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Ratio Tauberian theorems for relatively bounded

functions and sequences in Banach spaces
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Abstract. We prove ratio Tauberian theorems for relatively bounded functions
and sequences in Banach spaces.
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Classification: 40E05, 47A35

1. Introduction

Let X be a Banach space and u : [0,∞) → X be a locally integrable function.
Let g : [0,∞) → R+ be a locally integrable function such that

∫∞

0
g(t) dt > 0,

where R+ := {t ≥ 0 : t ∈ R}. We assume the condition

∫ t

0 g(r) dr∫ s

0 g(r) dr
→ 1 as t, s → ∞ with

t

s
→ 1,

and prove that if ‖u(t)‖ = O(g(t)), t → ∞, then the following statements are
equivalent:

(i) x = limt→∞

( ∫ t

0
u(s) ds

)
/
( ∫ t

0
g(s) ds

)
;

(ii) x = limλ↓0

( ∫∞

0 e−λtu(t) dt
)
/
( ∫∞

0 e−λtg(t) dt
)
.

This solves the open problem posed in [6]. Then particular choices of the function
g will be considered, leading to some generalized Tauberian theorems. Discrete
analogues are obtained as well.

2. Results for functions

Let X be a Banach space and u : [0,∞) → X be a locally integrable func-
tion. The class of all such functions will be denoted by L1

loc(R+, X). For u ∈
L1
loc(R+, X), γ ≥ 1 and t > 0 we define the γ-th order Cesàro integral sγt (u) over

[0, t] as

(1) s
γ
t (u) := (kγ ∗ u)(t) =

∫ t

0

kγ(t− s)u(s) ds,
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where kγ(t) := tγ−1/Γ(γ) for t ∈ R+. In particular we have s
1
t (u) =

∫ t

0 u(s) ds.
The Laplace integral û(λ) for λ ∈ R is defined as

(2) û(λ) :=

∫ ∞

0

e−λtu(t) dt = lim
b→∞

∫ b

0

e−λtu(t) dt

if the limit exists. It is known (see e.g. [1, Proposition 1.4.1]) that if û(λ0) exists
then û(λ) exists for all λ > λ0. If µ is a locally finite positive measure on R+,
then we use the notation µ̂(λ) to denote

∫∞

0 e−λtdµ(t) when
∫∞

0 e−λtdµ(t) < ∞.
We begin with the following key lemma.

Lemma 2.1. Let µ be a locally finite positive measure on R+ such that µ[0,∞) >
0. If

(C)
µ[0, t]

µ[0, s]
→ 1 as t, s → ∞ with

t

s
→ 1,

then

(C1) lim inf
λ↓0

µ[0, 1/λ]

µ̂(λ)
= lim inf

λ↓0

µ[0, 1/λ]∫∞

0
e−λtdµ(t)

> 0.

Proof: By hypothesis there are two constants G > 1 and δ > 0 such that if
t > s > G and t/s ≤ 1 + δ then

0 ≤
µ(s, t]

µ[0, s]
< 1.

Thus for λ > 0 with 1/λ > G we have µ(1/λ, (1 + δ)/λ] < 20µ[0, 1/λ], and

µ((1 + δ)/λ, (1 + δ)2/λ] < µ[0, (1 + δ)/λ] < 21µ[0, 1/λ].

Then for n ≥ 2 we have inductively

µ((1 + δ)n/λ, (1 + δ)n+1/λ] < µ[0, (1 + δ)n/λ]

= µ[0, 1/λ] +

n−1∑

k=0

µ((1 + δ)k/λ, (1 + δ)k+1/λ]

<
(
1 +

n−1∑

k=0

2k
)
µ[0, 1/λ] = 2nµ[0, 1/λ].

Hence

0 <

∫ ∞

0

e−λtdµ(t) =

∫

[0,1/λ]

e−λtdµ(t) +

∞∑

n=0

∫

((1+δ)n/λ, (1+δ)n+1/λ]

e−λt dµ(t)

≤ µ[0, 1/λ] +

∞∑

n=0

2nµ[0, 1/λ]e−(1+δ)n < ∞.
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Therefore

µ[0, 1/λ]

µ̂(λ)
=

µ[0, 1/λ]∫∞

0
e−λtdµ(t)

≥
(
1 +

∞∑

n=0

2ne−(1+δ)n
)−1

> 0,

completing the proof. �

Theorem 2.2 (cf. [2, Theorem 2.2]). Suppose 0 6= g ∈ L1
loc(R+,R+) satisfies

condition (C) with µ := g(t) dt. Then for any u ∈ L1
loc(R+, X) with ‖u(t)‖ =

O(g(t)), t → ∞, the following statements are equivalent:

(i) x = limt→∞ s
1
t (u)/s

1
t (g) = limt→∞

( ∫ t

0
u(s) ds

)
/
( ∫ t

0
g(s) ds

)
;

(ii) x = limt→∞ s
β
t (u)/s

β
t (g)

= limt→∞

( ∫ t

0
(t−s)β−1u(s) ds

)
/
( ∫ t

0
(t−s)β−1g(s) ds

)
for some/all β > 1;

(iii) x = limλ↓0 û(λ)/ĝ(λ) = limλ↓0

( ∫∞

0 e−λtu(t) dt
)
/
( ∫∞

0 e−λtg(t) dt
)
.

Proof: “(i) ⇒ (ii) ⇒ (iii)” follows from [2, Theorem 2.1].

(iii) ⇒ (i): We first note that if P (t) =
∑N

n=0 ant
n is a polynomial function

such that

(3) P (t) ≥ d > 0 on [0, 1],

then

(4) x = lim
λ↓0

∫∞

0
e−λtP (e−λt)u(t) dt∫∞

0
e−λtP (e−λt)g(t) dt

.

To see this, put P̃ (λ) :=
∫∞

0 e−λtP (e−λt)g(t) dt. Then

∫∞

0 e−λtP (e−λt)u(t) dt∫∞

0
e−λtP (e−λt)g(t) dt

=
1

P̃ (λ)

N∑

n=0

an

( ∫ ∞

0

e−λ(n+1)tg(t) dt
)
·

∫∞

0 e−λ(n+1)tu(t) dt∫∞

0 e−λ(n+1)tg(t) dt
.

Here

(5) lim
λ↓0

∫∞

0
e−λ(n+1)tu(t) dt∫∞

0
e−λ(n+1)tg(t) dt

= x (by (iii)),

and

(6) 0 <

∫∞

0
e−λ(n+1)tg(t) dt

P̃ (λ)
≤

1

d
(by (3)).
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Thus

lim
λ↓0

∫∞

0
e−λtP (e−λt)u(t) dt∫∞

0
e−λtP (e−λt)g(t) dt

= lim
λ↓0

1

P̃ (λ)

N∑

n=0

an

(∫ ∞

0

e−λ(n+1)tg(t) dt
)
x = x.

Next we write

(7)

∫ 1/λ

0 u(t) dt
∫ 1/λ

0
g(t) dt

=

∫∞

0 e−λth(e−λt)u(t) dt∫∞

0 e−λth(e−λt)g(t) dt
,

where

h(t) :=

{
0 if 0 ≤ t < e−1,

t−1 if e−1 ≤ t ≤ 1.

For the proof we may assume without loss of generality that ‖u(t)‖ ≤ g(t) for all
t ≥ 0. By condition (C), given an ε > 0, there are two constants G > 1 and δ > 0
such that

(8) 0 ≤
µ(s, t]

µ[0, s]
< ε if t > s > G and

t

s
≤ 1 + δ.

It is standard to see that there exists a polynomial function P (t) =
∑N

n=0 ant
n

such that

(a) h(t) < P (t) ≤ ε on [0, e−(1+δ)],
(b) h(t) < P (t) ≤ h(e−1) + ε on [e−(1+δ), e−1],
(c) h(t) < P (t) ≤ h(t) + ε on [e−1, 1].

Then

∫ 1/λ

0
u(t) dt

∫ 1/λ

0 g(t) dt
− x

=

∫∞

0
e−λt

(
h(e−λt)− P (e−λt)

)
u(t) dt+

∫∞

0
e−λtP (e−λt)u(t) dt∫∞

0
e−λth(e−λt)g(t) dt

− x

=: Iλ + IIλ − x,

and

Iλ =

( ∫ 1/λ

0
+
∫ (1+δ)/λ

1/λ
+
∫∞

(1+δ)/λ

)
e−λt

(
h(e−λt)− P (e−λt)

)
u(t) dt

∫∞

0 e−λth(e−λt)g(t) dt

=:
Iλ(1) + Iλ(2) + Iλ(3)∫∞

0
e−λth(e−λt)g(t) dt

,
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where

(9) ‖Iλ(1)‖ <

∫ 1/λ

0

e−λtε g(t) dt ≤ ε

∫ ∞

0

e−λth(e−λt)g(t) dt

by (c) and the assumption that ‖u(t)‖ ≤ g(t) for all t ≥ 0. On the other hand,
(b) implies

‖Iλ(2)‖ <

∫ (1+δ)/λ

1/λ

e−λt
(
h(e−1) + ε

)
g(t) dt ≤ (e+ ε)

∫ (1+δ)/λ

1/λ

g(t) dt,

where if λ > 0 is sufficiently small, then by (8)

∫ (1+δ)/λ

1/λ

g(t) dt < ε

∫ 1/λ

0

g(t)dt = ε

∫ ∞

0

e−λth(e−λt)g(t) dt,

so that

(10) ‖Iλ(2)‖ < (e+ ε) ε

∫ ∞

0

e−λth(e−λt)g(t) dt

for all sufficiently small λ > 0. Finally (a) implies

‖Iλ(3)‖ <

∫ ∞

(1+δ)/λ

e−λtε g(t) dt ≤ ε

∫ ∞

0

e−λtg(t) dt.

We apply Lemma 2.1 to infer that there exists a constant η > 0 such that

lim inf
λ↓0

∫ 1/λ

0 g(t) dt∫∞

0
e−λtg(t) dt

> η.

Thus if λ > 0 is sufficiently small, then

∫ 1/λ

0

g(t) dt > η

∫ ∞

0

e−λtg(t) dt,

so that

(11) ‖Iλ(3)‖ <
ε

η

∫ 1/λ

0

g(t) dt =
ε

η

∫ ∞

0

e−λth(e−λt)g(t) dt.

Consequently

(12) lim sup
λ↓0

‖Iλ‖ < ε+ (e + ε)ε+
ε

η
.

Now we write

IIλ =

∫∞

0
e−λtP (e−λt)g(t) dt∫∞

0
e−λth(e−λt)g(t) dt

·

∫∞

0
e−λtP (e−λt)u(t) dt∫∞

0
e−λtP (e−λt)g(t) dt

.
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Similarly as in (12) one may show that if λ > 0 is sufficiently small, then

1 ≤

∫∞

0
e−λtP (e−λt)g(t) dt∫∞

0
e−λth(e−λt)g(t) dt

< 1 + ε+ (e + ε)ε+
ε

η
.

Since P (t) ≥ d > 0 on [0, 1] for some d > 0, it follows that

lim
λ↓0

∫∞

0 e−λtP (e−λt)u(t) dt∫∞

0
e−λtP (e−λt)g(t) dt

= x.

Hence

(13)

‖IIλ − x‖ ≤

∥∥∥∥∥

∫∞

0
e−λtP (e−λt)u(t) dt∫∞

0
e−λtP (e−λt)g(t) dt

− x

∥∥∥∥∥

+
(
ε+ (e+ ε)ε+

ε

η

)∥∥∥∥∥

∫∞

0
e−λtP (e−λt)u(t) dt∫∞

0 e−λtP (e−λt)g(t) dt

∥∥∥∥∥

−→
(
ε+ (e + ε)ε+

ε

η

)
‖x‖

as λ ↓ 0. Combining this with (12) yields

(14) lim sup
λ↓0

∥∥∥∥∥

∫ 1/λ

0
u(t) dt

∫ 1/λ

0
g(t) dt

− x

∥∥∥∥∥ <
(
ε+ (e + ε)ε+

ε

η

)
(1 + ‖x‖)

which completes the proof, since ε > 0 is arbitrary. �

Theorem 2.3 (cf. [2, Theorem 4.2], [5, Proposition 3.4]). Let α ≥ 0. Suppose u ∈
L1
loc(R+, X) satisfies ‖u(t)‖ = O(tα−1), t → ∞. Then the following statements

are equivalent:

(i) x = limt→∞

(
Γ(α+ 1)/tα

) ∫ t

0 u(s) ds;

(ii) x = limt→∞

(
Γ(α+ β)/Γ(β)tα+β−1

) ∫ t

0 (t− s)β−1u(s) ds for some/all
β > 1;

(iii) x = limλ↓0 λα û(λ) = limλ↓0 λα
∫∞

0
e−λtu(t) dt.

Proof: “(i) ⇒ (ii) ⇒ (iii)” follows from [2, Theorem 4.1].
(iii) ⇒ (i): Suppose α > 0. Then define g(t) := kα(t) = tα−1/Γ(α) for t ∈ R+

and µ := g(t) dt. It follows that ‖u(t)‖ = O(g(t)), t → ∞, that ĝ(λ) = λα for

all λ > 0, and that µ[0, t] =
∫ t

0
kα(s) ds = (k1 ∗ kα)(t) = kα+1(t) = tα/Γ(α + 1).

Hence µ satisfies condition (C), and so (i) follows from Theorem 2.2.
Next suppose α = 0. Since ‖u(t)‖ = O(t−1), t → ∞, it follows from standard

calculations (see e.g. [8, pp. 204, 206]) that the function U(t) :=
∫ t

0
u(s) ds is

bounded and feebly oscilating (i.e. ‖U(t) − U(s)‖ → 0 as t and s → ∞ in such
a way that t/s → 1). Thus (i) follows from [5, Proposition 3.4]. The proof is
complete. �
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Remark. The special case α = 1 of Theorem 2.3 states that, under the assump-

tion that u is bounded, the Cesàro limit limt→∞(1/t)
∫ t

0
u(s) ds exists if and only

if the Abel limit limλ↓0 λ û(λ) exists and they are both equal. This is a clas-
sical Tauberian theorem (see e.g. [1, Theorem 4.2.7]). The special case α = 0
of Theorem 2.3 states that, under the assumption that ‖u‖ = O(t−1), t → ∞,

the limit limt→∞

∫ t

0 u(s) ds exists if and only if the limit limλ↓0 û(λ) exists and
they are both equal. This is another classical Tauberian theorem (see e.g. [1,
Theorem 4.2.9]).

Theorem 2.4. Suppose u ∈ L1
loc(R+, X) satisfies ‖u(t)‖ = O(t−1), t → ∞. Then

the following statements are equivalent:

(i) x = limt→∞

(
1/ log t

) ∫ t

0 u(s) ds;

(ii) x = limt→∞

(
1/tβ−1 log t

) ∫ t

0 (t− s)β−1u(s) ds for some/all β > 1;

(iii) x = limλ↓0

(
1/− logλ

)
û(λ) = limλ↓0

(
1/− logλ

) ∫∞

0 e−λtu(t) dt.

Proof: Let

g(t) :=

{
0 if 0 ≤ t < 1,

t−1 if t ≥ 1.

An approximation argument yields that

(15)

lim
t→∞

∫ t

0
(t− s)γ−1g(s) ds

tγ−1 log t
= lim

t→∞

∫ t

1
(t− s)γ−1s−1 ds

tγ−1 log t

= lim
t→∞

∫ 1

1/t
(1− s)γ−1s−1 ds

log t
= 1

for all γ ≥ 1 and that

lim
λ↓0

ĝ(λ)

− logλ
= lim

λ↓0

∫∞

1
e−λtt−1 dt

− logλ
= lim

λ↓0

∫∞

λ
e−tt−1 dt

− logλ
= 1.(16)

Since ‖u(t)‖ = O(g(t)), t → ∞, and the measure µ := g(t) dt satisfies condi-
tion (C), the desired result follows from Theorem 2.2. �

Remark. If X is a Banach lattice with positive cone X+ and u ∈ L1
loc(R+, X+),

then statements (i), (ii) and (iii) in Theorem 2.4 are also equivalent. This follows
from [2, Theorem 2.2]. (We note that if u ∈ L1

loc(R+, X+), then statement (ii) in
Theorem 2.4 implies that û(λ) exists for all λ > 0 (see [3, Lemma 2.5]).)

Fact 2.5. Let u ∈ L1
loc(R+, X). Consider the following three statements:

(i) x = limt→∞

∫ t

0 u(s) ds;

(ii) û(λ) exists for all λ > 0 and x = limt→∞

(
1/tβ−1

) ∫ t

0
(t− s)β−1u(s) ds for

some/all β > 1;
(iii) x = limλ↓0 û(λ) = limλ↓0

∫∞

0 e−λtu(t) dt.

Then (i) ⇒ (ii) ⇒ (iii).
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Proof: Letting g(t) := χ[0,1](t) we have

lim
t→∞

∫ t

0
(t− s)γ−1g(s) ds

tγ−1
= lim

t→∞

∫ 1

0
(t− s)γ−1 ds

tγ−1
= 1

for all γ ≥ 1 and

lim
λ↓0

ĝ(λ) = lim
λ↓0

∫ 1

0

e−λt dt = 1.

Thus the desired result follows from [2, Theorem 2.1]. �

Remarks. (a) If
∫∞

0
‖u(t)‖ dt < ∞, then clearly both (i) and (iii) in Fact 2.5

hold. In general (iii) does not imply (i). (For example let u(t) := sin t.) If
u ∈ L1

loc(R+, X) satisfies ‖u(t)‖ = O(t−1), t → ∞, or if X is a Banach lattice and
u ∈ L1

loc(R+, X+), then (iii) implies (i). (See Theorem 2.3 and [2, Theorem 4.2],
respectively.)

(b) There exists a continuous function u : [0,∞) → R such that inf{λ ∈ R :

û(λ) exists} = 1 and also such that limt→∞ (1/t)
∫ t

0 (t−s)u(s) ds (∈ R) exists (see
the Remark over Theorem 2.4 in [3], or [7, Example 5]). Thus the hypothesis that
û(λ) exists for all λ > 0 cannot be omitted from (ii) in Fact 2.5.

3. Results for sequences

Let {xn} := {xn}
∞
n=0 be a sequence in a Banach space X . For γ ∈ R and

n ∈ N ∪ {0}, we define the γ-th order Cesàro sum s
γ
n({xi}) as

(17) s
γ
n({xi}) :=

n∑

k=0

(
n− k + γ − 1

n− k

)
xk,

where
(
r
0

)
:= 1 and

(
r
n

)
:= r(r − 1) . . . (r − n + 1)/n! for r ∈ R and n ≥ 1.

Thus sγ0({xi}) = x0 for all γ ∈ R, s0n({xi}) = xn and s
1
n({xi}) =

∑n
k=0 xk for all

n ∈ N0. The Abel sum {̂xi}(r) of {xn} is defined as

(18) {̂xi}(r) :=

∞∑

n=0

rnxn, 0 < r <
(
lim sup
n→∞

‖xn‖
1/n

)−1

.

Clearly {̂xi}(r) exists for all 0 < r < 1 if and only if lim supn→∞ ‖xn‖
1/n ≤ 1. Let

{an}
∞
n=0 be a sequence of nonnegative real numbers such that

∑∞

n=0 an > 0. We
define u(t) := x[t] and g(t) := a[t] for t ≥ 0, where [t] denotes the largest integer
less than or equal to t. Then we have the following

Lemma 3.1. (i) x = limn→∞

(∑n
k=0 xk

)
/
(∑n

k=0 ak
)
if and only if x =

limt→∞

( ∫ t

0 u(s) ds
)
/
( ∫ t

0 g(s) ds
)
.
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(ii) Suppose {̂xi}(r) and {̂ai}(r) exist for all 0 < r < 1. Then

x = lim
r↑1

{̂xi}(r)

{̂ai}(r)
= lim

r↑1

∑∞

n=0 r
nxn∑∞

n=0 r
nan

if and only if

x = lim
λ↓0

û(λ)

ĝ(λ)
= lim

λ↓0

∫∞

0 e−λtu(t) dt∫∞

0
e−λtg(t) dt

.

Proof: (i) Putting δ(t) := t− [t] we have 0 ≤ δ(t) < 1, and

∫ t

0 u(s) ds∫ t

0
g(s) ds

=

(
1− δ(t)

)∑[t]−1
k=0 xk + δ(t)

∑[t]
k=0 xk(

1− δ(t)
)∑[t]−1

k=0 ak + δ(t)
∑[t]

k=0 ak
,

so that the first condition of (i) implies the second condition. The converse im-
plication is obvious.

(ii) By an elementary calculation we have

∫∞

0
e−λtu(t) dt∫∞

0
e−λtg(t) dt

=

∑∞

n=0 e
−λnxn∑∞

n=0 e
−λnan

, λ > 0,

whence (ii) follows. �

Theorem 3.2 (cf. [2, Theorem 3.2]). Let {an}
∞
n=0 be a sequence of nonnegative

real numbers such that
∑∞

n=0 an > 0. Suppose

(D)

∑m
k=0 ak∑n
k=0 ak

→ 1 as m,n → ∞ with
m

n
→ 1.

Then for any sequence {xn}
∞
n=0 in X , with ‖xn‖ = O(an), n → ∞, the following

statements are equivalent:

(i) x = limn→∞ s
1
n({xi})/s

1
n({ai}) = limn→∞

(∑n
k=0 xk

)
/
(∑n

k=0 ak
)
;

(ii) x = limn→∞ s
β
n({xi})/s

β
n({ai}) for some/all β > 1;

(iii) x = limr↑1 {̂xi}(r)/{̂ai}(r) = limr↑1

(∑∞

n=0 r
nxn

)
/
(∑∞

n=0 r
nan

)
.

Proof: Condition (D) implies that the function g(t) = a[t] satisfies condition (C)

with µ := g(t) dt. Hence {̂ai}(r) and {̂xi}(r) exist for all 0 < r < 1. Then “(i) ⇒
(ii) ⇒ (iii)” follows from [2, Theorem 3.1].

(iii) ⇒ (i): By Lemma 3.1 and Theorem 2.2 we have

x = lim
r↑1

{̂xi}(r)

{̂ai}(r)
= lim

λ↓0

û(λ)

ĝ(λ)
= lim

t→∞

s
1
t (u)

s
1
t (g)

= lim
n→∞

s
1
n({xi})

s
1
n({ai})

,

which completes the proof. �
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Theorem 3.3 (cf. [2, Theorem 4.4], [5, Proposition 3.6]). Let α ≥ 0. Suppose
{xn}

∞
n=0 is a sequence in X such that ‖xn‖ = O(nα−1), n → ∞. Then the

following statements are equivalent:

(i) x = limn→∞

(
Γ(α+ 1)/(n+ 1)α

)∑n
k=0 xk;

(ii) x = limn→∞

(
Γ(α+ β)/(n+ 1)α+β−1

)
s
β
n({xi}) for some/all β > 1;

(iii) x = limr↑1 (1− r)α{̂xi}(r) = limr↑1 (1− r)α
∑∞

n=0 r
nxn.

Proof: “(i) ⇒ (ii) ⇒ (iii)” follows from [2, Theorem 4.3].
(iii) ⇒ (i): Suppose α > 0. Then define an :=

(
n+α−1

n

)
for n ≥ 0. It follows

(cf. [9, pp. 76–77]) that (1− r)−α =
∑∞

n=0 r
nan for 0 < r < 1, and an = nα−1(1+

o(1))/Γ(α), n → ∞. Thus ‖xn‖ = O(an), n → ∞. Since

n∑

k=0

ak =

(
n+ α

n

)
=

nα

Γ(α+ 1)

(
1 + o(1)

)
, n → ∞,

{an}
∞
n=0 satisfies condition (D). Hence (i) follows from Theorem 3.2.

Next suppose α = 0. Then the function u(t) = x[t] satisfies ‖u(t)‖ = O(t−1),

t → ∞, and (iii) implies that x = limλ↓0

∫∞

0
e−λtu(t) dt. Hence, by Theorem 2.3,

x = limt→∞

∫ t

0
u(s) ds = limn→∞

∑n
k=0 xk. This completes the proof. �

Remark. The special cases α = 1 and α = 0 of Theorem 3.3 are classical results
for sequences corresponding to α = 1 and α = 0 of Theorem 2.3, respectively.
(See e.g. [4, Theorem 3.1], [1, Theorem 4.2.17].)

Theorem 3.4. Suppose {xn}
∞
n=0 is a sequence in X such that ‖xn‖ = O(n−1),

n → ∞. Then the following statements are equivalent:

(i) x = limn→∞

(
1/ log (n+ 1)

)∑n
k=0 xk;

(ii) x = limn→∞

(
Γ(β)/(n+ 1)β−1 log (n+ 1)

)
s
β
n({xi}) for some/all β > 1;

(iii) x = limλ↓0

(
1/− logλ

)
{̂xi}(e

−λ) = limλ↓0

(
1/− log λ

)∑∞

n=0 e
−λnxn.

Proof: Define a0 := 0 and an := n−1 for n ≥ 1. Hence ‖xn‖ = O(an), n →
∞, and

∑n
k=0 ak = logn + O(1), n → ∞. It follows that {an}

∞
n=0 satisfies

condition (D). If β > 1, then

(19) s
β
n({ai}) =

n∑

k=1

(
n− k + β − 1

n− k

)
1

k
.

Since

(
n+ β − 1

n

)
=

nβ−1

Γ(β)

(
1 + o(1)

)
, n → ∞,
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it follows by an approximation argument that

s
β
n({ai}) =

∫ n

1

(n− s)β−1

Γ(β)
s−1 ds ·

(
1 + o(1)

)

=
nβ−1 log n

Γ(β)
·
(
1 + o(1)

)
, n → ∞ (by (15)).

Similarly

{̂ai}(e
−λ) =

∞∑

n=1

e−λnn−1 =

∫ ∞

1

e−λtt−1 dt ·
(
1 + o(1)

)

= − logλ ·
(
1 + o(1)

)
, λ ↓ 0 (by (16)).

Hence the desired result follows from Theorem 3.2. �

Remark. If X is a Banach lattice and {xn}
∞
n=0 ⊂ X+, then statements (i), (ii)

and (iii) in Theorem 3.4 are also equivalent. This follows from [2, Theorem 3.2].

(We note that statement (ii) in Theorem 3.4 implies that {̂xi}(r) exists for all
0 < r < 1.)

Fact 3.5. Let {xn}
∞
n=0 be a sequence in X . Consider the following three state-

ments:

(i) x = limn→∞

∑n
k=0 xk;

(ii) x = limn→∞

(
Γ(β)/(n+ 1)β−1

)
s
β
n({xi}) for some/all β > 1;

(iii) x = limr↑1 {̂xi}(r) = limr↑1

∑∞

n=0 r
nxn.

Then (i) ⇒ (ii) ⇒ (iii).

Proof: By letting a0 := 1 and an := 0 for n ≥ 1, the desired result follows as in
Fact 2.5. We may omit the details. �

Remark. In general (iii) does not imply (i) in Fact 3.5. (For example let xn :=
(−1)n.) If {xn} satisfies ‖xn‖ = O(n−1), n → ∞, or if X is a Banach lattice
and {xn} ⊂ X+, then (iii) implies (i). (See Theorem 3.3 and [2, Theorem 4.4],
respectively.)

4. A counterexample

The following example shows that condition (D) is essential in Theorem 3.2.
(See also Example 3 in [6].)

Example. Define {an}
∞
n=0 by

an :=

{
n if n ∈ {2k, 2k + 1} for some k ≥ 1,

0 otherwise.
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Thus {an} does not satisfy condition (D). Next define {xn}
∞
n=0 by

xn :=

{
n if n = 2k for some k ≥ 1,

0 otherwise.

It follows that xn = O(an), n → ∞. An elementary calculation yields

1

2
= lim inf

n→∞

∑n
k=0 xk∑n
k=0 ak

< lim sup
n→∞

∑n
k=0 xk∑n
k=0 ak

=
2

3
,

so that limn→∞ s
1
n({xi})/s

1
n({ai}) does not exist. Nevertheless we have

{̂xi}(r)

{̂ai}(r)
=

∑∞

n=1 2
nr2

n

(1 + r)
∑∞

n=1 2
nr2n + r

∑∞

n=1 r
2n

→
1

2
as r ↑ 1.

Remark. Let 0 6= g ∈ L1
loc(R+,R+). Suppose that ĝ(λ) exists for all λ > 0 and

that x = limλ↓0 û(λ)/ĝ(λ) implies x = limt→∞

( ∫ t

0 u(s) ds
)
/
( ∫ t

0 g(s) ds
)
for all

u ∈ L1
loc(R+, X) with ‖u(t)‖ = O(g(t)), t → ∞. Then in view of Theorem 2.2

it would be natural to ask the following question: Does the measure µ := g(t) dt
satisfy condition (C) of Lemma 2.1? The author could not solve this problem.
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