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Abstract

In this contribution, we discuss some unique common fixed point the-
orems for three and four occasionally weakly compatible mappings satis-
fying different types of contractive condition.
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1 Introduction

In 1982, Sessa [8] introduced the concept of weakly commuting mappings which
extends the notion of commuting mappings.
After four years, Jungck [3] defined compatible mappings as an extension of

weakly commuting mappings.
Later on, the same author with Murthy and Cho [4] gave another extension

of weakly commuting mappings under the name of compatible mappings of type
(A).
Again, Pathak and Khan [7] extended compatible of type (A) mappings to

compatible mappings of type (B).
On this direction, Pathak et al. [6] introduced the new concept i.e. compat-

ible type of (C) as another extension of compatible type of (A) and proved a
common fixed point theorem in a Banach space.
In their paper [5], Jungck and Rhoades defined the notion of weakly com-

patible mappings as an extension of all above notions.
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And recently, Al-Thagafi and Shahzad [2] gave the concept of occasionally
weakly compatible mappings which is more general than weakly compatible
mappings and all above notions.
So on this way we prove some common fixed point theorems for three and

four occasionally weakly compatible mappings satisfying different types of con-
tractive conditions which improve the results given by Aage and Salunke [1].

2 Preliminaries

Definition 2.1 Self mappings f and g of a metric space (X , d) are said to be
weakly commuting pair if, for all x ∈ X

d(fgx, gfx) ≤ d(fx, gx).

Definition 2.2 Self mappings f and g of a metric space (X , d) are said to be
(1) compatible if,

lim
n→∞

d(fgxn, gfxn) = 0,

(2) compatible of type (A) if,

lim
n→∞

d(fgxn, g
2xn) = 0 and lim

n→∞
d(gfxn, f

2xn) = 0,

(3) compatible of type (B) if,

lim
n→∞

d(fgxn, g
2xn) ≤ 1

2

[
lim
n→∞

d(fgxn, f t) + lim
n→∞

d(ft, f2xn)
]

and

lim
n→∞

d(gfxn, f
2xn) ≤ 1

2

[
lim
n→∞

d(gfxn, gt) + lim
n→∞

d(gt, g2xn)
]
,

(4) compatible of type (C) if,

lim
n→∞

d(fgxn, g
2xn) ≤ 1

3

[
lim
n→∞

d(fgxn, f t) + lim
n→∞

d(ft, f2xn)

+ lim
n→∞

d(ft, g2xn)
]

and

lim
n→∞

d(gfxn, f
2xn) ≤ 1

3

[
lim
n→∞

d(gfxn, gt) + lim
n→∞

d(gt, g2xn)

+ lim
n→∞

d(gt, f2xn)
]
,

whenever {xn} is a sequence in X such that

lim
n→∞

fxn = lim
n→∞

gxn = t

for some t ∈ X .
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Definition 2.3 Self mappings f and g of a metric space (X , d) are said to be
weakly compatible if they commute at their coincidence points.

Definition 2.4 Two self mappings f and g of a set X are occasionally weakly
compatible (shortly (owc)) iff, there is a point t in X which is a coincidence
point of f and g at which f and g commute.

Definition 2.5 A function Φ: [0,∞) → [0,∞) is said to be a contractive mod-
ulus if Φ(0) = 0 and Φ(t) < t for t > 0.

Definition 2.6 A real valued function Φ defined on X ⊂ R is said to be upper
semi-continuous if lim

n→∞
Φ(tn) ≤ Φ(t), for every sequence {tn} in X with tn → t

as n → ∞.

In their paper [1] Aage and Salunke proved the following results:

Theorem 2.7 Let f , g and h be self mappings of a complete metric space
(X , d) and Φ is a contractive modulus function satisfying:

(i) f(X ) ∪ g(X ) ⊂ h(X ).

(ii) d2(fx, gy) ≤ max{Φ(d(hx, hy))Φ(d(hx, fx)),Φ(d(hx, hy))Φ(d(hy, fx)),
Φ(d(hx, hy))Φ(d(hy, gy)),Φ(d(hx, fx))Φ(d(hy, gy)),

Φ(d(hx, gy))Φ(d(hy, fx))},

for all x, y ∈ X ,
(iii) the pair (f, h) or (g, h) is compatible of type (A).

(iv) If h is continuous.

Then f , g and h have a unique common fixed point.

Theorem 2.8 Suppose f , g, h and k are four self mappings of a complete
metric space (X , d) satisfying the conditions

(i) f(X ) ⊂ k(X ), g(X ) ⊂ h(X ).

(ii) d2(fx, gy) ≤ max{Φ(d(hx, ky))Φ(d(hx, fx)),Φ(d(hx, ky))Φ(d(ky, gy)),
Φ(d(hx, fx))Φ(d(ky, gy)),Φ(d(hx, gy))Φ(d(ky, fx))},

for all x, y ∈ X .
(iii) Φ is a contractive modulus.

(iv) One of f , g, h and k is continuous.

And if

(v) the pairs (f, h) and (g, k) are compatible of type (A).

Then f , g, h and k have a unique common fixed point.

The following example shows that occasionally weakly compatible mappings
are not compatible of type (A) in general.
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Example 2.9 Let X = [0,∞[ with the usual metric. Define f, g : X → X by:

fx =

{
4 if x ∈ [0, 1[
x4 if x ∈ [1,∞[,

gx =

{
3 if x ∈ [0, 1[
1
x4 if x ∈ [1,∞[.

We have f(1) = g(1) = 1 and fg(1) = 1 = gf(1); that is, f and g are owc.
Now, consider the sequence xn = 1 + 1

n for n ∈ {1, 2, . . .}.
We have fxn = x4

n → 1 and gxn = 1
x4
n
→ 1 as n → ∞. But,

d(fgxn, ggxn) → 1 �= 0.

Therefore, f and g are not compatible of type (A).

The next definition will be needed.

Definition 2.10 Let X be a set. A symmetric on X is a mapping d : X ×X →
[0,∞) such that d(x, y) = 0 iff x = y, and d(x, y) = d(y, x) for x, y in X .

3 Main Results

3.1 Common fixed point for three mappings

Theorem 3.1 Let X be a set with a symmetric d. Let f , g and h be three self
mappings of (X , d) and Φ is a contractive modulus function satisfying:

d2(fx, gy) ≤ max{Φ(d(hx, hy))Φ(d(hx, fx)),
Φ(d(hx, hy))Φ(d(hy, fx)),Φ(d(hx, hy))Φ(d(hy, gy)),

Φ(d(hx, fx))Φ(d(hy, gy)),Φ(d(hx, gy))Φ(d(hy, fx))}, (3.1)

for all x, y ∈ X ,
the pair (f, h) or (g, h) is owc. (3.2)

Then f , g and h have a unique common fixed point.

Proof Suppose that f and h are owc, then, there is an element u ∈ X such
that fu = hu and fhu = hfu.
First, we prove that gu = fu = hu. Indeed, by inequality (3.1), we get

d2(fu, gu) ≤ max{Φ(d(hu, hu))Φ(d(hu, fu)),Φ(d(hu, hu))Φ(d(hu, fu)),
Φ(d(hu, hu))Φ(d(hu, gu)),Φ(d(hu, fu))Φ(d(hu, gu)),

Φ(d(hu, gu))Φ(d(hu, fu))};
i.e., d2(fu, gu) ≤ 0, which implies that d(fu, gu) = 0 i.e. fu = gu = hu.
Now, suppose that gfu �= ffu. By (3.1) we get

d2(ffu, gfu) ≤ max{Φ(d(hfu, hfu))Φ(d(hfu, ffu)),
Φ(d(hfu, hfu))Φ(d(hfu, ffu)),

Φ(d(hfu, hfu))Φ(d(hfu, gfu)),

Φ(d(hfu, ffu))Φ(d(hfu, gfu)),

Φ(d(hfu, gfu))Φ(d(hfu, ffu))};
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that is, d2(ffu, gfu) ≤ 0, which implies that d(ffu, gfu) = 0 i.e. gfu = ffu =
fhu = hfu. Again, we have

d2(ffu, gu) ≤ max{Φ(d(hfu, hu))Φ(d(hfu, ffu)),
Φ(d(hfu, hu))Φ(d(hu, ffu)),Φ(d(hfu, hu))Φ(d(hu, gu)),

Φ(d(hfu, ffu))Φ(d(hu, gu)),Φ(d(hfu, gu))Φ(d(hu, ffu))};

i.e.,

d2(ffu, fu) ≤ [Φ(d(ffu, fu))]2 < d2(ffu, fu)

the above contradiction implies that ffu = fhu = hfu = gfu = fu. Put
fu = gu = hu = t, so, t is a common fixed point of mappings f , g and h.
Now, let t and z be two distinct common fixed points of mappings f , g and

h; i.e., ft = gt = ht = t and fz = gz = hz = z. From condition (3.1) we have

d2(ft, gz) ≤ max{Φ(d(ht, hz))Φ(d(ht, ft)),Φ(d(ht, hz))Φ(d(hz, ft)),
Φ(d(ht, hz))Φ(d(hz, gz)),Φ(d(ht, ft))Φ(d(hz, gz)),

Φ(d(ht, gz))Φ(d(hz, ft))};

i.e.,

d2(t, z) ≤ Φ2(d(t, z)) < d2(t, z)

which implies that t = z. �

3.2 Common fixed point for four mappings

Now, we give our second main result.

Theorem 3.2 Let X be a set endowed with a symmetric d. Suppose f , g, h
and k are four self mappings of (X , d) satisfying the conditions:

d2(fx, gy) ≤ max{Φ(d(hx, ky))Φ(d(hx, fx)),Φ(d(hx, ky))Φ(d(ky, gy)),
Φ(d(hx, fx))Φ(d(ky, gy)),Φ(d(hx, gy))Φ(d(ky, fx))}, (3.3)

for all x, y ∈ X , where Φ is contractive modulus,

the pairs (f, h) and (g, k) are owc. (3.4)

Then f , g, h and k have a unique common fixed point.

Proof Since pairs of mappings (f, h) and (g, k) are owc, then, there exist
two elements u and v in X such that fu = hu and fhu = hfu, gv = kv and
gkv = kgv.
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First, we prove that fu = gv. Indeed, by inequality (3.3) we get

d2(fu, gv) ≤ max{Φ(d(hu, kv))Φ(d(hu, fu)),Φ(d(hu, kv))Φ(d(kv, gv)),
Φ(d(hu, fu))Φ(d(kv, gv)),Φ(d(hu, gv))Φ(d(kv, fu))}

= Φ2(d(fu, gv));

i.e.,

d2(fu, gv) ≤ Φ2(d(fu, gv)) < d2(fu, gv),

which is a contradiction, hence, fu = hu = gv = kv.
Now, suppose that ffu �= fu. By using inequality (3.3) we obtain

d2(ffu, gv) ≤ max{Φ(d(hfu, kv))Φ(d(hfu, ffu)),
Φ(d(hfu, kv))Φ(d(kv, gv)),Φ(d(hfu, ffu))Φ(d(kv, gv)),

Φ(d(hfu, gv))Φ(d(kv, ffu))}
= Φ2(d(ffu, gv));

that is,

d2(ffu, fu) ≤ Φ2(d(ffu, fu)) < d2(ffu, fu),

this contradiction implies that ffu = fu = hfu.
Similarly gfu = kfu = fu. Therefore fu = hu = gv = kv is a common

fixed point of mappings f , g, h and k.
Put fu = hu = gv = kv = t, then, ft = ht = gt = kt = t.
Now, let t and z be two common fixed points of mappings f , g, h and k

such that z �= t, so t = ft = gt = ht = kt and z = fz = gz = hz = kz. From
condition (3.3), we have

d2(t, z) = d2(ft, gz)

≤ max{Φ(d(ht, kz))Φ(d(ht, ft)),Φ(d(ht, kz))Φ(d(kz, gz)),
Φ(d(ht, ft))Φ(d(kz, gz)),Φ(d(ht, gz))Φ(d(kz, ft))}

= Φ2(d(t, z));

i.e.,

d2(t, z) ≤ Φ2(d(t, z)) < d2(t, z),

which is a contradiction. Thus, z = t. �

Remark 3.3 Truly, our results improve those of Aage and Salunke because we
are removed the inclusions between the images of the mappings, and we are
weaken several conditions on the space (X , d), the contractive modulus function
and all the mappings.



On common fixed point theorems. . . 31

References

[1] Aage, C. T., Salunke, J. N.: A note on common fixed point theorems. Int. J. Math. Anal.
2, 28 (2008), 1369–1380.

[2] Al-Thagafi, M. A., Shahzad, N.: Generalized I-nonexpansive selfmaps and invariant
approximations. Acta Math. Sin. (Engl. Ser.) 24, 5 (2008), 867–876.

[3] Jungck, G.: Compatible mappings and common fixed points. Internat. J. Math. Math.
Sci. 9, 4 (1986), 771–779.

[4] Jungck, G., Murthy, P. P., Cho, Y. J.: Compatible mappings of type (A) and common
fixed points. Math. Japon. 38, 2 (1993), 381–390.

[5] Jungck, G., Rhoades, B. E.: Fixed points for set valued functions without continuity.
Indian J. Pure Appl. Math. 29, 3 (1998), 227–238.

[6] Pathak, H. K., Cho, Y. J., Kang, S. M., Madharia, B.: Compatible mappings of type
(C) and common fixed point theorems of Greguš type. Demonstratio Math. 31, 3 (1998),
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