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FISCHER DECOMPOSITIONS
IN EUCLIDEAN AND HERMITEAN CLIFFORD ANALYSIS

Fred Brackx∗, Hennie De Schepper∗, and Vladimír Souček‡

Abstract. Euclidean Clifford analysis is a higher dimensional function theory
studying so–called monogenic functions, i.e. null solutions of the rotation in-
variant, vector valued, first order Dirac operator ∂. In the more recent branch
Hermitean Clifford analysis, this rotational invariance has been broken by
introducing a complex structure J on Euclidean space and a corresponding
second Dirac operator ∂J , leading to the system of equations ∂f = 0 = ∂Jf
expressing so-called Hermitean monogenicity. The invariance of this system is
reduced to the unitary group U(n). In this paper we decompose the spaces
of homogeneous monogenic polynomials into U(n)-irrucibles involving homo-
geneous Hermitean monogenic polynomials and we carry out a dimensional
analysis of those spaces. Meanwhile an overview is given of so-called Fischer
decompositions in Euclidean and Hermitean Clifford analysis.

1. Introduction

In 1917 Ernst Fischer proved (see [19]) that, given a homogeneous polynomial
q(X), X ∈ Rm, every homogeneous polynomial Pk(X) of degree k can be uniquely
decomposed as Pk(X) = Qk(X) + q(X)R(X), where Qk(X) is a homogeneous
polynomial of degree k satisfying q(D)Qk = 0, D being the differential operator
corresponding to X through Fourier identification (Xj ↔ ∂xj , j = 1, . . . ,m) and
R(X) is a homogeneous polynomial of suitable degree. If in particular q(X) = ‖X‖2,
then q(D) is the Laplacian ∆m and Qk is harmonic, leading to the decomposition

(1) P(Rm; C) =
∞⊕
k=0

∞⊕
p=0

r2p Hk(Rm; C)

of the space P(Rm; C) of complex valued polynomials into the spaces Hk(Rm; C)
of complex valued harmonic homogeneous polynomials of degree k.

Clifford analysis (see e.g. [3, 15, 20, 22]), in its most basic form being a generali-
zation to higher dimension of holomorphic function theory in the complex plane,
offers the possibility for a refinement of this decomposition (1). Indeed, denoting by
(e1, . . . , em) an orthonormal basis of Rm, the polynomial q(X) may be chosen to be
q(X) = X, where X =

∑m
α=1 eαXα is a real vector in the complex Clifford algebra

Cm constructed over Rm; the differential operator q(D) then is the Dirac operator
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∂ =
∑m
α=1 eα ∂Xα and Qk is a k-homogeneous polynomial null solution of ∂, a

so–called spherical monogenic. This leads to the well-known Fischer decomposition
in Euclidean Clifford analysis of the space P(Rm; S) of homogeneous polynomials
taking their values in an irreducible representation S of Cm. Such a representation
S is called a spinor space and usually realized inside the Clifford algebra using a
primitive idempotent (see Section 5). This Fischer decomposition reads:

(2) P(Rm; S) =
∞⊕
k=0

∞⊕
p=0

Xp Mk(Rm; S) ,

where Mk(Rm; S) denotes the space of spinor valued monogenic homogeneous
polynomials of degree k. In particular each harmonic k-homogeneous polynomial
Hk, be it real, complex or spinor valued, may be split as

(3) Hk = Mk +XMk−1

Mk and Mk−1 being monogenic homogeneous polynomials of the indicated degree.
In the books [23, 12] and the series of papers [24, 10, 1, 2, 7, 16, 17, 18] so-called

Hermitean Clifford analysis has emerged as a refinement of Euclidean Clifford
analysis. Hermitean Clifford analysis is based on the introduction of an additional
datum, a so-called complex structure J , intended to bring the notion of monogenicity
closer to complex analysis. This complex structure induces an associated Dirac
operator ∂J , whence Hermitean Clifford analysis then focusses on the simultaneous
null solutions of both operators ∂ and ∂J , called Hermitean monogenic functions.
The resulting function theory is still in full development, see [8, 25, 9, 6, 5].

It is clear that the traditional approach sketched above cannot be used to obtain a
Fischer decomposition of harmonic homogeneous polynomials in terms of Hermitean
monogenic homogeneous polynomials. However, a Hermitean monogenic Fischer
decomposition was realized in [7] by means of a representation theoretical approach
which will be explained further on. This implies however that it is possible to
split any monogenic homogeneous polynomial in terms of homogeneous Hermitean
monogenic ones, which was established in [13]. The aim of the underlying paper
is threefold: (i) to give an alternative proof of the latter splitting, revealing the
match between the monogenic and the Hermitean monogenic decompositions of a
given harmonic polynomial; (ii) to use the Fischer decomposition formulae for a
dimensional analysis of spaces of monogenic and Hermitean monogenic homogeneous
polynomials, and meanwhile (iii) to give an overview of all Fischer decompositions
in Euclidean and Hermitean Clifford analysis.

2. Clifford algebra: the basics

Consider a real vector space E of dimension m, equipped with a real symmetric
and positive definite bilinear form B(X,Y ), X,Y ∈ E, with associated quadratic
form Q(X) = B(X,X). The orthogonal group O(E) and the special orthogonal
group SO(E) are defined as the groups of automorphisms, respectively orientation
preserving automorphisms g, leaving the bilinear form B invariant:

B(gX, gY ) = B(X,Y ) , ∀X,Y ∈ E .
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Now, let (e1, . . . , em) be a basis of E, which we assume to be orthonormal w.r.t.
the bilinear form B, i.e. B(ej , ek) = δjk, j, k = 1, . . . ,m. The introduction of
this basis leads to the identification O(E) ' O(m), through representation by
(m ×m)-matrices g = [gjk], naturally satisfying the condition ggT = gT g = 1m
with 1m the unit matrix of order m, while in the case of SO(E) ' SO(m), the
additional condition det(g) = 1 holds.

Turning to the complexification EC of E and the complexification BC of B, let
us now consider the Clifford algebras C`(E,−Q) over E and C`(EC,−QC) over EC.
When identifying E with Rm these Clifford algebras are often denoted Rm and Cm
respectively. The Clifford or geometric product is associative but non–commutative.
With respect to the chosen basis, it is governed by the rules
e2
α = −B(eα, eα) = −1 , α = 1, . . . ,m, eαeβ + eβeα = 0 , α 6= β = 1, . . . ,m .

In standard Euclidean Clifford analysis, each vector X ∈ E with components
(X1, . . . , Xm) ∈ Rm, is identified with the real Clifford vector X =

∑m
α=1 Xαeα.

Its Fischer dual is the first order Clifford vector valued differential operator ∂ =∑m
α=1 eα∂Xα , called the Dirac operator, which may also be obtained in a co-ordinate

free way as a generalized gradient, see e.g. [1, 2]. It is precisely this Dirac operator
which underlies the notion of monogenicity, a notion which is the higher dimensional
counterpart of holomorphy in the complex plane. A smooth function f , defined on
E or on EC and taking values in either the real or the complex Clifford algebra, is
called left monogenic if and only if it fulfills the Dirac equation ∂[f ] = 0.

The groups O(E) and SO(E) are doubly covered by the so-called pin group
Pin(E) and spin group Spin(E) of the Clifford algebra, respectively, realized inside
Cm as

Pin(E) = {s ∈ C`(E,−Q) : ∃k ∈ N, s = ω1 . . . ωk, ωi ∈ Sm−1, i = 1, . . . , k}

Spin(E) = {s ∈ C`(E,−Q) : ∃k ∈ N, s = ω1 . . . ω2k, ωi ∈ Sm−1, i = 1, . . . , 2k}

where Sm−1 is the unit sphere in E; through co–ordinatization it holds that
Pin(E) ' Pin(m) and Spin(E) ' Spin(m). Taking g ∈ SO(E), with corresponding
pin element sg ∈ Spin(E), the action of g on a vector in E translates to Clifford
language as

X ′ = g[X] ←→ X ′ = sgXs
−1
g .

Considering its induced action on a function F , which is given for a Clifford algebra
valued function by the so-called H-representation

H(s)[F (X)] = sF (s−1Xs)s−1

and for a spinor valued function F by the so-called L-representation
L(s)[F (X)] = sF (s−1Xs)

one has the commutation relations [∂,H(s)] = 0 and [∂, L(s)] = 0, whence it
follows that the Dirac operator is invariant under this action, and so is the notion
of monogenicity. A similar observation applies to Pin(E).

We now introduce the building blocks of the Hermitean Clifford setting. To this
end, we endow the space (E,B) with a so-called complex structure by choosing an
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SO(E) element J for which J2 = −1, creating in this way the Hermitean space
(E,B, J). Clearly (det J)2 = (−1)m, forcing the dimension m of E to be even: in
the Hermitean context we thus have to put m = 2n.

In (EC, BC) the projection operators 1
2 (1± iJ) create two isotropic subspaces

W± =
{
Z± ∈ EC : Z± = 1

2(1± iJ)X, X ∈ E
}

which constitute the direct sum decomposition EC = W+ ⊕W−. Extending the
action of g ∈ SO(E) to vectors in EC by Z± ∈W± 7→ g[Z±] = 1

2 (g[X]± ig[JX]),
the subspaces W± will remain invariant if and only if g commutes with the complex
structure J , or in other words, if g belongs to

SOJ(E) =
{
g ∈ SO(E) : gJ = Jg

}
.

Similarly OJ (E) ⊂ O(E) is defined. Note that the orthonormal basis (e1, . . . , e2n) of
E may always be chosen in such a way that the complex structure J is represented
by the matrix

J =
[

0 1n
−1n 0

]
.

For an arbitrary OJ (E) element the commutation relation with J then is reflected
in the specific form of the corresponding matrix:

G =
[
A B
−B A

]
with AAT +BBT = 1n and ABT −BAT = 0, implying that A± iB both belong
to the unitary group U(n). In other words:

OJ(2n) =
{
G ∈ O(2n) : GJ = JG

}
is isomorphic with U(n), and so is OJ(E).

By means of the projection operators 1
2 (1± iJ), the basis (e1, . . . , e2n) gives rise

to an alternative basis for EC, called the Witt basis:

fj = 1
2(1 + iJ)[ej ] = 1

2(ej − i en+j) , j = 1, . . . , n

f†j = −1
2(1− iJ)[ej ] = −1

2(ej + ien+j) , j = 1, . . . , n .

It splits into separate bases (f1, . . . , fn) and (f†1, . . . , f†n) forW+ andW−, respectively.
The Witt basis elements satisfy the Grassmann relations

fjfk + fkfj = 0 , f†jf
†
k + f†kf

†
j = 0 , j, k = 1, . . . , n

including their isotropy: f2j = 0 = f† 2
j , j = 1, . . . , n, and the duality relations

fjf
†
k + f†kfj = δjk , j, k = 1, . . . , n .

Each of the sets (f1, . . . , fn) and (f†1, . . . , f†n) thus generates a Grassmann algebra,
respectively denoted by CΛn and CΛ†n. The †–notation corresponds to a Hermitean
conjugation in C`(EC,−QC), defined as follows: take µ ∈ C`(EC,−QC) arbitrarily,
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i.e. µ = a + ib, with a, b ∈ C`(E,−Q). Then µ† = a − ib where a and b are the
traditional Clifford conjugates of a and b in C`(E,−Q).

The components of the real vector X are now denoted as (x1, . . . , xn, y1, . . . , yn),
and the corresponding Clifford vector X may thus be rewritten in terms of the
Witt basis as

X =
n∑
j=1

(xjej + yjen+j) =
n∑
j=1

(zjfj − zcj f
†
j)

where we have introduced the complex variables zj = xj + iyj and their complex
conjugates zcj , j = 1, . . . , n. For vectors in the isotropic subspaces W± of EC a
similar identification results into

Z+ = 1
2(1 + iJ)X ←→ z =

n∑
j=1

zjfj

Z− = 1
2(1− iJ)X ←→ −z† = −

n∑
j=1

zcj f
†
j

whence the relation X = Z+ + Z− may be rewritten in Clifford language as
X = z − z†. Similarly we arrive at the definition of the Hermitean Dirac operators

∂z =
n∑
j=1

f†j∂zj and ∂z† =
n∑
j=1

fj∂zc
j

= ∂†z

which are the Fischer duals of z and z†, and may be seen as refinements of the
Euclidean Dirac operator since ∂ = 2(∂†z − ∂z).

As a side remark, observe that the above operators may also be obtained in
another way, making explicit use of the complex structure J . Indeed, let

X| = J(X) =
n∑
j=1

J(ej)xj + J(en+j)yj =
n∑
j=1

(ejyj − en+jxj)

then there arises a second, associated (or "twisted") Dirac operator

∂J = J(∂) =
2n∑
α=1

J(eα)∂α =
n∑
j=1

(ej∂yj − en+j∂xj )

corresponding to X|. We then have that

2∂†z = 1
2(1 + iJ)[∂] = 1

2∂ + i

2∂J

2∂z = −1
2(1− iJ)[∂] = −1

2∂ + i

2∂J .

A smooth function F taking its values in the complex Clifford algebra or in
spinor space S is called Hermitean monogenic (or h-monogenic for short) if it is a
simultaneous null solution of both Euclidean Dirac operators, i.e. if it fulfills the
system

∂[F ] = 0 = ∂J [F ]
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or, equivalently, if it is a simultaneous null solution of both Hermitean Dirac
operators, i.e. if it fulfills the system

∂z[F ] = 0 = ∂†z[F ] .

Also the two Hermitean Dirac operators ∂z and ∂†z may be generated (as was the
case for the Euclidean Dirac operator ∂) as generalized gradients, see [26] through
projection on the appropriate invariant subspaces, which moreover guarantees the
invariance of the considered system under the group action of OJ (2n) ' U(n), see
[1, 2].

For further use, observe that the Hermitean vector variables and Dirac operators
are isotropic on account of the properties of the Witt basis elements, i.e.

(z)2 = (z†)2 = 0 and (∂z)2 = (∂†z)2 = 0

whence the Laplacian ∆ = −∂2 allows for the decomposition and factorization

∆ = 4(∂z∂
†
z + ∂†z∂z) = 4(∂†z + ∂z)2 = −4(∂†z − ∂z)2

while also
−(z − z†)2 = (z + z†)2 = z z† + z†z = |z|2 = |z†|2 = ‖X‖2 = r2 .

3. Harmonic analysis

We start with the space P(Rm; C) of complex valued polynomials defined on
Rm, considered as a module over the full orthogonal group O(m). The action of
the group O(m) on polynomials in P(Rm; C) is the regular representation:

[g · P ](X) = P (g−1 ·X), g ∈ O(m), P ∈ P(Rm; C), X ∈ Rm .

Denoting by Hk(Rm; C) the space of complex valued harmonic k–homogeneous
polynomials, each of the spaces

r2p Hk(Rm; C) , p ∈ N0 := N ∪ {0} , k ∈ N0

is a subspace of P(Rm; C) which is invariant under the O(m) action. In addition,
they form the constituents of the Fischer decomposition (1) of P(Rm; C):

(4) P(Rm; C) =
∞⊕
k=0

∞⊕
p=0

r2p Hk(Rm; C) .

In (4), all O(m)-modules Hk(Rm; C) are irreducible and mutually inequivalent. In
particular the space Pk(Rm; C) of k-homogeneous polynomials decomposes as

Pk(Rm; C) =
b k2 c⊕
p=0

r2p Hk−2p(Rm; C) .

Next we consider the space P(R2n; C) of complex valued polynomials defi-
ned on Euclidean space of even dimension, however considered as an OJ(2n) ∼=
U(n)-module. The action of OJ(2n) on polynomials in P(R2n; C) is given by

[u · P ](X) = P (u−1 ·X), u ∈ OJ(2n), P ∈ P(R2n; C), X ∈ R2n .
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Since each complex valued polynomial in (x1, . . . , xn, y1, . . . , yn) may be written
also as a polynomial in the variables (z1, . . . , zn, z

c
1, . . . , z

c
n), i.e.

P (X) = P (x1, . . . , xn, y1, . . . , yn) = P̃ (z1, . . . , zn, z
c
1, . . . , z

c
n)

we have to determine the polynomials P̃ which are invariant under the action of
U(n). As is well–known the space of U(n)-invariant polynomials in P(R2n; End(C))
is the space with basis

(
1, r2, r4, . . . , r2p, . . .

)
where

r2 =
n∑
j=1

x2
j + y2

j =
n∑
j=1

zj z
c
j =

n∑
j=1
|zj |2

The operator corresponding to the generator r2 is the Laplacian

∆ =
n∑
j=1

∂2
xjxj + ∂2

yjyj = 4
n∑
j=1

∂zj∂zcj

whence we are lead to consider the space of harmonic polynomials in the complex
variables (z1, . . . , zn, z

c
1, . . . , z

c
n). Its subspace HC

k of harmonic k–homogeneous
polynomials may be decomposed as

HC
k =

k⊕
a=0
Ha,k−a(R2n; C)

where Ha,b(R2n; C) is the space of harmonic polynomials of bidegree (a, b), i.e.
a–homogeneous in the variables zj and b–homogeneous in the variables zcj , i.e.

Ha,b(λz1, . . . , λzn, µz
c
1, . . . , µz

c
n) = λa µbHa,b(z1, . . . , zn, z

c
1, . . . , z

c
n) .

This leads to the Fischer decomposition

(5) P(R2n; C) =
∞⊕
k=0

∞⊕
p=0

k⊕
a=0

r2p Ha,k−a(R2n; C)

where the constituents r2pHa,k−a(R2n; C), p ∈ N0, k ∈ N0, a = 0, . . . , k, are
irreducible invariant subspaces under the action of U(n). In particular the space
Pk(R2n; C) of k-homogeneous polynomials decomposes as

Pk(Rm; C) =
b k2 c⊕
p=0

k−2p⊕
a=0

r2p Ha,k−2p−a(Rm; C) .

Comparing the Fischer decompositions (4) and (5), it is clear that changing the
symmetry group from O(2n) to its subgroup OJ (2n) ' U(n) results in considering
the polynomials as functions of the complex variables (z1, . . . , zn, z

c
1, . . . , z

c
n) and

splitting the spaces of harmonic homogeneous polynomials according to bidegrees
of homogeneity:

Hk(R2n; C) =
k⊕
a=0
Ha,k−a(R2n; C) .
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4. Euclidean Clifford analysis

As mentioned in the introduction, the Fischer decompositions in terms of
spherical harmonics may be refined by considering the spherical monogenics of
Clifford analysis. To that end we consider the space P(Rm; S) of spinor valued
polynomials and the L–action of the group Pin(m) on it, given by

[L(s) · P ](X) = s P (ŝ−1Xs) , P ∈ P(Rm; S) , s ∈ Pin(m), X ∈ Rm .

We also need the action of Pin(m) on the space P(Rm; End(S)), where End(S) is
isomorphic as a vector space with the complex Clifford algebra Cm when m is even,
or with its even part when m is odd. Let s 7→ ŝ denote the main involution on Cm
for which ej 7→ −ej ; it has eigenvalues ±1, the corresponding eigenspaces being the
even and odd part of the Clifford algebra. The action of Pin(m) on P(Rm; End(S))
then is

[s · f ](X) = s f(ŝ−1Xs)] ŝ−1, f ∈ P(Rm; End(S)), s ∈ Pin(m), X ∈ Rm .

The space of Pin(m)-invariant polynomials inside P(Rm; End(S)) has the basis
(1, X,X2, X3, . . . , Xp, . . .), generating a unital superalgebra or Z2-graded algebra

spanC(1, X2, X4, . . .)⊕ spanC(X,X3, X5, . . .)

which reflects the natural grading of the Clifford algebra by its decomposition into
the even subalgebra and the odd subspace.

The Pin(m)-invariant differential operator corresponding, under natural duality,
with the generator X of this graded algebra, is the Dirac operator ∂. Its polynomial
null solutions are called spherical monogenics; we denote by Mk(Rm; S) the space
of spinor valued k-homogeneous spherical monogenics. Then each of the spaces
XpMk(Rm; S), p ∈ N0, k ∈ N0, is an irreducible invariant subspace of P(Rm; S)
under the action of Pin(m), leading to the Fischer decomposition (2) of P(Rm; S):

(6) P(Rm; S) =
∞⊕
k=0

∞⊕
p=0

XpMk(Rm; S) .

In (6), all Pin(m)-modules Mk(Rm; S) are irreducible and mutually inequivalent.
To see (6) as a refinement of (4) just take into account the Fischer decomposition
of spherical harmonics in terms of spherical monogenics (see also (3))

(7) Hk(Rm; S) = Hk(Rm; C)⊗ S =Mk(Rm; S)⊕XMk−1(Rm; S)

meaning that inside Hk(Rm; S) an isomorphic copy of both Pin(m)-irreducible
modulesMk(Rm; S) andMk−1(Rm; S) is realized by the trivial embedding and by
the embedding factor X respectively; explicitly for Hk ∈ Hk(Rm; S) one has

Hk =
(

1 + X∂

m+ 2k − 2

)
Hk −

X∂

m+ 2k − 2Hk .
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5. Hermitean Clifford analysis

In this section we further explore the space P(R2n; S) of S valued polynomials
on Euclidean space of even dimension R2n. Here, we further decompose S as

S =
n⊕
v=0

S(v)

into its so-called homogeneous parts S(v), v = 0, . . . , n, i.e. eigenspaces with
eigenvalue v for the left multiplication operator βc =

∑n
j=1 fjf

†
j (see [11]).

We want to obtain a decomposition of the space P(R2n; S) into irreducible
subspaces under the action of the group PinJ(2n), which is a double cover of
OJ(2n) inside the Clifford algebra; this group can be defined as

PinJ(2n) = {s ∈ Pin(2n) : ssJ = sJs}

where sJ = s1s2 . . . sn, with sj =
√

2
2 (1− ejen+j), j = 1, . . . , n, is a Spin(2n)

element corresponding to the complex structure J ∈ SO(2n) under the double
covering of SO(2n) by Spin(2n). The action of PinJ(2n) on P(R2n; S) is given by

s · f̃(z, z†) = sf̃(ŝ−1zs, ŝ−1z†s), f̃ ∈ P(R2n; S) , s ∈ PinJ(2n)
whereas its action on P(R2n; End(S)) = P(R2n; C2n) is given by

s · f̃(z, z†) = sf̃(ŝ−1zs, ŝ−1z†s)ŝ−1

Observe the use of the Hermitean vector variables z and z†, which are PinJ (2n)-in-
variant elements in P(R2n; End(S)). In fact it may be proven by invariance theory
(see e.g. [21]) that the space of all PinJ(2n)-invariant polynomials is spanned by
all possible words in z and z†:

spanC
(
1, z, z†, z z†, z†z, z z†z, z†z z†, z z†z z†, z†z z†z, . . .

)
= spanC

(
w

(i)
l (z, z†) : l = 0, 1, 2, . . . , i = 1, 2

)
with

w
(1)
2r (z, z†) = (z z†)r = |z|2r−2 z z† w

(1)
2r+1(z, z†) = |z|2rz

w
(2)
2r (z, z†) = (z†z)r = |z|2r−2 z†z w

(2)
2r+1(z, z†) = |z|2rz†

and w
(1)
0 = w

(2)
0 = 1. This space becomes a unital graded superalgebra, inheriting

its grading from the Z2-grading on Cm.
As a first step towards the decomposition aimed at, we will split P(R2n; S)

according to bidegree of homogeneity and to the homogeneous parts of spinor
space:

P(R2n; S) =
∞⊕

a,b=0

n⊕
v=0
P(v)
a,b

with P(v)
a,b = Pa,b(R2n; C)⊗ S(v). Under the natural duality the generators z and z†

of the above superalgebra correspond to the Hermitean Dirac operators ∂z and ∂†z.
So we consider the spaces M(v)

a,b of S(v) valued Hermitean monogenic homogeneous
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polynomials of bidegree (a, b) in the variables (z1, . . . , zn, z
c
1, . . . , z

c
n), the latter

denoted as (z, z†). This leads to the Fischer decomposition of the space of spinor
valued polynomials according to the action of PinJ(2n) (see [7]):

P(R2n; S) =
∞⊕

a,b=0

n⊕
v=0

(
M(v)

a,b ⊕
∞⊕
p=1

⊕
i=1,2

w(i)
p (z, z†) M(v)

a,b

)
.

In particular, for the space H(v)
a,b of S(v) valued harmonic homogeneous polynomials

of bidegree (a, b), this Fischer decomposition reduces to

H(v)
a,b =M(v)

a,b ⊕ zM
(v−1)
a−1,b ⊕ z

†M(v+1)
a,b−1

⊕
( zz†

b− 1 + v
− z†z

a− 1 + n− v

)
M(v)

a−1,b−1(8)

where we put M(v)
a,b = {0} whenever a < 0, b < 0, v < 0 or v > n and moreover,

when b − 1 + v = 0 the last summand reduces to zz†M(v)
a−1,b−1, while, when

a− 1 + n− v = 0 it reduces to z†zM(v)
a−1,b−1.

Special attention should be paid to the cases where v = 0 and v = n. Indeed,
for v = 0, Hermitean monogenicity means holomorphy (see [2]), so in this case the
spaces of spherical Hermitean monogenics are simply the spaces of scalar valued
holomorphic homogeneous polynomials in the variables (z1, . . . , zn), which implies
that b must be zero. For v = n Hermitean monogenicity means anti-holomorphy,
so in that case we end up with anti-holomorphic homogeneous polynomials in the
variables (zc1, . . . , zcn), implying that a must be zero. This leads to the following
special Fischer decompositions: for v = 0 one has
• H(0)

a,0 =M(0)
a,0;

• H(0)
a,1 = z†M(1)

a,0 ⊕ z z†M
(0)
a−1,0;

• H(0)
a,b = z†M(1)

a,b−1, when b 6= 0, b 6= 1,

while for v = n one has

• H(n)
0,b =M(n)

0,b ;

• H(n)
1,b = zM(n−1)

0,b ⊕ z† zM(n)
0,b−1;

• H(n)
a,b = zM(n−1)

a−1,b , when a 6= 0, a 6= 1.
Note that the dimensional analysis carried out in Section 7 confirms these results.

In the next section we will show how the decompositions (7) and (8) fit together,
more precisely we will determine the U(n)-irreducible parts of (8) constituting each
of the terms in (7).
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6. Decomposition of Mk into U(n)-irreducibles

Let us first decompose the space Pk(R2n; S) of spinor valued k-homogeneous
polynomials in the variables (z1, . . . , zn, z

c
1, . . . , z

c
n) according to bidegree of homo-

geneity and to the homogeneous parts of spinor space:

Pk(R2n; S) =
⊕
a+b=k

n⊕
v=0
P(v)
a,b

in this way inducing on a spherical monogenic Mk ∈Mk(R2n; S) the splitting

(9) Mk =
k∑
a=0

n∑
v=0

P
(v)
a,k−a .

It is important to note that the components P (v)
a,k−a are no longer monogenic

since
∂z : P(v)

a,k−a −→ P
(v−1)
a−1,k−a ;

∂†z : P(v)
a,k−a −→ P

(v+1)
a,k−a−1

whence
∂ : P(v)

a,k−a −→ P
(v−1)
a−1,k−a ⊕ P

(v+1)
a,k−a−1

with P(v)
a,b = {0} whenever a < 0 or b < 0 or v < 0 or v > n. In other words: the

action of the Dirac operator ∂ mixes up the homogeneous parts of spinor space.
Introducing the spaces M(v)

a,k−a =Mk(R2n; S) ∩ P(v)
a,k−a we clearly have that

k⊕
a=0

n⊕
v=0
M(v)

a,k−a ⊂Mk(R2n; S)

Moreover the polynomials inM(v)
a,k−a satisfy ∂M (v)

a,k−a = 0 = ∂†zM
(v)
a,k−a−∂zM

(v)
a,k−a,

where ∂†zM
(v)
a,k−a ∈ P

(v+1)
a,k−a−1 and ∂zM

(v)
a,k−a ∈ P

(v−1)
a−1,k−a. This means that at the

same time ∂zM
(v)
a,k−a = 0 and ∂†zM

(v)
a,k−a = 0, or: M (v)

a,k−a is Hermitean monogenic,
which justifies the notation M(v)

a,k−a for the corresponding space. We thus have

Lemma 1. On each of the spaces P(v)
a,b the notions of monogenicity and Hermitean

monogenicity coincide.

Introducing the space of spherical Hermitean monogenics of degree k:
HMk =

{
Qk ∈ Pk(R2n; S) : ∂zQk = 0 = ∂†zQk

}
we thus have obtained that

(10)
k⊕
a=0

n⊕
v=0
M(v)

a,k−a ⊂ HMk ⊂Mk(R2n; S) .

However, there is more. Denoting the restrictions to Mk of the Hermitean Dirac
operators by ∂̃z and ∂̃†z we have the following result.



312 F. BRACKX, H. DE SCHEPPER AND V. SOUČEK

Proposition 1. One has

HMk = Ker ∂̃z = Ker ∂̃†z =
k⊕
a=0

n⊕
v=0
M(v)

a,k−a .

Proof. In view of (10) we still need to prove that
k⊕
a=0

n⊕
v=0
M(v)

a,k−a ⊃ HMk .

So take φk ∈ HMk, then

φk =
k∑
a=0

n∑
v=0

φ
(v)
a,k−a

with φ
(v)
a,k−a ∈ P

(v)
a,k−a. As ∂zφ

(v)
a,k−a ∈ P

(v−1)
a−1,k−a it follows from ∂zφk = 0 that

∂zφ
(v)
a,k−a = 0 for a = 1, . . . , k and v = 1, . . . , n, while for a = 0 or v = 0 this

equation is trivially satisfied. Similarly it follows from ∂†zφk = 0 that ∂†zφ
(v)
a,k−a = 0

for a = 0, . . . , k − 1 and v = 0, . . . , n− 1, which now is trivial for a = k or v = n.
We may thus conclude that φ(v)

a,k−a ∈ M
(v)
a,k−a for a = 0, . . . , k and v = 0, . . . , n,

which proves the statement. �

Remark 1. Both for the spherical harmonics and for the spherical Hermitean
monogenics, the decomposition according to bidegree of homogeneity and to spinor
homogeneity leads to harmonic, respectively Hermitean monogenic components.
For spherical monogenics however this is not the case, as already mentioned, since
the action of the Dirac operator, in fact a combined action of both Hermitean Dirac
operators, mixes up the homogeneous spinor subspaces. We can only say that the
corresponding components of a spherical monogenic are in Ker ∂z∂

†
z = Ker ∂†z∂z.

Our aim now is to decomposeMk into irreducible subspaces which are invariant
under PinJ(2n) ∼= U(n). To that end we start from the orthogonal decomposition

Mk = Ker ∂̃z ⊕
(

Ker ∂̃†z
)⊥

for which we have already shown in Proposition 1 that

Ker ∂̃z = Ker ∂̃†z =
k⊕
a=0

n⊕
v=0
M(v)

a,k−a .

We also know that (Ker ∂̃†z)⊥ ∼= Im ∂̃z whence it suffices to determine Im ∂̃z.

Lemma 2. One has

(11) Im ∂̃z ⊂
k−1⊕
a=0

n−1⊕
v=1

M(v)
a,k−a−1 .
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Proof. Using (9) and invoking that ∂zMk = ∂†zMk since Mk is monogenic we have
k−1∑
a=0

n−1∑
v=1

∂zP
(v+1)
a+1,k−a−1 =

k−1∑
a=0

n−1∑
v=1

∂†zP
(v−1)
a,k−a

and hence
∂zP

(1)
a+1,k−a−1 = 0 ;

∂†zP
(n−1)
a,k−a = 0 ;

∂zP
(v+1)
a+1,k−a−1 = ∂†zP

(v−1)
a,k−a ∈ M

(v)
a,k−a−1

from which the desired result follows. �

To show that equality holds in (11) we prove the following version of the Poincaré
Lemma.

Lemma 3. Given φ
(v)
a,k−a−1 ∈M

(v)
a,k−a−1, the polynomial

ψ =
( z

a+ n− v
+ z†

k − a− 1 + v

)
φ

(v)
a,k−a−1

enjoys the following properties:
(i) ψ ∈Mk

(ii) ∂zψ = ∂†zψ = φ
(v)
a,k−a−1

Proof. To prove (ii) it suffices invoke the well-known anti–commutation relations
(see [7]):

{∂z, z} = Ez + n− βc ;

{∂z, z†} = 0 ;

{∂†z, z} = 0 ;

{∂†z, z†} = Ezc + βc

the Hermitean Euler operators Ez and Ez† having the spaces P(v)
a,b as eigenspaces

with respective eigenvalues a and b. Next, (i) follows from (ii). �

Proposition 2. One has

Im ∂̃z = Im ∂̃†z =
k−1⊕
a=0

n−1⊕
v=1

M(v)
a,k−a−1 .

Proof. In view of (11) we still have to prove that

Im ∂̃z ⊃
k−1⊕
a=0

n−1⊕
v=1
M(v)

a,k−a−1 .

To that end take

φ =
k−1∑
a=0

n−1∑
v=1

φ
(v)
a,k−a−1 ∈

k−1⊕
a=0

n−1⊕
v=1
M(v)

a,k−a−1
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and define the polynomial

Ψ =
k−1∑
a=0

n−1∑
v=1

( z

a+ n− v
+ z†

k − a− 1 + v

)
φ

(v)
a,k−a−1 .

Then Ψ will belong to Mk and satisfy ∂zΨ = ∂†zΨ = φ. �

Combining the above results we obtain the following Fischer decomposition,
which, as mentioned in the introduction, was already obtained in [13] on the basis
of group representation theory.

Theorem 1. The space Mk(R2n; S) of spinor valued spherical monogenics of
degree k may be decomposed into U(n)-irreducibles as follows:

(12) Mk =
( k⊕
a=0

n⊕
v=0
M(v)

a,k−a

)
⊕
( k−1⊕
a=0

n−1⊕
v=1

( z

a+ n− v
+ z†

k − a− 1 + v

)
M(v)

a,k−a−1

)
.

This last result means that, given a spinor valued spherical monogenic Mk, (9),
there exist spinor valued spherical Hermitean monogenics f (v)

a,k−a and g(v)
a,k−a−1 such

that

Mk =
k∑
a=0

n∑
v=0

f
(v)
a,k−a +

k∑
a=1

n∑
v=2

z g
(v−1)
a−1,k−a

a+ n− v
+
k−1∑
a=0

n−2∑
v=0

z† g
(v+1)
a,k−a−1

k − a+ v

where the polynomials occuring in the respective projections from Mk onto the
U(n)-irreducibles involving spherical Hermitean monogenics, may be calculated as

f
(v)
a,k−a =

(
1−

z∂z

a+ n− v
−

z†∂†z

k − a+ v

)
P

(v)
a,k−a

g
(v−1)
a−1,k−a = ∂zP

(v)
a,k−a

g
(v+1)
a,k−a−1 = ∂†zP

(v)
a,k−a

Now we are able to show explicitly how the Fischer decomposition (8) in terms
of spherical Hermitean monogenics originates from the Fischer decomposition (7)
in terms of standard spherical monogenics, by using the decomposition (12) of
Theorem 1. First we have, according to (7):

Hk(R2n; S) =Mk(R2n; S)⊕ (z − z†)Mk−1(R2n; S)



FISCHER DECOMPOSITIONS IN CLIFFORD ANALYSIS 315

which, by means of (12), takes the form

Hk(R2n; S) =
( k⊕
a=0

n⊕
v=0
M(v)

a,k−a

)
⊕
( k−1⊕
a=0

n−1⊕
v=1

( z

a+ n− v
+ z†

k − a− 1 + v

)
M(v)

a,k−a−1

)
⊕ (z − z†)

( k−1⊕
a=0

n⊕
v=0
M(v)

a,k−a−1

)
⊕ (z − z†)

( k−2⊕
a=0

n−1⊕
v=1

( z

a+ n− v
+ z†

k − a− 2 + v

)
M(v)

a,k−a−2

)
.

This means that for each spherical harmonic Hk ∈ Hk(R2n; S) there exist
spherical Hermitean monogenics

f
(v)
a,k−a ∈M

(v)
a,k−a (a = 0, . . . , k; v = 0, . . . , n)

g
(v)
a,k−a−1 ∈M

(v)
a,k−a−1 (a = 0, . . . , k − 1; v = 1, . . . , n− 1)

h
(v)
a,k−a−1 ∈M

(v)
a,k−a−1 (a = 0, . . . , k − 1; v = 0, . . . , n)

u
(v)
a,k−a−2 ∈M

(v)
a,k−a−2 (a = 0, . . . , k − 2; v = 1, . . . , n− 1)

such that

Hk =
( k∑
a=0

n∑
v=0

f
(v)
a,k−a

)
+
( k−1∑
a=0

n−1∑
v=1

( z

a+ n− v
+ z†

k − a− 1 + v

)
g

(v)
a,k−a−1

)
+
( k−1∑
a=0

n∑
v=0

(z − z†)h(v)
a,k−a−1

)
+
( k−2∑
a=0

n−1∑
v=1

( zz†

k − a− 2 + v
− z†z

a+ n− v

)
u

(v)
a,k−a−2

)
.

Fixing a bidegree and a spinor-homogeneity degree the above decomposition yields

H
(v)
a,k−a = f

(v)
a,k−a + z

( g(v−1)
a−1,k−a

a+ n− v
+ h

(v−1)
a−1,k−a

)
+ z†

( g(v+1)
a,k−a−1

k − a+ v
− h(v+1)

a,k−a−1

)
+
( zz†

k − a− 1 + v
− z†z

a− 1 + n− v

)
u

(v)
a−1,k−a−1

meaning that

H(v)
a,k−a =M(v)

a,k−a ⊕ z M(v−1)
a−1,k−a ⊕ z† M(v+1)

a,k−a−1

⊕
( zz†

k − a− 1 + v
− z†z

a− 1 + n− v

)
M(v)

a−1,k−a−1
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which is precisely (8). Moreover we may now also determine the projection operators
from H(v)

a,k−a onto the U(n)-irreducibles involving spherical Hermitean monogenics.
With the notations from above we successively obtain:

u
(v)
a−1,k−a−1 = 1

k + n− 1 ∂
†
z ∧ ∂z[H

(v)
a,k−a]

( g(v+1)
a,k−a−1

k − a+ v
− h(v+1)

a,k−a−1

)
= 1
k − a+ v

(
∂†z + z

a− 1 + n− v
∂†z ∧ ∂z

)
[H(v)

a,k−a]

( g(v−1)
a−1,k−a

a+ n− v
+ h

(v−1)
a−1,k−a

)
= 1
a+ n− v

(
∂z −

z†

k − a− 1 + v
∂†z ∧ ∂z

) [
H

(v)
a,k−a

]
and

f
(v)
a,k−a =

(
1−

z∂z

a+ n− v
−

z†∂†z

k − a+ v

)
[H(v)

a,k−a]

−
( z†z(∂†z ∧ ∂z)

(k − a+ v)(k + n− 1) −
zz†(∂†z ∧ ∂z)

(a+ n− v)(k + n− 1)

) [
H

(v)
a,k−a

]
7. Dimensional analysis

Fischer decompositions of spaces of polynomials allow for dimension counting,
which we will do in a systematic way in this section, first confirming well-known
formulae for the spaces of spherical harmonics and spherical monogenics, and then
establishing a dimension result for spaces of spherical Hermitean monogenics.

First recall that

dim(Pk(Rm; C)) = Dk
m =

(
m+ k − 1

k

)
Dk
m denoting the number of k-combinations of an m-element set, repetition being

allowed. It follows that dim(Pk(R2n; S)) = 2nDk
2n, since dim(S) = 2n. In the same

order of ideas we have

dim(P(v)
a,b ) = Da

nD
b
n dim(S(v)) =

(
n

v

)
Da
nD

b
n

and observe that indeed∑
a+b=k

n∑
v=0

dim(P(v)
a,b ) =

(
n∑
v=0

(
n

v

))( k∑
a=0

Da
nD

k−a
n

)
= 2nDk

2n = dim
(
Pk(R2n; S)

)
.

Next, from the Fischer decomposition (1) it follows that

Pk(R2n; S) = Hk(R2n; S)⊕ r2 Pk−2(R2n; S)

which yields for k ≥ 2

hk ≡ dim
(
Hk(R2n; S)

)
= dim

(
Pk(R2n; S)

)
− dim

(
Pk−2(R2n; S)

)
= 2n(Dk

2n −Dk−2
2n ) = 2n 2n+ 2k − 2

2n+ k − 2

(
2n+ k − 2

k

)
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while h0 = 2n, h1 = 2n+1n. In the same order of ideas we find for a > 0 and b > 0

h
(v)
a,b ≡ dim

(
H(v)
a,b(R

2n; S)
)

=
(
n

v

)
(Da

nD
b
n −Da−1

n Db−1
n )

=
(
n

v

)(
n+ a− 2

a

)(
n+ b− 1

b

)
n+ a+ b− 1
n+ b− 1

yielding

k∑
a=0

n∑
v=0

dim
(
H(v)
a,k−a(R2n; S)

)
= 2n

k∑
a=0

(Da
nD

k−a
n −Da−1

n Dk−a−1
n )

= 2n(Dk
2n −Dk−2

2n ) = dim
(
Hk(R2n; S)

)
as it should.

Now, from the Fischer decomposition (2) it follows that

Pk(R2n; S) =Mk(R2n; S)⊕X Pk−1(R2n; S)

yielding for k > 0

mk ≡ dim
(
Mk(R2n; S)

)
= dimPk(R2n; S)− dimPk−1(R2n; S)

= 2n (Dk
2n −Dk−1

2n ) = 2nDk
2n−1 = 2n

(
2n+ k − 2

k

)
while m0 = h0 = 2n. Note that

dim(Mk) + dim(Mk−1) = 2n (Dk
2n −Dk−2

2n ) = dim(Hk)

which is in accordance with (7).
Finally, putting m(v)

a,b = dim(M(v)
a,b), with m

(v)
a,b = 0 whenever a < 0 or b < 0 or

v < 0 or v > n, we deduce from the Fischer decomposition (8) that

(13) h
(v)
a,k−a = m

(v)
a,k−a +m

(v−1)
a−1,k−a +m

(v+1)
a,k−a−1 +m

(v)
a−1,k−a−1

This means that the dimension of the spaces M(v)
a,b of spherical Hermitean monoge-

nics may be calculated recursively from the dimensions of the spaces of spherical
harmonics:

m
(v)
0,0 = h

(v)
0,0

m
(v)
0,1 = h

(v)
0,1 − h

(v+1)
0,0

m
(v)
1,0 = h

(v)
1,0 − h

(v−1)
0,0

m
(v)
0,2 = h

(v)
0,2 − h

(v+1)
0,1 + h

(v+2)
0,0

m
(v)
1,1 = h

(v)
1,1 − h

(v+1)
1,0 − h(v−1)

0,1 + h
(v)
0,0
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m
(v)
2,0 = h

(v)
2,0 − h

(v−1)
1,0 + h

(v−2)
0,0

m
(v)
0,3 = h

(v)
0,3 − h

(v+1)
0,2 + h

(v+2)
0,1 − h(v+3)

0,0

m
(v)
1,2 = h

(v)
1,2 − h

(v+1)
1,1 − h(v−1)

0,2 + h
(v+2)
1,0 + h

(v)
0,1 − h

(v+1)
0,0

m
(v)
2,1 = h

(v)
2,1 − h

(v−1)
1,1 − h(v+1)

2,0 + h
(v)
1,0 + h

(v−2)
0,1 − h(v−1)

0,0

m
(v)
3,0 = h

(v)
3,0 − h

(v−1)
2,0 + h

(v−2)
1,0 − h(v−3)

0,0

etc. According to (12), these dimensions should satisfy

mk =
k∑
a=0

n∑
v=0

m
(v)
a,k−a +

k−1∑
a=0

n−1∑
v=1

m
(v)
a,k−a−1

by means of which the correctness of the obtained results may be checked.
However, solving the recurrence relations (13) explicitly in order to obtain a

closed form for m(v)
a,k−a turns out to be too complicated. Fortunately, the dimension

of the spaces of spherical Hermitean monogenics may also be calculated in an
alternative way. To this end we consider the Weyl dimension formula (see [21, p.301])
for the dimension of an irreducible finite dimensional representation of a simple Lie
algebra g. This formula contains products over all positive roots of g, the number
of which is increasing quickly, whence the formula is difficult to use in explicit
calculations. Yet, in some cases significant simplifications occur. In particular in
the present case, for representations of the algebra su(n), a simplified formula may
be used involving the so–called hook numbers, see [21, p.382]. Characterizing an
irreducible representation by its highest weight λ, a Young (or Ferrers) diagram
may be associated to it, which consists of left justified rows of boxes, each row
containing as many boxes as indicated by the corresponding component of λ. Each
box then has a hook number associated to its position in the diagram, which can be
calculated following a simple rule: if there are x boxes in the diagram to the right
of the considered one and y boxes below, then the hook number is x+ y + 1. The
Weyl dimension formula for the module with highest weight λ = [λ1, λ2, . . . , λn−1]
then takes the form

(λ1 + n− 1)!
(n− 1)!

(λ2 + n− 2)!
(n− 2)! · · · (λn−1 + 1)!

1!
1

Πi,j∈λhi,j

where the product is taken over all hook numbers hi,j associated to all boxes in
the diagram.

Now, the space M(v)
a,b is a su(n)-module with highest weight

λ = [a+ b+ 1, b+ 1, . . . , b+ 1, b, . . . , b]
where the last b+ 1 appears at the (n− v)-th place, see [13]. The corresponding
Young diagram, with the hook numbers written in the corresponding boxes, is
shown above, leading for 0 < v < n to the following expression for dimM(v)

a,b:

m
(v)
a,b = a+ b+ n

a+ n− v

(
b+ v − 1

b

)(
b+ n− 1
n− v − 1

)(
a+ n− 1

a

)
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b . . . 2 1

b+ 1 . . . 3 2

...
...

...
...

b+ v − 2 . . . v v − 1

b+ v . . . v + 2 v + 1 1

b+ v + 1 . . . v + 3 v + 2 2

...
...

...
...

...

b+ n− 2 . . . n n− 1 n− v − 1

a+ b
+n− 1 a+ n+ 1 a+ n a+ n− v. . . a . . . 2 1

Fig. 1: Ferrer diagram with hook numbers for M(v)
a,b

which has been checked to be in accordance with the recurrence relations (13).
As already mentioned above for v = 0 the spaces of spherical Hermitean

monogenics are nothing else but the spaces of scalar valued holomorphic homo-
geneous polynomials in the variables (z1, . . . , zn), implying that b = 0. Hence
m

(0)
a,0 = dimP(0)

a,0 = Da
n =

(
a+n−1

a

)
, which is confirmed by the Weyl dimension

formula for the highest weight [a, 0, . . . , 0]. Similarly, for v = n we end up with
anti-holomorphic homogeneous polynomials in the variables (zc1, . . . , zcn), implying
that a = 0. Hence m(n)

0,b = dimP(n)
0,b = Db

n =
(
b+n−1

b

)
, which is confirmed by the

Weyl dimension formula for the highest weight [b, b, . . . , b].
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