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Abstract. Asymptotic stability of the zero solution for stochastic jump parameter systems
of differential equations given by dX(t) = A(ξ(t))X(t) dt + H(ξ(t))X(t) dw(t), where ξ(t)
is a finite-valued Markov process and w(t) is a standard Wiener process, is considered. It is
proved that the existence of a unique positive solution of the system of coupled Lyapunov
matrix equations derived in the paper is a necessary asymptotic stability condition.
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1. Introduction

In the last decades, there has been a growing number of publications on linear

systems subject to abrupt changes in their structure, which are called systems with

switching, or jump parameter systems. Most researchers have considered the case

where these changes are modeled by continuous or discrete Markov processes. These

publications are motivated by a broad field of applications of jump parameter systems

in various areas of science and technology, for instance, robotic manipulation, aircraft

control, flexible structures for space stations.

Stability conditions and optimal control for Markovian linear systems that do not

incorporate additive disturbances are considered in [1]–[4], [6]–[8], [10]–[13], [15], [16]

among numerous other publications.

More complicated stochastic systems of differential and difference equations with

Markovian and semi-Markovian parameter jumps, which incorporate additive distur-

bances characterized by a Wiener process, have been considered in some recent pub-

lications ([5], [9], [14], [17]), and many important results have been achieved. Among

them are stability conditions for the system dX(t) = A(ξ(t))X(t) dt+H(ξ(t)) dw(t),
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where ξ(t) is a finite-valued Markov process and w(t) is a standard Wiener process,

which were derived in [9]. In this paper we examine a stochastic linear Markovian

jump parameter system in which additive disturbances are incorporated in a differ-

ent, more complicated form.

2. Formulation and proof of main result

We consider the Markovian system of linear stochastic differential equations

(2.1) dX(t) = A(ξ(t))X(t) dt + H(ξ(t))X(t) dw(t),

where ξ(t) is a finite-valued Markov process that takes values ξk (k = 1, . . . , m) with

probabilities

(2.2) pk(t) = P{ξ(t) = ξk} (k = 1, . . . , m).

Assume that the probabilities satisfy the system of linear differential equations

(2.3)
dps(t)

dt
=

n∑
k=1

askps(t) (s = 1, . . . , n),

where the constant coefficients ask (k, s = 1, . . . , n) satisfy the conditions ask > 0

(k 6= s), ass 6 0 (s = 1, . . . , n) and

(2.4)

n∑
k=1

ask = 0 (s = 1, . . . , n),

dw(t) is the standard Wiener process which satisfies the conditions

〈dw(t)〉 ≡ 0,(2.5)

〈dw(t) · dw(t)〉 = dt.

Here 〈·〉 designates mathematical expectation. The zero solution X(t) ≡ 0 of the

system (2.1) is asymptotically stable in mean square if for any solution X(t)

(2.6) lim
t→∞

〈‖X(t)‖〉 = 0.

Here ‖X‖ designates the Euclidean norm of a vector X : ‖X‖2 = X∗X , where ‘∗’

is the symbol of transposition. The equality (2.6) is satisfied iff the matrix D(t) =

〈X(t)X∗(t)〉 tends to the zero matrix at t → ∞. Since the coefficients of (2.1) do
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not depend directly on t, uniform exponential stability of solutions of (2.1) in mean

square follows from (2.6), and the inequality

(2.7) 〈‖X(t)‖2〉 6 Ce−λ(t−t0)
6 〈‖X(t0)‖

2〉 (t > t0)

is satisfied for some constants C > 1, λ > 0. If (2.1) is asymptotically stable in mean

square, the improper integral

(2.8) J =

∫
∞

0

〈‖X(t)‖2〉dt

converges for any solution of the system. Let Bs, s = 1, . . . , m be some positive

symmetric matrices, and let ω(X, ξs) = X∗BsX be the corresponding quadratic

forms for any vector X 6= 0. Let us introduce the Lyapunov functions

(2.9) vs(t, X) =

∫ +∞

t

〈ω(X(y), ξ(y)) | X(t) = X, ξ(t) = ξs〉dy (s = 1, . . . , n).

Here 〈·|·〉 designates conditional mathematical expectation. It can be easily shown

that the convergence of the improper integrals vs(t, X), s = 1, . . . , n is equivalent to

the convergence of (2.7), and therefore it is a necessary and sufficient condition for

mean square asymptotic stability of the zero solution of (2.1). Let us find a necessary

condition for the convergence of the improper integrals vs(t, X), s = 1, . . . , n.

Assume that the integrals converge. They do not depend on t, and therefore can

be expressed in the form

(2.10) vs(t, X) = X∗CsX, Cs > 0 (s = 1, . . . , m).

Let us derive a system of matrix equations for defining the matrices Cs (s = 1, . . . , m).

Let ∆t = h > 0 be a small increment of the argument t. If the Markov process stays

at ξs during the time interval [t; t + h], we can utilize the equality

(2.11) X(t + h) = X + AsXh + HsX dw(t),

where As designates A(ξs), Hs designates H(ξs). In further discussion we will also

utilize the well-known equalities for conditional probabilities:

P{ξ(t + h) = ξs|ξ(t) = ξs} = 1 + hass + O(h2), s = 1, . . . , m,(2.12)

P{ξ(t + h) = ξk|ξ(t) = ξs} = hask + O(h2), k, s = 1, . . . , m, k 6= s.
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The following equality follows from (2.11) and (2.12):

(2.13) vs(t, X) = hX∗BsX + vs(t + h, X + AsXh + HsX dw(t))

+ h

m∑
k=1

askvk(t + h, X) + O(h2).

We derive the auxiliary equality

vs(t + h, X + AsXh + HsX dw(t))(2.14)

= (X∗ + X∗A∗

sh + X∗H∗

s dw(t))Cs(X + AsXh + HsX dw(t))

= X∗CsX + X∗A∗

sCsXh + X∗CsAsXh

+ X∗H∗

s CsHsXh + O(h2), s = 1, . . . , m.

In view of (2.14), (2.13) takes the form

vs(t, X) = X∗CsX = hX∗BsX + X∗CsX + hX∗CsAsX

+ hX∗A∗

sCsX + hX∗H∗

s CsHsX

+ h

m∑
k=1

askX∗CkX + O(h2), s = 1, . . . , m.

Letting h tend to zero, we obtain the system of matrix equations

(2.15) CsAs + A∗

sCs +

m∑
k=1

askCk + H∗

s CsHs + Bs = 0 (s = 1, . . . , m)

We have proved the following: if the improper integrals vs(t, X) (s = 1, . . . , m)

converge, then the corresponding matrices Cs (s = 1, . . . , m) satisfy the system of

equations (2.15), which means that it has a unique positive solution. Let us formulate

the obtained result as a theorem.

Theorem 2.1. The existence of a unique solution Cs > 0 (s = 1, . . . , m) of the

system (15) at some Bs > 0 (s = 1, . . . , m) is a necessary condition for mean square

asymptotic stability of the zero solution of (1).
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3. Concluding remark

The derived system of coupled Lyapunov matrix equations for a stochastic Marko-

vian system of differential equations can be viewed as a generalization of the well-

known Markovian system of coupled Lyapunov matrix equations

(3.1) CsAs + A∗

SCs +

n∑
k=1

askCk + Bs = 0, Bs > 0, s = 1, . . . , m

for a Markovian system without white noise dX(t) = A(ξ(t)) dt and as a generaliza-

tion of the Lyapunov matrix equation

(3.2) CA + A∗C + H∗CH + B = 0, B > 0

for a non-jump stochastic system of differential equations

(3.3) dX(t) = AX(t) + HX(t) dw(t).
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