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Abstract

A large number of parameters in regression models can be serious ob-
stacle for processing and interpretation of experimental data. One way
how to overcome it is an elimination of some parameters. In some cases it
need not deteriorate statistical properties of estimators of useful param-
eters and can help to interpret them. The problem is to find conditions
which enable us to decide whether such favourable situation occurs.

Key words: Weakly nonlinear regression model, underparameteri-
zation, MSE, BLUE.
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Introduction

Real events and processes in many professions can be modelled adequately in
many situations by help of a large number of parameters. If all of them can
be interpreted by a professional language, then it is no reason to neglect them.
Their elimination can lead to a misinterpretation of other parameters, since
estimators of them are influenced by the underparametrization of the model.
Sometimes not all parameters can be interpreted in professional language and

then a problem arises whether noninterpretable parameters can be neglected.

*Supported by the Council of the Czech Government MSM 6 198 959 214.
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1 Prerequisities

Let Y ∼n

[
f(β,γ),Σ

]
means that Y is an n-dimensional random vector with

the mean value E(Y) equal to f(β,γ) and with the covariance matrix Var(Y)
equal to Σ, which is assumed to be known and p.d. (positive definite). The
function f(·, ··) : Rk+l → Rn (Rs means the s-dimensional linear vector space)
can be, with sufficiently high accuracy, expressed as

f(β,γ) = f0 + Fδβ + Sδγ +
1

2
κ(δβ, δγ),

where f0 = f(β0,γ0), β0,γ0 are approximate values of the true values of the
unknown vectors β,γ, δβ = β − β0, δγ = γ − γ0,

F = ∂f(β0,γ0)/∂β
′, S = ∂f(β0,γ0)/∂γ

′,

κ(δβ, δγ) =
[
κ1(δβ, δγ), . . . , κn(δβ, δγ)

]′
,

κi(δβ, δγ) = (δβ′, δγ′)
(
Fi,(1,1), Fi,(1,2)

Fi,(2,1), Fi,(2,2)

)(
δβ
δγ

)
,

Fi =

(
Fi,(1,1), Fi,(1,2)

Fi,(2,1), Fi,(2,2)

)
,

Fi,(1,1) =
∂2fi(β0,γ0)

∂β∂β′ , Fi,(1,2) =
∂2fi(β0,γ0)

∂β∂γ′ ,

Fi,(2,1) =
∂2fi(β0,γ0)

∂γ∂β′ , Fi,(2,2) =
∂2fi(β0,γ0)

∂γ∂γ′ ,

i = 1, . . . , n.

Let the rank r(F,S) of the matrix (F,S) be r(F,S) = k + l, where k is the
dimension of the vector β and l is the dimension of the vector γ.

Lemma 1.1 In the underparametrized and linearized model

Y − f0 ∼n (Fδβ,Σ)

the BLUE (best linear unbiased estimator) of δβ is

δ̂βunder = (F′Σ−1F)−1F′Σ−1(Y − f0).

Its bias in the model

Y − f0 ∼n

[
(F,S)

(
δβ
δγ

)
+

1

2
κ(δβ, δγ),Σ

]
(1)

is bδβ = C−1F′Σ−1Sδγ + 1
2C

−1F′Σ−1κ(δβ, δγ), where C = F′Σ−1F.

Proof is elementary and therefore it is omitted (in more detail cf. [2] and [6]).
�
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The symbol I means the identity matrix and A+ is the Moore–Penrose
generalized inverse [7] of the matrix A. The projection matrix on the column
space M(Am,n) = {Au : u ∈ Rn} of the matrix A is denoted as PA, i.e.
PA = AA+ and MA = I−PA.
In the following text different approaches (cf. also [4] and [5]) are described,

which enable us to decide whether the parameter δγ can or cannot be neglected.

2 The case of a single function

Let a single linear function h′β = h′β0 + h′δβ, be under consideration in the
model (1). Then the following theorem can be stated.

Theorem 2.1 If
(
δβ
δγ

)
∈ Ah, then

Var
(
h′δ̂βunder

)
+ (h′bδβ)

2 < Var
(
h′δ̂βtrue

)
.

Here

Ah =

{(
u
v

)
: u ∈ Rk,v ∈ Rl,

[(
u
v

)
+

1

2
A+

h

(
0
ah

)]′

×Ah

[(
u
v

)
+
1

2
A+

h

(
0
ah

)]
+(0′, a′h)MAh

(
u
v

)
− 1

4
(0′, a′h)A

+
h

(
0
ah

)
≤ ch

}
,

Ah =

n∑
i=1

{
1

2
h′C−1F′Σ−1

}
i

Fi, MAh
= I−AhA

+
h , a′h = h′C−1F′Σ−1S,

ch =

√
h′C−1F′Σ−1S

[
S′(MFΣMF )+S

]−1
S′Σ−1FC−1h

and δ̂βtrue is the BLUE of the vector δβ in the model

Y − f0 ∼n

[
(F,S)

(
δβ
δγ

)
,Σ

]
. (2)

Proof Since the BLUE of δβ in the model (2) is

δ̂βtrue = C−1F′Σ−1(Y − f0)−C−1F′Σ−1S
[
S′(MFΣMF )

+S
]−1

×[Y − f0 − FC−1F′Σ−1(Y − f0)
]
,

where C = F′Σ−1F and the vectors

C−1F′Σ−1(Y − f0) and Y − f0 − FC−1F′Σ−1(Y − f0)

are noncorrelated, it is valid that

Var(δ̂βtrue) = C−1 +C−1F′Σ−1S
[
S′(MFΣMF )

+S
]−1

S′Σ−1FC−1.
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Thus

Var(h′δ̂βtrue) = Var(h′δ̂βunder)

+ h′C−1F′Σ−1S
[
S′(MFΣMF )

+S
]−1

S′Σ−1FC−1h.

The bias of the estimator h′δ̂βunder in the model (1) is

h′bδβ = a′hδγ + (δβ′, δγ′)Ah

(
δβ
δγ

)
.

The linear–quadratic form on the right hand side of the last equality, can be
expressed as follows.
In general (

0
ah

)
/∈ M(Ah) = M(A+

h ).

Therefore the vector

(
0
ah

)
is decomposed, i.e.

(
0
ah

)
= PAh

(
0
ah

)
+MAh

(
0
ah

)
,

where PAh

(
0
ah

)
∈ M(Ah). Thus

h′bδβ = (0′, a′h)MAh

(
δβ
δγ

)
+ (0′, a′h)PAh

(
δβ
δγ

)
+ (δβ′, δγ′)Ah

(
δβ
δγ

)
and

(0′, a′h)
(
δβ
δγ

)
+ (δβ′, δγ′)Ah

(
δβ
δγ

)
=

[(
δβ
δγ

)
+

1

2
A+

h

(
0
ah

)]′
Ah

×
[(

δβ
δγ

)
+

1

2
A+

h

(
0
ah

)]
+ (0′, a′h)MAh

(
δβ
δγ

)
− 1

4
(0′, a′h)A

+
h

(
0
ah

)
,

since

A+
hPAh

(
0
ah

)
= A+

h

(
0
ah

)
and AhA

+
h = PAh

.

The assumption

(
δβ
δγ

)
∈ Ah implies |h′bδβ | < ch and

Var
(
h′δ̂βtrue

)−Var
(
h′δ̂βunder

)
= c2h > (h′bδβ)

2

implies the statement of the theorem. �
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Remark 2.2 The semiaxes of the quadratic on the left hand side of the follow-
ing equality [(

δβ
δγ

)
+

1

2
A+

h

(
0
ah

)]′
Ah

[(
δβ
δγ

)
+

1

2
A+

h

(
0
ah

)]
= ch +

1

4
(0′, a′h)A

+
h

(
0
ah

)
− (0′, a′h)MAh

(
δβ
δγ

)

depends on the vector MAh

(
δβ
δγ

)
which is orthogonal toM(Ah).

Let

u = PAh

(
δβ
δγ

)
, v = MAh

(
δβ
δγ

)
.

Then the boundery of the set Ah is{(
u
v

)
:

[
u+

1

2
A+

h

(
0
ah

)]′
Ah

[
u+

1

2
A+

h

(
0
ah

)]

= ch +
1

4
(0′, a′h)A

+
h

(
0
ah

)
− (0′, a′h)v

}
,

i.e. it is a paraboloid with the section for v = 0 equal to{
u :

[
u+

1

2
A+

h

(
0
ah

)]′
Ah

[
u+

1

2
A+

h

(
0
ah

)]

= ch +
1

4
(0′, a′h)A

+
h

(
0
ah

)}
.

Another approach to a problem of a single function is as follows. Since

h′bδβ = h′C−1F′Σ−1Sδγ + (δβ′, δγ′)Ah

(
δβ
δγ

)
,

two sets, i.e.

A1,h = Rk ×
{
δγ : |h′C−1F′Σ−1Sδγ| ≤ ε

2

√
h′C−1h

}
and

A2,h =

{(
δβ
δγ

)
: (δβ′, δγ′)Ah

(
δβ
δγ

)
≤ ε

2

√
h′C−1h

}
can be constructed.
Thus the set

Ch = A1,h ∩A2,h

is the set with the property(
δβ
δγ

)
∈ Ch ⇒ |h′bδβ | ≤ ε

√
h′C−1h,
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where h is given by the function h(b) = h′b, b ∈ Rk, considered. The statement
is obvious in the view of the Scheffé inequality [8]

∀{h ∈ Rk}|h′bδβ | ≤ ε
√
h′C−1h iff

√
b′
δβCbδβ ≤ ε.

Instead of the matrix C−1 = Var(δ̂βunder), the matrix

C−1 +C−1F′Σ−1S
[
S′(MFΣMF )

+S
]−1

S′Σ−1FC−1 = Var(δ̂βtrue)

can be used.

3 The case of the whole vector δβ

The bias of the estimator δ̂βunder in the model (1) is composed of the two terms,
i.e. C−1F′Σ−1Sδγ which is due to neglecting the parameter δγ in the model
and 1

2C
−1F′Σ−1κ(δβ, δγ) which is due to the nonlinearity of the model.

The first term is suppressed sufficiently if

δγ′S′Σ−1FC−1CC−1F′Σ−1Sδγ ≤
(ε
2

)2
,

where ε > 0 is sufficiently small number. In view of the Scheffé inequality it is
equivalent to the relation

∀{h ∈ Rk}|h′bδβ | ≤ ε

2

√
h′C−1h.

Let

A1 = Rk ×
{
δγ : δγ′S′Σ−1FC−1CC−1F′Σ−1Sδγ ≤

(ε
2

)2}
.

The second term can be analyzed by a small modification of the Bates and
Watts parametric curvature (cf. [1])

Cpar(β0,γ0) = sup

⎧⎪⎪⎨⎪⎪⎩
√

1
4κ

′Σ−1FC−1CC−1F′Σ−1κ

(δβ′, δγ′)
(
F′

S′

)
Σ−1(F,S)

(
δβ
δγ

) :

(
δβ
δγ

)
∈ Rk+l

⎫⎪⎪⎬⎪⎪⎭
(a simple algorithm for a numerical determination of Cpar(β0,γ0) is given in
[1]).
It is valid that (in more detail cf. [3] and [6])(

δβ
δγ

)
∈ A2

=

{(
u
v

)
: (u′,v′)

(
F′Σ−1F, F′Σ−1S

S′Σ−1F, S′Σ−1S

)(
u
v

)
≤ ε/2

Cpar(β0,γ0)

}
⇒ ∀{h ∈ Rk}

∣∣∣∣h′ 1
2
C−1F′Σ−1κ(δβ, δγ)

∣∣∣∣ ≤ ε

2

√
h′C−1h.

Thus the following theorem can be stated.
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Theorem 3.1 The model

Y − f0 ∼n

[
(F,S)

(
δβ
δγ

)
+

1

2
κ(δβ, δγ),Σ

]
can be substituted by the model

Y − f0 ∼n (Fδβ,Σ) if

(
δβ
δγ

)
∈ A1 ∩A2.

In this case
∀{h ∈ Rk}|h′bδβ | ≤ ε

√
h′C−1h.

4 Numerical example

Let

yi = β1 exp(−β2xi) + γxi + εi,

i 1 2 3 4 5 6
xi 1 2 3 4 5 6

Y = (Y1, Y2, . . . , Y6)
′, Var(Y) = σ2I = (0.01)2I,

(
β0

γ0

)
=

⎛⎝ 10
1
2

⎞⎠ ,

f0 = (5.6788, 5.3534, 6.4979, 8.1832, 10.0674, 12.0248)′,

F =
∂E(Y)

∂(β1, β2)
=

⎛⎝ exp(−β2x1), −x1β1 exp(−β2x1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
exp(−β2x6), −x6β1 exp(−β2x6)

⎞⎠

=

⎛⎜⎜⎜⎜⎜⎜⎝
0.3679, −3.6788
0.1353, −2.7067
0.0498, −1.4936
0.0183, −0.7326
0.0067, −0.3369
0.0025, −0.1487

⎞⎟⎟⎟⎟⎟⎟⎠ ,

S = (1, 2, 3, 4, 5, 6)′,

Fi =
∂2E(Y)

∂

(
β
γ

)
∂(β′, γ)

=

⎛⎝ 0, −xi exp(−β2xi), 0
−xi exp(−β2xi), x

2
iβ1 exp(−β2xi), 0

0, 0, 0

⎞⎠ ,

i = 1, 2, . . . , 6,
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F1 =

⎛⎝ 0.000, −0.368, 0.000
−0.368, 3.679, 0.000
0.000, 0.000, 0.000

⎞⎠ , F2 =

⎛⎝ 0.000, −0.271, 0.000
−0.271, 5.413, 0.000
0.000, 0.000, 0.000

⎞⎠ ,

F3 =

⎛⎝ 0.000, −0.149, 0.000
−0.149, 4.481, 0.000
0.000, 0.000, 0.000

⎞⎠ , F4 =

⎛⎝ 0.000, −0.073, 0.000
−0.073, 2.931, 0.000
0.000, 0.000, 0.000

⎞⎠ ,

F5 =

⎛⎝ 0.000, −0.034, 0.000
−0.034, 1.684, 0.000
0.000, 0.000, 0.000

⎞⎠ , F6 =

⎛⎝ 0.000, −0.015, 0.000
−0.015, −0.892, 0.000
0.000, 0.000, 0.000

⎞⎠ ,

C =
1

σ2
F′F =

1

0.012

(
0.157, −1.810

−1.810, 23.763

)
.

(i) The case of a single function h = (1, 0)′

Ah =

6∑
i=1

{
1

2
(1, 0)(F′F)−1F′

}
i

Fi =

⎛⎝ 0.000, 0.000, 0.000
0.000, −12.584, 0.000
0.000, 0.000, 0.000

⎞⎠ ,

ah = (1, 0)(F′F)−1F′S = −29.169,

ch = σ

√
(1, 0)(F′F)−1F′S(S′MFS)−1S′F(F′F)−1

(
1
0

)
= 0.037713,

1

2
A+

h

(
0
ah

)
=

⎛⎝ 0
0
0

⎞⎠ , MAh
=

⎛⎝ 1, 0, 0
0, 0, 0
0, 0, 1

⎞⎠ ,

1

4
(0′, ah)A+

h

(
0
ah

)
= 0,

Ah =

{(
δβ
δγ

)
: δβ ∈ R2, δγ ∈ R1,

[(
δβ
δγ

)
+

1

2
A+

h

(
0
ah

)]′
Ah

×
[(

δβ
δγ

)
+

1

2
A+

h

(
0
ah

)]

≤ ch +
1

4
(0′, ah)A+

h

(
0
ah

)
− (0′, ah)MAh

(
δβ
δγ

)}

=

{(
δβ
δγ

)
: (δβ′, δγ)

⎛⎝ 0, 0.000, 0.000
0.000, −12.584, 0
0.000, 0.000, 0.000

⎞⎠( δβ
δγ

)
≤ 0.0377 + 29.2δγ

}
,

cf. also Fig. 1
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−δγ

δβ1 δβ2

0

20

40

−10

0

10 −10 −5 0 5
10

Fig. 1 The set Ah

Another approach is characterized by the sets A1,h and A2,h (for ε = 0.04
and σ = 0.01).

A1,h = R2 ×
{
δγ : |(1, 0)(F′F)−1F′Sδγ| ≤ ε

2
σ
√
{(F′F)−1}1,1

}
= R2 × {δγ : |δγ| ≤ 5.012× 10−5},

A2,h =

{(
δβ
δγ

)
: (δβ′, δγ)Ah

(
δβ
δγ

)
≤ ε

2
σ
√
{(F′F)−1}1,1

}

=

⎧⎨⎩
(
δβ
δγ

)
: (δβ′, δγ)

⎛⎝ 0.000, 0.000, 0.000
0.000, −12.584, 0.000
0.000, 0.000, 0.000

⎞⎠( δβ
δγ

)
≤ 0.001446

⎫⎬⎭ ,

Ch = A1,h ∩A2,h.

(ii) The case of the whole vector

Cpar(β0, γ0) =

sup

⎧⎪⎪⎨⎪⎪⎩σ

√
1
4κ

′(δβ, δγ)PFκ(δβ, δγ)

(δβ′, δγ)
(
F′F, F′S
S′F, S′S

)(
δβ
δγ

) :

(
δβ
δγ

)
∈ R3

⎫⎪⎪⎬⎪⎪⎭ = 0.012652,

A1 = R2 ×
{
δγ : |δγ| ≤ εσ√

4S′F(F′F)−1F′S

}
= R2 × {δγ : |δγ| ≤ 3.5818× 10−5

}
,



92 Lubomír KUBÁČEK, Eva TESAŘÍKOVÁ

A2 =

{(
δβ
δγ

)
: (δβ′, δγ)

(
F′F, F′S
S′F, S′S

)(
δβ
δγ

)
≤ σ2ε

2Cpar(β0, γ0)

}

=

⎧⎨⎩
(
δβ
δγ

)
: (δβ′, δγ)

⎛⎝ 0.157, −1.810, 0.910
−1.810, 23.763, −19.080
0.910, −19.080, 91.000

⎞⎠( δβ
δγ

)
≤ 4.16524× 10−5

⎫⎬⎭
(for ε = 0.04 and σ = 0.01).

The set A1,h has the same shape as the set A1 in Fig. 2b and 2c however it
is wider 5.012/3.5818 = 1.399 times.

The section of the set A1 ∩ A2 cf. on Fig. 2.

−0.05 0 0.05
−4

−3

−2

−1

0

1

2

3

4
x 10

−3

δβ
1

δβ
2

A
2

Fig. 2a The section of the set A2 in coordinates δβ1 and δβ2

−0.02 −0.01 0 0.01 0.02
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
x 10

−3

δβ
1

δγ

A
1

A
2

Fig. 2b The section of the set A1 ∩ A2 in coordinates δβ1 and δγ
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−2 −1 0 1 2

x 10
−3

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
x 10

−3

δβ
2

δγ

A
1

A
2

Fig. 2c The section of the set A1 ∩A2 in coordinates δβ2 and δγ

The criterior for neglecting the parameter γ is rigorous. If the function
f(β1, β2,γ) = β1 is estimated, the value |β2| must be smaller than 0.010 and |γ|
must be smaller than 0.0000501, i.e. in fact they cannot be neglected.
If the whole vector is estimated, the situation is even worse.
The model considered cannot be reduced.
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