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A note on formal power series

Xiao-Xiong Gan, Dariusz Bugajewski

Abstract. In this note we investigate a relationship between the boundary behav-
ior of power series and the composition of formal power series. In particular, we
prove that the composition domain of a formal power series g is convex and ba-
lanced which implies that the subset Xg consisting of formal power series which
can be composed by a formal power series g possesses such properties. We also
provide a necessary and sufficient condition for the superposition operator Tg to

map Xg into itself or to map Xg into itself, respectively.

Keywords: composition, end behavior of convergence of power series, convex and
balanced set, formal power series

Classification: Primary 13F25; Secondary 40A30, 52A05

1. Introduction

The behavior of power series on boundaries of convergence domains has been
an interesting topic since power series were introduced. The composition of formal
power series has been an important part of the formal power series theory (below
we recall some interesting results about such a composition). In this paper we
introduce some relationship between these two subjects and provide a condition
for convergence of a power series at every point in its interval of convergence,
including endpoints or boundary points.

Let S be a ring and let l ∈ N be given. A formal power series on S is defined
to be a mapping from Nl to S, where N represents the set of all positive integers.
We denote the set of all such mappings by X(S), or briefly by X. If S = C, then
X is a commutative C-algebra with 1. We denote by X(R) or X(C) the set of
all convergent power series centered at 0, where a convergent power series means
a power series with a nonzero convergent radius. We simply call such a formal
power series a power series (it was called informal sometimes [1]). It is known
that both the algebra X(C) and the subalgebra X(C) are integral domains. The
structure of the algebras X and X has been studied and can be found in many
books on complex analysis such as in [2].

The composition of formal power series or functional composition has attracted
many mathematicians. Around fifty years ago, Raney [3] investigated the func-
tional composition patterns and provided a proof of the Lagrange inversion for-
mula, that is, if S is a commutative ring with a unit e, then for each formal power
series g(x) =

∑

∞

n=0 bnxn ∈ X = SN there is exactly one f ∈ X such that f(0) = 0
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and f(x) = x · g ◦ f(x). Later, in 1997 Cheng, McKay, Towber, Wang and Wright
[4] extended the Raney coefficients. Recall also that a year earlier Constantine
and Savits [5] dealing with the multivariate version of the classical Faa Di Bruno
formula provided a general formula for calculating the derivative of a series com-
position in any number of variables. Li [6] provided p-adic power series which
commute under composition. Chaumat and Chollet [7] contributed a lot in 2001
when they investigated Eakin and Harris result [8], that is, if F is a holomorphic
mapping from Cn to Cn with F (0) = 0, then any formal power series A such that
A ◦ F is analytic is itself analytic. They also presented a control of the radius
of convergence of A by the convergence radius of A ◦ F . Gan and Knox [9] in
2002 provided a couple of very useful necessary and sufficient conditions for the
existence of a composition of formal power series that took away the restriction
of nonunitness for the composed formal power series in some formal power series
ring.

Applications of formal power series to equations can be found e.g. in Neelon’s
papers [10] and [11]. In the first one a sufficient condition for a formal power
series solution of systems of real analytic equations to be necessarily real analytic
is provided. In the second note the author considers properties of systems of
equations which are more general than convergence. Some latest development
about the composition and its applications can be found e.g. in [12], [13], and [14].

For convenience of the reader and for consistency of the notation, we introduce
some definitions below.

Definition 1.1. A formal power series f in x from N to a ring S is usually
denoted by

f(x) = a0 + a1x + · · · + anxn + · · · , where aj ∈ S for every j ∈ N ∪ {0}.

In this case, ak is called the k-th coefficient of f , for every k ∈ N∪{0}. If a0 = 0,
then f is called a nonunit . We denote the set of all nonunits in X by m(X). By
ord(f) we denote the order of a formal power series f , that is,

ord(f) =

{

min{n : an 6= 0}, if f 6= 0,

+∞, if f = 0,

then m(X) = {f ∈ X : ord(f) ≥ 1}.

Definition 1.2. Let S be a ring with a metric and let g ∈ X, say g(x) =
∑

∞

k=0 bkxk. We define a subset Xg ⊂ X to be

Xg = {f ∈ X | f(x) =

∞
∑

k=0

akxk,

∞
∑

n=0

bna
(n)
k ∈ S, for every k ∈ N ∪ {0}},

where fn(x) =
∑

∞

k=0 a
(n)
k xk, for all n ∈ N ∪ {0} (a

(0)
0 = 1, a

(0)
k = 0 for every

k ∈ N) is created by the product rule. Obviously, Xg 6= ∅ because m(X) ⊂ Xg
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(see Theorem 1.5 below). Then the mapping Tg : Xg −→ X such that

Tg(f)(x) =

∞
∑

k=0

ckxk,

where ck =
∑

∞

n=0 bna
(n)
k , for k ∈ N ∪ {0}, is well-defined. We call Tg(f) the

composition of g and f . Tg(f) is also denoted by g ◦ f (that is (g ◦ f)(x) =
∑

∞

n=0 bn(f(x))n).

Definition 1.3. Let f(x) =
∑

∞

n=0 anxn be a formal power series. If am 6= 0 and
aj = 0 for all j > m, then the degree of f is defined to be the number m and it is
denoted by deg(f). If there is no such number m, then we say that deg(f) = +∞.

Definition 1.4. Let S be a ring, let g ∈ X, say g(x) =
∑

∞

n=0 bnxn. The derivative

of g is defined to be the formal power series g′ such that

g′(x) =

∞
∑

n=1

nbnxn−1.

A well-known result is that if a power series has a nonzero radius of convergence
then all derivatives of this power series have the same radius of convergence. The
existence of the derivative of the composition of a formal power series and a
nonunit can be found in [1], too. A generalized chain rule of the composition of
formal power series has been recently established in [15].

Let us notice that the derivative of a formal power series defined here has
nothing to do with so-called sum function in analysis and has nothing to do with
the limit of the difference quotient , although they may have some relationship if a
formal power series is defined over a special ring and has some kind of convergence.
For example, g(x) =

∑

∞

n=0 n!xn, a formal power series over R, converges at x = 0

only but the formal power series g(k)(x) =
∑

∞

n=k
n!

(n−k)!n!xn−k is well-defined for

all k ∈ N. Therefore one must be very careful when one tries to deal with the
convergence and the derivatives of formal power series, especially the convergence
at the boundary of the convergence. Lang provided some helpful comment in [16].

In what follows we will apply the following two results.

Theorem 1.5 ([9]). Let S be a field with a metric and let f, g ∈ X(S) be given

with the forms

f(x) = a0 + a1x + · · · + anxn + · · · , g(x) = b0 + b1x + · · · + bnxn · · · ,

and deg(f) > 0. Then the composition g ◦ f exists if and only if

(1.1)

∞
∑

n=k

(

n

k

)

bnan−k
0 ∈ S for every k ∈ N ∪ {0},
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where (n
k
) = n(n−1)···(n−k+1)

k! .

Let us notice that the condition (1.1) in Theorem 1.5 is equivalent to that
g(n)(a0) ∈ S for every n ∈ N ∪ {0}.

Theorem 1.6 ([9]). Let f, g ∈ X(C) be given with the forms

f(x) = a0 + a1x + · · · + anxn + · · · and g(x) = b0 + b1x + · · · + bnxn · · · .

If the series
∑

∞

n=0 bnRn converges for some R > |a0|, then g ◦ f exists.

Let g ∈ X(C); in particular, Theorem 1.6 implies that in this case m(X) 6= Xg.

Definition 1.7. Let g ∈ X(S) be given, where S is a metric field. We denote by
r(g) the radius of convergence of g and by I(g) the interval or disc of convergence
of g. As usual, 0 ≤ r(g) ≤ +∞. We also define the composition domain of g as
the set

D(g) =
{

a ∈ S : g(n)(a) ∈ S for every n ∈ N ∪ {0}
}

.

As usual, we define the Minkowski sum A + B of any two sets A and B as

A + B = {a + b : a ∈ A, b ∈ B}.

The set Xg = D(g) + m(X) (the Minkowski sum of D(g) and m(X)) is said to be
the g-composition subset of X, where D(g) is considered as a subset of X consisting
of all constant power series.

Let us emphasize that termwise differentiation of series is an interesting topic
in analysis. There are some general results about the termwise differentiation of
a power series f(x) =

∑

∞

n=0 anxn ∈ X with |x| < r = r(f). If r is a positive real
number, then the existence of f ′(r) =

∑

∞

n=0 nanrn−1 is not a trivial question.
Some results about the termwise differentiation at the endpoints of the interval
of convergence could be found in [17].

Let us recall a classical example.

Example 1.8. Let us consider X(R). Let g(x) =
∑

∞

n=0
(−1)n

n
xn and let h = 1.

Then g(h) ∈ R but g(−h) /∈ R.
Moreover, g′(h) =

∑

∞

n=0(−1)n−1 /∈ R.

The rest of this paper has the following structure: in Section 2 we investigate
the properties of the set D(g) and we investigate the behavior of power series on
boundaries of their convergence domains; in Section 3 we investigate properties
of sets Xg and Xg. Finally, the results from Section 4 concern the superposition
operator Tg.

2. Boundary behavior of convergence of power series

A very important character of power series is that every power series has a
radius of convergence and an interval of convergence. Example 1.8 tells us how
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complicated is the convergence at the endpoints of the interval of convergence and
how the derivative of a power series may affect the convergence at the endpoints
of the interval of convergence, or at the boundary of the convergence. That is
why Remmert [2, p. 119] reminded the readers to be very careful in this field. In
particular, if we seek such convergence of termwise differentiation for power series
not only for once, but the infinitely many times, what can we say?

Lemma 2.1. Let g ∈ X(R) and a ∈ R be given. Then a ∈ D(g) if and only if

−a ∈ D(g).

Proof: Let g(x) =
∑

∞

n=0 bnxn. The conclusion is true obviously if a = 0. We
now suppose that a 6= 0.

Without loss of generality, we assume that a ∈ D(g) but −a ∈ D(g) fails. By
the notice after the Theorem 1.5 in Section 1, it means that

∑

∞

n=k

(

n

k

)

bnan−k ∈ R

for every k ∈ N ∪ {0} but
∑

∞

n=k0

(

n

k0

)

bn(−a)n−k0 /∈ R for some k0 ∈ N. Then
∑

∞

n=k0

(

n

k0

)

bn(−a)n−k0 diverges. It means that there are infinitely many n ∈ N

such that
(

n

k0

)

|bn||a|
n−k0 >

1

n2
.

Then there exists a sequence of positive integers (nk), nk ≥ k0, such that

(

nk

k0

)

|bnk
||a|nk−k0 >

1

n2
k

for every k ∈ N.

Then

1

|a|k0 · k0!
nk(nk − 1) . . . (nk − k0 + 1)|bnk

||a|nk >
1

n2
k

,

so

|bnk
||a|nk >

|a|k0 · k0!

n3
k(nk − 1) . . . (nk − k0 + 1)

>
|a|k0 · k0!

nk0+2
k

.

Hence

1

|a|k0

(

nk

k0 + 3

)

|bnk
||a|nk−3

=
nk(nk − 1) . . . (nk − k0 − 2)

(k0 + 3)!|a|k0+3
· |bnk

||a|nk

>
nk(nk − 1) . . . (nk − k0 − 2)

(k0 + 3)!|a|k0+3
·
|a|k0 · k0!

nk0+2
k

=
1

(k0 + 1)(k0 + 2)(k0 + 3) · |a|3
· nk

(

1 −
1

nk

)

. . .

(

1 −
k0 + 2

nk

)

.

Then limk→∞

(

nk

k0+3

)

|bnk
||a|nk−3 = ∞.
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Then limn→∞

(

n

k0+3

)

|bn||a|n−3 = 0 fails which contradicts to

∞
∑

n=k0

(

n

k0 + 3

)

bnan−k0 ∈ R.

Thus, −a ∈ D(g). We complete the proof. �

Corollary 2.2. Let g ∈ X(C) and a ∈ C be given. If a ∈ D(g), then z ∈ D(g)
for all z ∈ C with |z| = |a|.

Proof: Taking z = aeiθ for some real number θ and applying the similar ap-
proach in Lemma 2.1, we can obtain the conclusion. �

It is clear that D(g) ⊂ I(g) for every g ∈ X = X(C). By this fact and the
results above, we can prove the following theorem.

Theorem 2.3. D(g), the composition domain of g, is convex and balanced for

every formal power series g ∈ X = X(C).

Proof: Let g ∈ X be given and let r = r(g). If r = 0 or r = +∞, then
D(g) = {0} or D(g) = C, respectively, so the conclusion is obvious.

Now, let 0 < r < +∞ and let 0 < t < 1. Suppose that a0, c0 ∈ D(g). If
|a0| < r or |c0| < r, then |ta0 + (1 − t)c0| < r, and hence ta0 + (1 − t)c0 ∈ D(g).
Further, if |a0| = |c0| = r, then |ta0 + (1 − t)c0| ≤ r, and therefore Corollary 2.2
implies that ta0 + (1 − t)c0 ∈ D(g). It means that D(g) is always convex.

Now, suppose that α ∈ C with |α| ≤ 1. If |a0| < r or |α| < 1, then |αa0| < r
and therefore αa0 ∈ D(g). In the case when |a0| = r and |α| = 1, then |αa0| = r
and it is enough to apply Corollary 2.2 again to obtain the conclusion. Hence
D(g) is balanced and the proof is completed. �

Lemma 2.4. Let g ∈ X(C) be given such that r = r(g) < ∞. If g(k)(a) ∈ C for

every k ∈ N ∪ {0} for some a ∈ C such that |a| = r, then the power series g(k)

converges absolutely on the closed disc {z ∈ C : |z| ≤ r}.

Proof: Since g(k)(a) ∈ C for every k ∈ N∪{0} for some a ∈ C such that |a| = r,
it follows that g(k)(r) ∈ C for every k ∈ N ∪ {0} by Corollary 2.2. It suffices to
show that g(k)(r) converges absolutely for every k ∈ N ∪ {0}.

Suppose that
∑

∞

n=k0

(

n
k0

)

|bn|rn−k0 = +∞ for some k0 ∈ N. Then there are
infinitely many n ∈ N such that

(

n

k0

)

|bn|r
n−k0 >

1

n2
.

Further, by similar reasoning as in the proof of Lemma 2.1,

lim
n→∞

(

n

k0 + 3

)

bnrn−k0−3 = 0
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fails which contradicts that
∑

∞

n=k0

(

n

k0+3

)

bnrn−k0−3 ∈ C. Thus, the power series

g(k) converges absolutely on the boundary of the closed disc {z ∈ C : |z| ≤ r} and
hence it converges on this closed disc. �

We know that every power series g ∈ X(C) is continuous on the open disc
D = {z ∈ C : |z| < r(g)}. It may happen if r(g) < ∞, however, that g(z0) is
defined for some |z0| = r(g) but g is not continuous on D ∪ {z0}. We provide a
sufficient condition for the uniform continuity of a power series on closed disc D
below.

Lemma 2.5. Let g ∈ X(C) be given such that r = r(g) < ∞. If g(k)(z0) ∈ C

for every k ∈ N ∪ {0} for some z0 ∈ C such that |z0| = r, then the power series

g(k) is uniformly continuous on the closed disc D = {z ∈ C : |z| ≤ r(g)} for every

k ∈ N ∪ {0}.

Proof: Let z ∈ C be such that |z| = r. Since g(k)(z0) ∈ C for every k ∈ N∪{0},
it follows that g(k)(z) ∈ C for every k ∈ N ∪ {0} by Corollary 2.2.

Let h ∈ C be such that 0 < |h| < r and |z − h| ≤ r. Then

|g(z − h) − g(z)| =
∣

∣

∣

∞
∑

n=0

bn[(z − h)n − zn]
∣

∣

∣

≤
∞
∑

n=0

|bn||h[(z − h)n−1 + (z − h)n−2z + · · · + (z − h)zn−2 + zn−1]|

≤
∞
∑

n=0

|bn||h|[|z − h|n−1 + |z − h|n−2|z| + · · · + |z − h||z|n−2 + |z|n−1]

≤ |h|
∞
∑

n=0

|bn|nrn−1.

By Lemma 2.4, g′ converges absolutely at r which means that

∞
∑

n=0

|bn|nrn−1 ∈ R.

Letting h → 0 we deduce that g is continuous on the closed disc D. Therefore g
is uniformly continuous on D.

Let us notice that since the convergence of g(k+1) on the closed disc D is
absolute, we can similarly prove that g(k) is uniformly continuous on D for every
k ∈ N. The proof is completed. �

3. Properties of sets Xg and Xg

By means of the results from Section 2, we investigate some properties of g-
composition subset of X(C).
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Corollary 3.1. For any formal power series g ∈ X = X(C), the g-composition

subset Xg of X is convex and balanced.

Proof: It is clear that m(X) is convex and balanced. Theorem 2.3 shows that
D(g) is convex and balanced. Thus, Xg is convex and balanced. �

Next result describes the relation between Xg and Xg, where g ∈ X(C).

Corollary 3.2. Let g ∈ X(C) be given. Then

(j) Xg ⊂ Xg,

(jj) Xg 6= Xg if and only if there exists some a ∈ C such that |a| = r(g),

g(a) ∈ C but g(k)(a) /∈ C for some k ∈ N.

Proof: (j) follows from Theorem 1.5 and the notice followed it.
Now we prove (jj). Suppose that there exists some a ∈ C such that |a| = r(g),

g(a) ∈ C but g(k)(a) /∈ C for some k ∈ N. Let f = a. Then f ∈ Xg but f /∈ Xg by

Theorem 1.5 and the definition of Xg. Then Xg 6= Xg.

Conversely we suppose that Xg 6= Xg. Then there exists a formal power series

f ∈ Xg but f /∈ Xg by (j) above. Say that f(z) =
∑

∞

n=0 anzn. If deg(f) > 0,

then g(k)(a0) ∈ C for all k ∈ N∪{0} by Theorem 1.5 and hence f ∈ Xg. Therefore

deg(f) = 0 or f = a0 ∈ C. If |a0| < r(g), then g(k)(a0) ∈ C for all k ∈ N ∪ {0}
by Theorem 1.6 and hence f ∈ Xg. Then |a0| = r(g) because g(a0) = g(f) ∈ C.

Finally, it is clear that g(k)(a0) /∈ C for some k ∈ N because otherwise f ∈ Xg by
Theorem 1.5.

Thus, f ∈ Xg but f /∈ Xg if and only if

f = a ∈ C, |a| = r(g), g(a) ∈ C but g(k)(a) /∈ C for some k ∈ N.

�

Proposition 3.3. Let g ∈ X = X(C) be given. Then

(i) Xg = m(X) if and only if r(g) = 0.

(ii) Xg = X if and only if r(g) = +∞.

(iii) h, g ∈ X with r(h) < r(g) implies that D(h) ⊂ D(g), and

Xh ⊂ Xh ⊂ Xg ⊂ Xg.

( iv) It is not always true that h, g ∈ X with r(h) = r(g) implies that Xh = Xg.

(v) X =
⋃

g∈X
Xg.

Proof: (i) follows from Corollary 3.2.

Properties (ii) and (v) are obvious.

(iii) follows from Theorem 1.6 and Corollary 3.2(jj).
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For (iv), considering h(x) =
∑

∞

n=1
1
n
xn and g(x) =

∑

∞

n=1
1

n2 xn, it is clear that
a formal power series 1 ∈ Xg but 1 /∈ Xh. �

Example 3.4. (a) X(C) = Xez where ez =
∑

∞

n=0
1
n!z

n.

(b) Let ga(x) =
∑

∞

n=0
1

an xn. This geometric series has the radius of conver-
gence r(g) = a if a > 0. Then, by Theorem 1.6,

X(R) =
⋃

a>0

Xga
=

∞
⋃

k=1

Xgk
.

4. Acting conditions

In this short section we provide a necessary and sufficient condition under
which an operator Tg, where g ∈ X(C) or g ∈ X(C), maps Xg or Xg into itself.

Proposition 4.1. Let g =
∑

∞

n=0 bnzn ∈ X(C). Then Tg maps Xg into itself if

and only if g(a) ∈ D(g) for every a ∈ D(g).

Proof: Let f ∈ Xg = D(g) + m(X). Then f = a + f̃ , where a ∈ D(g) and

f̃ ∈ m(X). By Definition 1.2, if g ◦ f is well-defined, the constant term of g ◦ f is
c0 =

∑

∞

n=0 bnan = g(a) and therefore g ◦ f ∈ {c0} + m(X). Thus

g ◦ f ∈ Xg if and only if g(a) ∈ D(g).

�

Corollary 4.2. Let g ∈ X(C) be given. Then Tg maps Xg into Xg if and only if

the condition from Proposition 4.1 is satisfied and

g(g(a)) ∈ C for every a ∈ Xg \ Xg.

Proof: It is a consequence of Proposition 4.1 and Corollary 3.2(jj). �
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