
Kybernetika

Hanif Heidari; Alaeddin Malek
Optimal boundary control for hyperdiffusion equation

Kybernetika, Vol. 46 (2010), No. 5, 907--925

Persistent URL: http://dml.cz/dmlcz/141399

Terms of use:
© Institute of Information Theory and Automation AS CR, 2010

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/141399
http://project.dml.cz


K Y BE R NE T IK A — VO L UM E 4 6 ( 2 0 1 0 ) , NU MB E R 5 , P AGE S 9 0 7 – 9 2 5

OPTIMAL BOUNDARY CONTROL

FOR HYPERDIFFUSION EQUATION

Hanif Heidari and Alaeddin Malek

In this paper, we consider the solution of optimal control problem for hyperdiffusion
equation involving boundary function of continuous time variable in its cost function. A
specific direct approach based on infinite series of Fourier expansion in space and temporal
integration by parts for analytical solution is proposed to solve optimal boundary control for
hyperdiffusion equation. The time domain is divided into number of finite subdomains and
optimal function is estimated at each subdomain to obtain desired state with minimum
energy. Proposed method has high flexibility so that decision makers are able to trace
optimal control in a prescribed subinterval. The implementation of the theory is presented
and the effectiveness of the boundary control is investigated by some numerical examples.

Keywords: hyperdiffusion equation, optimal boundary control, swimming at microscale

Classification: 35K35, 35B37, 49J20

1. INTRODUCTION

There exist many swimming microorganisms in our world. Some examples are: The
spermatozoon that fuse with the ovum during fertilization, the bacteria that inhabit
our guts, the protozoa in our ponds, and the algae in the ocean [13]. The hair-
like filaments called flagella that build the tail of spermatozoa generate thrust by
passing bending waves from head to tail along the filament. Similarly, cilia are whip-
like appendages which pump fluid using an asymmetric beating cycle. In the case
of motile cells, this transport of fluid also leads to propulsion [2]. What is perhaps
less familiar is the fact that the physics governing swimming at the micron scale
is fundamentally different from the physics of swimming at the mesoscopic scale.
The world of microorganisms is the world of low “Reynolds number,” a world where
inertial forces are less significant or even negligible compared to viscous forces [19].
If w denotes the typical amplitude of a material point at a distance x along the
filament, the balance between local viscous drag and bending forces on the filament
results in a hyperdiffusion equation for small-amplitude motion. This equation was
also derived in earlier work by Machin in the context of wave propagation in the
flagella of swimming microorganisms [15, 16].

There exist some experimental works on swimming in microscale. The first arti-
ficial microswimmer is created by Dreyfus et al. in which a chain of paramagnetic
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beads propagates a bending wave along the chain driven by an external magnetic field
[6]. A second experiment performed by Wiggins et al. measured the shape changes
of a passive actin filament, oscillated at one end via optical tweezers [23]. The
shapes recorded in these trials match elastohydrodynamic theory well. Microswim-
mers could provide propulsion for medical device used for minimally invasive surgery
or targeted drug delivery. Also, microswimmers could easily be adopted to work as a
micro-electro-mechanical-system (MEMS) pumps for “lab on chip” applications [11].

Optimal control is one of the methods that is applied to many problems to achieve
desired state with minimum energy [24]. Although there are many publications on
first and second order problems [5, 7, 10, 17, 18, 20, 22], there is little research on
boundary control for fourth order hyperdiffusion equations. This paper deals with
optimal boundary control of hyperdiffusion equation. We consider a microfilament
with both ends are hinged. Our goal is to find the control function which acts on the
extreme x = l (where l is the length of filament), such that desired state is attained
at prescribed fixed final time with minimum energy cost. The presented method has
the following properties

i) Decision maker can discretize the times abscissas in an arbitrary way in which
the control function is specified. We are not obliged to use equidistance time
discretization or the partitioning does not need very fine like as finite difference
method for example see [5].

ii) Decision maker is able to prescribe control function on any specific time period
that one requires while this is impossible in some methods for example see [8]
and references in it.

This means that according to the problem conditions, decision maker is flexible to
compute the control function by various means he likes with minimum energy cost.

The outline of this paper is as follow: In Section 2 we give the mathematical
formulation of the control problem, review some basic definitions and state the
necessary assumptions. In Section 3 a method has been proposed to find optimal
control function over a thin elastic rod. In Section 4 some numerical results are
given.

2. PROBLEM FORMULATION

We consider the physical domain to be a thin elastic rod of length l. Let Ω = (0, l)
be a bounded open set in R. Let T > 0 be a preassigned final time. We set Q =
Ω × (0, T ). Consider the hyperdiffusion initial–boundary value problem:

∂

∂t
w + a2 ∂4

∂x4
w = 0 in Q (2.1)

The initial condition is

w(x, t) = f(x) at t = 0 (2.2)
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where f(x) is a real valued function. We assume that for each t ∈ (0, T ) the boundary
conditions are

∂2

∂x2
w(x, t) = 0 at x = 0 (2.3)

∂2

∂x2
w(x, t) = 0 at x = l (2.4)

w(x, t) = 0 at x = 0 (2.5)

w(x, t) = u(t) at x = l (2.6)

where u(t) ∈ L2(0, T ) is a control function. We assume that u(0) = u(T ) = 0.

Definition 2.1. Let Ω ⊂ R
n and s ≥ 0 be a real number. Hs(Ω) is defined as

Hs(Ω) = [Hr(Ω), L2(Ω)]θ,

where [X, Y ]θ denotes the interpolation between two spaces X and Y , r integer,
0 < θ < 1 and (1 − θ)r = s (for more details see [14], Chapter 1, Section 9.).

Remark 2.2. Let s1, s2 > 0. Dual space of Hs2(Ω) is not necessary identified
with an ordinary function space, but, it is an abstract space. We may identify
Hs1(Ω) with a dense subspace of dual space of Hs2(Ω), in the following manner.
Let u ∈ Hs1(Ω). Then

u∗ : ν ∈ Hs2(Ω) →

∫

Ω

uν̄ dx,

is a continuous antilinear form on Hs2(Ω). Thus, u∗ belongs to dual space of Hs2(Ω).
For more details see [14], Chapter 1, Section 12.5.

Theorem 2.3. If the initial state f(x) belongs to dual space of H
3
2 (Ω) and the

boundary condition u(t) belongs to L2(0, T ), then the solution of the problem (2.1) –
(2.6) satisfies

w(x, t) ∈ L2((0, T ); H
1
2 (Ω)) ∩ H

1
8 ((0, T ); L2(Ω)).

P r o o f . In this case for θ = 1
2 and r = 3, the dual space of H

3
2 (Ω) satisfying in

Definition 2.1 and Remark 2.2 exists. For the remainder of proof see reference [14],
Chapter 4, Section 15.2. �

We aim at changing the dynamic of the system by acting on the boundary of
the domain (0, l). The optimal control problem may be defined in similar way (For
example see [20, 24]):

min
u(t)

‖u(t)‖L2(0,T ) + ‖w(x, t, u(t))‖L2(0,T ).

In this paper a different optimal control formulation is considered because the final
state is more important than control cost or tracking problem from our point of
view. Here, the following optimal control formulation is considered.
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Find u∗(t) ∈ L2(0, T ) such that u∗ is the solution of







min
u(t)

J(u(t))

s. t. |w(x, T, u(·))| ≤ ǫ ∀x ∈ (0, l),
(2.7)

where ǫ is a positive constant that should be given in solving process (see Section 3)
and J(u(t)) = ‖u(t)‖2

L2(0,T ). The formulation (2.7) guaranties that the final desti-
nation will be reached with accuracy ǫ. The null controllability of hyperdiffusion
equation is proved by authors in the reference [9]. So, the problem (2.7) is well
defined and has at least one solution.

3. METHOD

At first, the classical solution w(x, t, u(·)) of (2.1) – (2.6) will be found. In order to
find the classical solution we use the following theorems.

Theorem 3.1. Every linear boundary value problem (BVP) with inhomogeneous
boundary conditions can be transformed to a BVP with homogeneous boundary
conditions.

P r o o f . See [21]. �

Theorem 3.2. The classical solution of (2.1) – (2.5) and w(l, t) = 0 is as follows:

w(x, t, u(·)) =
2

l

∞
∑

n=1

∫ l

0

f(ξ) sin(λnξ) exp(−λ4
na2t) dξ sin(λnx). (3.1)

where λn = nπ
l

, n = 1, 2, . . . .

P r o o f . See [23]. �

Theorem 3.3. The classical solution of inhomogeneous BVP (2.1) – (2.6) is as fol-
lows:

w(x, t, u(·)) =
2

l

[

∞
∑

n=1

∫ l

0

f(ξ) sin(λnξ) exp(−λ4
na2t) dξ

−

∞
∑

n=1

∫ l

0

∫ t

0

ξ

l

d

dτ
u(τ) sin(λnξ) exp(−λ4

na2(t − τ)) dτdξ
]

sin(λnx) +
x

l
u(t). (3.2)

P r o o f . See Theorem 3.1 and Theorem 3.2. �

The solution w(x, t, u(·)) can be approximated by a truncated Fourier series [4].
The constant N arises from the number of retained terms in the Fourier expansion
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and specifies the accuracy of the approximation. The positive constant ǫ in opti-
mization problem (2.7) is related to N obviously. The term wN (x, T, u(·)) is defined
as follows:

wN (x, T, u(·)) =
2

l

N
∑

n=1

[

∫ l

0

f(ξ) sin(λnξ) exp(−λ4
na2T ) dξ

−

∫ l

0

∫ T

0

ξ

l

d

dτ
u(τ) sin(λnξ) exp(−λ4

na2(T − τ)) dτdξ
]

. (3.3)

The constraint |w(x, T, u(·))| ≤ ǫ in (2.7) can be replaced by wN = 0 with a large
enough N . Therefore, by setting wN = 0 and integration by parts of Eq. (3.3) we
have:

N
∑

n=1

∫ l

0

f(ξ) sin(λnx) sin(λnξ) exp(−λ4
na2T ) dξ

= −
N

∑

n=1

∫ l

0

∫ T

0

ξ

l
sin(λnx) sin(λnξ)λ4

na2u(τ) exp(−λ4
na2(T − τ)) dτdξ. (3.4)

Multiplying both sides of equation (3.4) by appropriate trigonometric function, in-
tegrate with respect to x over [0, l] and summing from n = 1 . . .N we obtain, using
orthogonality, the equation

∫ l

0

f(ξ) sin(λnξ) exp(−λ4
na2T ) dξ

= −

∫ l

0

∫ T

0

ξ

l
sin(λnξ)λ4

na2u(τ) exp(−λ4
na2(T − τ)) dτdξ n = 1 . . .N. (3.5)

The important point to note here is the form of boundary control function that
must satisfy in Theorem 2.3 and Eq. (3.3). It is clear that the class of piecewise
polynomials as well as piecewise constant functions are appropriate boundary control
functions to satisfy theses properties.

3.1. Time discretization

We now define the discrete control problem by discretizing the interval (0, T ) into
m subdomains at specific points 0 = t0, t1, t2, . . . , tm = T . We assume that u(t)
in each subinterval (ti, ti+1] be specific polynomial ui+1(t) for i = 0, . . . , m − 2 and
um be a specific polynomial on (tm−1, T ) such that um(T ) = 0. Note that the
control function u(t) that forces in the boundary of the problem belongs to the
L2(0, T ) space. The reason is that: This function has exactly m + 1 (finite) points
of discontinuity, thus, the set of discontinuous points has measure zero in the sense
of Lebesgue measure, and by famous theorem in analysis (Lebesgues criterion for
Riemann integrability[3]), u2(t) is integrable.
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From (3.5) we get:

∫ l

0

f(ξ) sin(λnξ) exp(−λ4
na2T ) dξ

= −

∫ l

0

m−1
∑

i=0

∫ ti+1

ti

ξ

l
sin(λnξ)λ4

na2ui+1(τ) exp(−λ4
na2(T − τ)) dτdξ n = 1 . . .N.

(3.6)

Let us now turn our attention to the discrete optimal control problem. One would
be expect to find u∗ such that

u∗(t) =























u∗
1(t) t0 < t ≤ t1

u∗
2(t) t1 < t ≤ t2
...

u∗
m(t) tm−1 < t < tm

(3.7)

is the optimal solution of problem:

min
ui(t)

m
∑

i=1

‖ui(t)‖
2
L2(0,T ) (3.8)

such that N equations in (3.6) satisfy.

Theorem 3.4. If a control function u(t) is given by constant functions on each
time’s subdomain then N constraints of mathematical programming (3.8) make a
convex region, and any local minimum of the mathematical programming (3.8) is a
global minimum.

P r o o f . From the norm properties it is easy to show that the cost functional J

in (3.8) is a convex functional. Let u(t) be any piecewise constant function in the
following form:

u(t) =















u1 t0 < t ≤ t1
...

um tm−1 < t < tm.

(3.9)

Thus (3.6) can be presented as follows:

m
∑

i=1

cn,iui = bn n = 1 . . .N, (3.10)

where

cn,i =

∫ l

0

∫ ti+1

ti

ξ

l
sin(λnξ)λ4

na2 exp(−λ4
na2(T − τ)) dτdξ, (3.11)
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and

bn =

∫ l

0

f(ξ) sin(λnξ) exp(−λ4
na2T ) dξ.

It follows from (3.10) that the feasible region of mathematical programming (3.8) is
an intersection of N linear hyperplanes, thus it is a convex set. Then since J is a
convex functional any local minimum of (3.8) is a global minimum [1]. �

4. NUMERICAL RESULTS

Here we present some numerical results to illustrate the theory developed in the
previous sections. We have implemented a prototype version of iterative active-set
algorithm in MAPLE in order to obtain computational estimates for the boundary
control function u(t). The results were obtained using a personal computer with 3.00
GHz Pentium Dual Processor and 4 GB RAM. In all of the following examples we
try to find the optimal function u∗(t) such that it satisfies in Eq. (2.7). According to
Section 3 it is proved that, this is equivalent to solve (3.8) subject to N constraints
in (3.6), where N stands for the number of constraints. The control is assumed to
be constant on each subintervals, i. e., the control function is an unknown piecewise
constant function and its values will be calculated in the process of solving the
problem. J∗ denotes the minimum achieved by solving quadratic programming
minui

∑m

i=1 u2
i subject to N constraints in (3.10). Note that a single solution of

corresponding non-dimensional equation (2.1) using a2 = A
l4ωζ⊥ , would allow us to

solve a wide variety of microswimming problem, because a single parameter a2 =
A
ζ⊥ , say, would replace some combination of l, ω, A and ζ⊥, where ω is actuation

frequency, A is bending stiffness and ζ⊥ normal drag coefficient [25]. T is the final
time, f(x) is the initial state for x ∈ [0, 5], m is the number of time’s subintervals. We
assume that a2 = 1 as this is the case where the optimal propulsion is expected [12].

In order to find an upper bound for error, the maximum error

MaxError = max |wExact(x, T, u(·)) − wN (x, T, u(·))|

where an is nth Fourier coefficient of w(x, t, u(·)), is defined. The Euclidean norm

Norm2Error =

60
∑

i=0

|wExact(xi, T, u(·)) − wN (xi, T, u(·))|2)
1
2

is given to show the accumulated error at discrete points xi = il
60 , i = 0, . . . , 60,

where wExact stands for wN (x, T, u(·)) in (3.4) as N → ∞. Here, We consider
wExact = w50.

Error function is defined by

Error(x) = wExact(x, T, u(·)) − wN (x, T, u(·)) x ∈ (0, l) (4.1)

The Error function is shown in Figures 1c – 6c and 1d – 6d for various values of N .
Figures 1a,- 6a show the convergence for trajectories of w(x, t, u(·)) to vanish where
wExact(x, T, u(·)) ≡ 0. Calculated control function u(t) is shown in Figures 1b – 6b.
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Example 1. (Uniform subdomains in time).
In this example, the time domain is partitioned into subdomains uniformly where
ti = iT

50 , i = 0, . . . , 50, for T = 10 and four initial states, f(x) = x, x2, sin(x) and
1√
1+x

. Here, we solve (3.8) with respect to 10 constraints in (3.6). According to

Figures 1a, 2a, 3a and 4 the function w(x, t, u(·)) for t = 0.20, 2.00, 4.00 and 9.00
does not give a good approximation for wExact(x, T, u(·)). However, w(x, t, u(·))
converges to wExact(x, T, u(·)) as time increases, i. e., near the time T = 10, the
graph of w(x, 9.40, u(·)) fits well with wExact(x, 10, u(·)) for all x ∈ (0, 5). Of course
as t → T = 10 we will gain better approximation. Control functions on each
subinterval are shown in Figures 1b, 2b, 3b and 4b. Although, the profile for u(t)
stays similar for various initial states f(x), the values of u(t) differ as it was expected.
It is shown in Figures 1c – 4c and 1d – 4d that the error function oscillates finitely
in the similar manner. Our computations show that for N = 10 we reach to the
moderate accuracy over all points in the domain 0 ≤ x ≤ 5.

The log plot of MaxError and Norm2Error for different values of N are pre-
sented in Figures 7 and 8, respectively. It is shown that the maximum and Euclidean
norm for the error decreases very fast and stays the same for N ≥ 6.

Example 2. (Non-uniform subdomains in time).
Let T=10, f(x) = x, N=10, l=5 and m = 50. In this example, the following non-
uniform partitioning in time is considered.

ti = iT
m

, i = 0, . . . , 20; t21 = 4.5, t22 = 5.2; ti = 5.2 + (i − 22) (T−5.2)
28 , i = 22, . . . , 50.

Numerical computation for optimization problem (3.8) with respect to the above
data gives: J∗= 102.256 where MaxError = 2.020 × 10−44. The maximum error
happens at a point near to x = 5.

According to Figure 5a the function w(x, t, u(·)) converges to w(x, T, u(·)) as
time increases. In Figure 5b the control function u(t) is depicted. Here, the profile
of control function stays similar to uniform time partitioning unless that its values
differ in those subintervals that are not chosen uniformly. Figures 5c and 5d represent
the behavior of function Error(x) for every x ∈ (0, 5) where N = 6 and N = 10
respectively.

Example 3. (Non-uniform subdomains in time and a preassigned value for u(t)).
In this example, we suppose that the value of control function u(t) at a specified
time subdomain is preassigned (here it is chosen to be zero). Consider Example 2
and let control function to be zero at 4.5 ≤ t ≤ 5.2 i. e., u22 = 0. The following
results are computed: J∗=131.261, MaxError = 2.484 × 10−44.

In Figure 6a it is shown that the function w(x, t, u(·)) does not fit to w(x, T, u(·))
at times close to zero. However, w(x, t, u(·)) converges to w(x, T, u(·)) as time in-
creases. In Figure 6b the function u(t) is depicted, it is shown that for 4 ≤ t ≤ 5
the computed value for u(t) is -3.968.

In Table 2, preassigned values for u22 =-5.000, -4.753, -4.000, -3.000, 0.000, 3.000,
4.000, 4.753, 5.000, inside interval (4.5, 5.2] are considered. The corresponding values
for u21 are computed in the fixed interval (4, 4.5]. Moreover, the values of u1, . . . , u20

and u23, . . . , u50 are computed and their values are shown in Figure 6b for u22 =
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0.000. In this table we show that if one choose u22 = −4.753 then for f(x) = x, J∗

has the minimal value. This coincide with the results found in Example 2. (See also,
Table 1). This means that if the decision maker has some information about control
function on some specific time intervals, he will be able to make better decision in
order to gain minimal energy function.

Table 1. Numerical results for some various initial states

in Examples 1, 2 and 3 for T = 10, m = 50, N=10 and l=5.

Example f(x) J∗ MaxError Norm2Error CPU time (s)
1 x 120.172 1.313×10−19 3.065×10−20 24.015
2 x 102.256 2.020×10−44 1.524×10−44 24.800
3 x 131.261 2.484×10−44 1.874×10−44 25.703

1 x2 1062.587 1.562×10−19 9.113×10−20 26.012
2 x2 904.165 6.008×10−44 4.533×10−44 34.250
3 x2 1160.631 7.386×10−44 5.731×10−44 30.047

1 sin(x) 1.759 6.570×10−20 3.834×10−21 26.359
2 sin(x) 1.600 2.528×10−45 1.907×10−45 38.844
3 sin(x) 2.054 3.107×10−45 2.345×10−45 27.656

1 1√
x+1

5.984 1.172×10−20 6.837×10−21 29.313

2 1√
x+1

5.092 4.508×10−45 3.402×10−45 48.516

3 1√
x+1

6.536 5.543×10−45 4.182×10−45 31.266

Table 2. Numerical results for some various preassigned values

for u22 in Example 3, where u21 and u22 are non-uniform subdomains

and the other subdomains are such that ti+1 − ti = 0.2, for

i = 0, . . . , 20, and ti+1 − ti = 0.1714285714, for i = 23, . . . , 50.

u22 u21 J∗ MaxError Norm2Error CPU time (s)
-5.000 -3.046 102.334 1.880×10−44 1.418×10−44 29.156
-4.753 -3.092 102.256 1.966×10−44 1.524×10−44 24.953
-4.000 -3.231 102.985 1.966×10−44 1.483×10−44 28.890
-3.000 -3.415 106.203 2.094×10−44 1.580×10−44 27.256
0.000 -3.968 131.261 2.484×10−44 1.874×10−44 25.703
3.000 -4.522 179.425 2.863×10−44 2.160×10−44 24.968
4.000 -4.706 200.614 2.906×10−44 2.193×10−44 25.703
4.753 -4.845 218.276 1.966×10−44 2.232×10−44 25.000
5.000 -4.891 224.370 3.162×10−44 2.386×10−44 28.515

In Figures 6c and 6d it is observed that the behavior of Error(x) is similar for
N ≥ 6, it gets better as N increases. Comparison between Figures 5c, 6c) and 5d, 6d
show the behavior of Error(x) does not change in Examples 2 and 3 for N = 6 and
N = 10 respectively, the J∗ will differ (see Table 1).
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5. CONCLUSION

In this paper, we have presented a direct approach for solving hyperdiffusion optimal
control problem. Fourier expansion have been used to generate the optimal solution
of control problem. Closed analytical form solution of homogeneous hyperdiffusion
problem is introduced. In the nonhomogeneous case the closed analytical form is
proposed. It is proved that for piecewise constant control functions we deal with con-
vex programming problem and therefore every local minimum of the corresponding
convex program is a global minimum.

The effect of various initial state functions is discussed in Example 1. It is shown
that the norm of control function u(t) has a direct relation with the initial state
f(x), (see Table 1). As it is shown in Table 1, the non-uniform subdivision in time
will give better minimal energy function, however it needs more CPU time as it was
expected.

In Figures 9 and 10 it is shown that for N = 2, 3, 4, 5, and 6, we have almost
the same amount of error for uniform, non-uniform and preassigned values, while
for N > 6 the non-uniform subdivision in time will give better result.

The numerical results for various examples show that the solutions perform suc-
cessful convergence to the correct solution and it verify the theory in Section 3, (see
Theorem 3.4).

(Received November 15, 2009)
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(a) (b)

(c) (d)

Fig. 1. f(x) = x in Example 1

1a: State of w(x, t, u(·)) at times t=0.20, 2.00, 4.00, 9.00, 9.40.

1b: Profile of piecewise constant optimal control calculated by the direct illustrated method.

1c: Plot of function Error(x) for N=4.

1d: Plot of function Error(x) for N=10.
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(a) (b)

(c) (d)

Fig. 2. f(x) = x2 in Example 1

2a: State of w(x, t, u(·)) at times t=0.20, 2.00, 4.00, 9.00, 9.40.

2b: Profile of piecewise constant optimal control calculated by the direct illustrated method.

2c: Plot of function Error(x) for N=4.

2d: Plot of function Error(x) for N=10.
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(a) (b)

(c) (d)

Fig. 3. f(x) = sin(x) in Example 1

3a: State of w(x, t, u(·)) at times t=0.20, 2.00, 4.00, 9.00, 9.40.

3b: Profile of piecewise constant optimal control calculated by the direct illustrated method.

3c: Plot of function Error(x) for N=4.

3d: Plot of function Error(x) for N=10.
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(a) (b)

(c) (d)

Fig. 4. f(x) = 1
√

1+x
in Example 1

4a: State of w(x, t, u(·)) at times t=0.20, 2.00, 4.00, 9.00, 9.40.

4b: Profile of piecewise constant optimal control calculated by the direct illustrated method.

4c: Plot of function Error(x) for N=4.

4d: Plot of function Error(x) for N=10.
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(a) (b)

(c) (d)

Fig. 5. f(x) = x in Example 2

5a: State of w(x, t, u(·)) at times t=0.20, 2.00, 4.00, 9.10, 9.48.

5b: Profile of piecewise constant optimal control calculated by the direct illustrated method.

5c: Plot of function Error(x) for N=6.

5d: Plot of function Error(x) for N=10.
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(a) (b)

(c) (d)

Fig. 6. f(x) = x in Example 3

6a: State of w(x, t, u(·)) at times t=0.20, 2.00, 4.00, 9.10, 9.48.

6b: Profile of piecewise constant optimal control calculated by the direct illustrated method.

6c: Plot of function Error(x) for N=6.

6d: Plot of function Error(x) for N=10.
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Fig. 7. Logarithm of maximum error at some various values of N and initial states for

uniform time subdomains partitioning in Example 1.
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Fig. 8. Logarithm of Euclidean norm error at discrete points xi = il

60
i = 0, . . . , 60 at

some various values of N for uniform time subdomains partitioning in Example 1.
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Fig. 9. Logarithm of maximum error at some various values of N for uniform and

non-uniform time subdomains partitioning where uniform refers as Example 1, for

f(x) = x, non-uniform refers as Example 2, and preassigned refers as Example 3.
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Fig. 10. Logarithm of Euclidean norm error at some various values of N for uniform and

non-uniform time subdomains partitioning where uniform refers as Example 1, for

f(x) = x, non-uniform refers as Example 2, and preassigned refers as Example 3.
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