
χ[0,t](s),

where

Λ(s) :=

∫ s

0

dΛ(t) and χI(t) :=

{

1, t ∈ I,

0, t 6∈ I.

The function kλ was investigated in Section 2 of [6] and a key property is given by

the following theorem.

Theorem 3.1 [6]. Suppose that Λ(s) > 0 for s 6 p and Λ(s)/(1 − λ[1]) >

−(s − p)/(1 − p) for s > p, and let

Φ(s) :=















p2

2
+

p2

2

Λ(s)

1 − λ[1]
, s > p,

s2

2
+

p2

2

Λ(s)

1 − λ[1]
, s < p.

Then, for t ∈ [0, 1] and s ∈ [0, 1], we have

c(t)Φ(s) 6 kλ(t, s) 6 Φ(s),

where c(t) := (2tp − t2)/p2.

In order to satisfy the conditions of Section 2, we need

h12α[1] < 1, h22β[t] < 1, (1 − h12α[1])(1 − h22β[t]),−h12h22α[t]β[1] > 0,

and, by fixing [a, b] ⊂ (0, 1), we obtain

(3.4) c := min{a, a(2p− a)/p2, b(2p− b)/p2}.

By means of the fixed point index results of Section 2, we can state a result on the

existence of one or of two positive solutions. Note that, provided the nonlinearity f

possesses a suitable oscillatory behavior, it is possible to state, with arguments similar

to those in [21], a theorem on the existence of three or more positive solutions.
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Theorem 3.2. Let [a, b] ⊂ (0, 1) and let c be as in (3.4). Then equation (3.3) has

a positive solution in K if one of the following conditions holds.

(S1) There exist ̺1, ̺2 ∈ (0,∞) with ̺1 < ̺2 such that (2.3) is satisfied for ̺1

and (2.2) is satisfied for ̺2.

(S2) There exist ̺1, ̺2 ∈ (0,∞) with ̺1 < c̺2 such that (2.2) is satisfied for ̺1

and (2.3) is satisfied for ̺2.

Equation (3.3) has at least two positive solutions in K if one of the following condi-

tions holds.

(D1) There exist ̺1, ̺2, ̺3 ∈ (0,∞) with ̺1 < ̺2 < c̺3 such that (2.3) is satisfied

for ̺1, (2.2) is satisfied for ̺2 and (2.3) is satisfied for ̺3.

(D2) There exist ̺1, ̺2, ̺3 ∈ (0,∞) with ̺1 < c̺2 and ̺2 < ̺3 such that (2.2)

is satisfied for ̺1, (2.3) is satisfied for ̺2 and (2.2) is satisfied for ̺3.

The next example illustrates the applicability of our result.

E x am p l e 1. Consider the BVP

u′′′(t) = f(u(t)), t ∈ (0, 1),

u(0) = H1(u(1/4)), u′(2/3) = H2(u(1/2)), u′(3/4) = u′(1),

where the functions H1, H1 are chosen in a way similar to that used in [15], that is

H1(w) =

{

2
3w, 0 6 w 6 1,

1
3w + 1

3 , w > 1,
H2(w) =

{

9
10w, 0 6 w 6 1,

9
20w + 9

20 , w > 1.

In this case we have

h11 = 1/3, h21 = 9/20, h12 = 2/3, h22 = 9/10.

We fix [a, b] = [1/8, 7/8] and, by direct calculation, we obtain

D1 = 23/48, D2 = 1/30, m = 324/31, M(1/8, 7/8) = 36864/1325.

This value for m corrects the typo (m = 567/55) present in [6].

Therefore all terms appearing in (2.2) and (2.3) can be computed and the growth

assumptions for the nonlinearity f are

f0,̺ < 0.24820 and f̺,̺/c > 5.7245.
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