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Abstract. The main purpose of this paper is to prove that the elliptic curve E : y2 =
x3 + 27x − 62 has only the integral points (x, y) = (2, 0) and (28844402, ±154914585540),
using elementary number theory methods and some known results on quadratic and quartic
Diophantine equations.
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1. Introduction

In recent years, the determination of integral points on elliptic curves is an inter-

esting problem in number theory and arithmetic algebraic geometry. Many advanced

methods have been developed to solve this problem (see [1]–[3]). In this paper, an-

other approach to the subject is proposed.

In [4] D. Zagier proposed whether the largest integral point of the elliptic curve

(1) E : y2 = x3 + 27x − 62

is (x, y) = (28844402,±154914585540). In this paper, all the integral points of

formula (1) are determined as following, using elementary number theory methods

and some known results on quadratic and quartic Diophantine equations.

Theorem. Equation (1) has only the integral points (x, y) = (2, 0) and (28844402,

±154914585540).
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2. Some lemmas

Let N+ be the set of all positive integers. Let D be a nonsquare positive integer.

It is a well known fact that the equation

(2) u2 − Dv2 = 1, u, v ∈ N+

has solutions (u, v), and it has exactly one solution (u1, v1) such that u1 + v1

√
D 6

u + v
√

D, where (u, v) runs through all solutions of (2). Such (u1, v1) is called the

least solution of (2).

Lemma 1. Let D1 and D2 be coprime positive integers with D1 > 1. lf the

equation

(3) D1U
2 − D2V

2 = 1, U, V ∈ N+

has solutions (U, V ), then it has exactly one solution (U1, V1) with

U1

√

D1 + V1

√

D2 6 U
√

D1 + V
√

D2,

where (U, V ) runs through all solutions of (3). Such (U1, V1) is called the least

solution of (3). Moreover, for any solution (U, V ) of (3), we have U1 | U and V1 | V .

P r o o f. See reference [5]. �

Lemma 2. The equation

(4) X2 − DY 4 = 1, X, Y ∈ N+

has at most two solutions (X, Y ). Moreover, if (4) has exactly two solutions, then

either D ∈ {1785, 28560} or 2u1 and v1 are both squares, where (u1, v1) is the least

solution of (2).

P r o o f. See reference [6]. �

Obviously, the following lemma can be deduced immediately.

Lemma 3. If 2 | D and D 6= 28560, then (4) has at most one solution (X, Y ).
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3. Proof of the theorem

In this section, the theorem is proved.

Let (x, y) be an integral point of (1). Obviously, (1) has only the integral point

(x, y) = (2, 0) with y = 0. Henceforth, we may assume that y 6= 0. Let

(5) z = x − 2.

Substituting (5) into (1), we get

(6) y2 = z(z2 + 6z + 39).

Since y2 > 0 and z2 + 6z + 39 = (z + 3)2 + 30 > 0, we have z > 0. Let d =

gcd(z, z2 + 6z + 39). Then we have d | 39, d ∈ {1, 3, 13, 39} and

(7) z = da2, z2 + 6z + 39 = db2, y = ±dab, a, b ∈ N+, gcd(a, b) = 1

acording to (6).

If d = 1, then according to (7), we obtain

(8) a4 + 6a2 + 39 = b2.

However, since

(9) a4 + 6a2 + 39 ≡
{

7 (mod 8) if 2 | a,

2 (mod 4) if 2 ∤ a,

and

(10) b2 ≡
{

1 (mod 8) if 2 | a,

0 (mod 4) if 2 ∤ a,

(8) is impossible.

If d = 3, then we have

(11) 3a4 + 6a2 + 13 = b2.

However, since

(12) 3a4 + 6a2 + 13 ≡
{

5 (mod 8) if 2 | a,

2 (mod 4) if 2 ∤ a,
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and

(13) b2 ≡
{

1 (mod 8) if 2 | a,

0 (mod 4) if 2 ∤ a,

(11) is impossible.

If d = 13, then we have

(14) 13a4 + 6a2 + 3 = b2.

However, since

(15) 13a4 + 6a2 + 3 ≡
{

3 (mod 8) if 2 | a,

2 (mod 4) if 2 ∤ a,

and

(16) b2 ≡
{

1 (mod 8) if 2 | a,

0 (mod 4) if 2 ∤ a,

(14) is impossible.

If d = 39, then we have

39a4 + 6a2 + 1 = b2.

Hence,

(17) (3a2 + 1)2 + 30a4 = b2.

Since 3 ∤ 3a2 + 1, we see that 3 ∤ b according to (17). Furthermore, since b2 −
(3a2 + 1)2 6≡ 2 (mod 4), (17) is false when 2 ∤ a. Therefore, we have

(18) a = 2c, c ∈ N+.

Substituting (18) into (17), we obtain

(19) b2 − (12c2 + 1)2 = 480c4.

Furthermore, since gcd(2c, b) = 1 according to (18), we have gcd(b + (12c2 + 1),

b − (12c2 + 1)) = 2. Therefore, from (19), we obtain

b + (12c2 + 1) = 2rf4, b − (12c2 + 1) = 2sg4, c = fg,(20)

f, g, r, s ∈ N+, gcd(f, g) = gcd(r, s) = 1, rs = 120.
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Hence, we get

(21) rf4 − 12f2g2 − sg4 = 1

and

(22) (r, s) = (120, 1), (40, 3), (24, 5), (15, 8), (8, 15), (5, 24), (3, 40), or (1, 120).

The eight cases in (22) are discussed separately as following.

Case 1. (r, s) = (120, 1)

According to (21), we obtain 120f4 − 12f2g2 − g4 = 1. However, it is impossible

for 3 ∤ g4 + 1.

Case 2. (r, s) = (40, 3)

According to (21), we have 52f4 − 3(2f2 + g2)2 = 1. It obtains that the equation

(23) 13U2 − 3V 2 = 1, U, V ∈ N+

has the solution (U, V ) = (2f2, 2f2 + g2). However, since 2 ∤ g and the least solu-

tion of (23) is (U1, V1) = (1, 2), according to Lemma 1, we obtain 2 | 2f2 + g2, a

contradiction.

Case 3. (r, s) = (24, 5)

According to (21), we have

(24) 24f4 − 12f2g2 − 5g4 = 1,

whence we obtain 2 ∤ g and

(25) 24f4 − 12f2g2 ≡ 0 (mod 4); 5g4 + 1 ≡ 2 (mod 4),

which contradicts (24).

Case 4. (r, s) = (15, 8)

According to (21), we have

(26) 15f4 − 12f2g2 − 8g4 = 1,

whence we obtain 2 ∤ f and

(27) 12f2g2 + 8g4 ≡ 0 (mod 4); 15f4 − 1 ≡ 2 (mod 4),

which contradics (26).
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Case 5. (r, s) = (8, 15)

According to (21), we have

(28) 8f4 − 12f2g2 − 15g4 = 1,

whence we obtain 3 ∤ f and

(29) 12f2g2 + 15g4 ≡ 0 (mod 3); 8f4 − 1 ≡ 1 (mod 3),

which contradicts (28).

Case 6. (r, s) = (5, 24)

According to (21),we have

(30) 5f4 − 12f2g2 − 24g4 = 1,

whence we obtain 3 ∤ f and

(31) 12f2g2 + 24g4 ≡ 0 (mod 3); 5f4 − 1 ≡ 1 (mod 3),

which contradicts (30).

Case 7. (r, s) = (3, 40)

According to (21), we have

(32) 3f4 − 12f2g2 − 40g4 = 1,

whence we obtain 3 ∤ g and

(33) 3f4 − 12f2g2 ≡ 0 (mod 3)); 40g4 + 1 ≡ 2 (mod 3),

which contradicts (32).

Case 8. (r, s) = (1, 120)

According to (21), we have f4 − 12f2g2 − 120g4 = 1, whence we obtain

(34) (f2 − 6g2)2 − 156g4 = 1,

that is the equation

(35) X2 − 156Y 4 = 1, X, Y ∈ N+

has the solution

(36) (X, Y ) = (|f2 − 6g2|, g).
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On the other hand, since 12492 − 156 · 104 = 1, (35) has only the solution (X, Y ) =

(1249, 10) according to Lemma 3. Therefore, f = 43 and g = 10 according to (36).

Furthermore, it can be obtained that (x, y) = (2884402,±15491585540) accord-

ing to (5), (7), (18), and (20). Hence, the theorem is proved that the elliptic

curve E : y2 = x3 + 27x − 62 has only the integral points (x, y) = (2, 0) and

(28844402,±154914585540).
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