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Berezin-Weyl quantization for Cartan motion groups

Benjamin Cahen

Abstract. We construct adapted Weyl correspondences for the unitary irreducible
representations of the Cartan motion group of a noncompact semisimple Lie
group by using the method introduced in [B. Cahen, Weyl quantization for

semidirect products, Differential Geom. Appl. 25 (2007), 177–190].
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1. Introduction

In [3] and [4], we introduced the notion of adapted Weyl correspondence as a
generalization of the usual quantization rules [1], [15]. The present paper is part
of a larger program to study adapted Weyl correspondences for semisimple Lie
groups and for semidirect products.

Let G be a connected Lie group, g the Lie algebra of G and g∗ the dual space
of g. Let π be a unitary irreducible representation of G on a Hilbert space H.
Suppose that π is associated with an orbit O for the coadjoint action of G on g∗

by the Kostant-Kirillov method of orbits [18], [20]. In [6], we gave the following
definition for the notion of adapted Weyl correspondence.

Definition 1.1. An adapted Weyl correspondence is an isomorphism W from
a vector space A of complex-valued smooth functions on the orbit O (called
symbols) onto a vector space B of (not necessarily bounded) linear operators on
H satisfying the following properties:

(1) the elements of B preserve a fixed dense domain D of H;
(2) the constant function 1 belongs to A, the identity operator I belongs to

B and W (1) = I;
(3) A ∈ B and B ∈ B implies AB ∈ B;
(4) for each f in A the complex conjugate f̄ of f belongs to A and the adjoint

of W (f) is an extension of W (f̄);

(5) the elements ofD are C∞-vectors for the representation π, the functions X̃

(X ∈ g) defined on O by X̃(ξ) = 〈ξ,X〉 are in A and W (iX̃) v = dπ(X)v
for each X ∈ g and each v ∈ D.
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Adapted Weyl correspondences were obtained in various situations, see the
introduction of [6]. In particular, we constructed adapted Weyl correspondences
for the principal series representations of a noncompact semisimple Lie group
in [3] and [7]. We also obtained adapted Weyl correspondences for the unitary
irreducible representations of the semidirect product V ⋊ K of the real vector
space V by a Lie group K acting linearly on V in the following situations:

(1) K is a connected noncompact semisimple Lie group and the little group
associated with the representation of V ×K is a maximal compact sub-
group of K [6];

(2) K is a connected compact semisimple Lie group and the little group is
the centralizer of a torus of K [10].

Let us mention that adapted Weyl correspondences have various applications
in Harmonic Analysis and Deformation Theory as the construction of covariant
star-products on coadjoint orbits [3] and the study of contractions of Lie group
unitary representations [13], [5], [8], [9]. Recently, in [11], we have studied a con-
traction of the principal series of a semisimple Lie group to the unitary irreducible
representations of its Cartan motion group by using the deformed Weyl calculus
introduced in [3].

The present paper can be considered as a sequel of [6] and [10]. Let G0 be a
connected noncompact semisimple Lie group with Lie algebra g0 and let K be
a maximal compact subgroup of G0. Then we have the Cartan decomposition
g0 = k⊕V where k is the Lie algebra of K and V is an Ad(K)-invariant subspace
of g0. The Cartan motion group associated with the pair (G0,K) is the semidirect
product V ⋊K formed with respect to the adjoint action of K on V .

It is known for a long time that the unitary irreducible representations of
V ⋊ K are similar to the principal series representations of G0 [21]. This has
been illustrated by means of contractions of representations in [14] (see also [11]).
Here, we exploit this similarity to construct adapted Weyl correspondences for
unitary irreducible representations of V ⋊ K as it was done for principal series
representations of G0 in [7]. The method is essentially the same as in [6] and the
explicit computations are partially based on those of [7].

More precisely, let O be a coadjoint orbit of V ⋊K which is associated with a
generic unitary irreducible representation π of V ⋊K. We realize π on a Hilbert
space of functions on Rn where n = (1/2) dimO and we compute the corre-
sponding derived representation dπ (Section 3). We dequantize dπ by using a
combination of the usual Weyl calculus on R2n and of the Berezin calculus on the
little group orbit O′ (Section 4). Then we obtain an explicit symplectomorphism
from R2n×O′ onto a dense open subset of O and an adapted Weyl correspondence
on O (Section 5). In the case when G0 is a complex Lie group, we verify that the
adapted Weyl correspondence coincide with that of [10].
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2. Preliminaries

In this section, we introduce some general facts on noncompact semisimple Lie
groups and Cartan motion groups. Our main references are [16, Chapter VI], [19,
Chapter V] and [22].

Let G0 be a connected noncompact semisimple real Lie group with finite center.
Let g0 be the Lie algebra of G0. We denote by β the Killing form of g0 defined by
β(X,Y ) = Tr(adX adY ) for X and Y in g0. Let θ be a Cartan involution of g0
and let g0 = k ⊕ V be the corresponding Cartan decomposition of g0. Let K be
the connected compact (maximal) subgroup of G0 with Lie algebra k. Let a be a
maximal abelian subalgebra of V and let M be the centralizer of a in K. Let m
denote the Lie algebra of M . Let ∆ := ∆(a, g0) be the set of restricted roots and
let

g0 = a⊕m⊕
∑

λ∈∆

gλ

be the root space decomposition of g0. We fix a Weyl chamber in a and we
denote by ∆+ the corresponding set of positive roots. We set n =

∑

λ∈∆+ gλ and

n̄ =
∑

λ∈∆+ g−λ. Then n̄ = θ(n). Let A, N and N̄ denote the analytic subgroups
of G with algebras a, n and n̄, respectively.

Recall that N̄MAN is a open dense subset of G. We denote by
g = n̄(g)m(g)a(g)n(g) the decomposition of g ∈ N̄MAN . Also, recall that we

have the Iwasawa decomposition G = KAN . We denote by g = k̃(g)ã(g)ñ(g) the
decomposition of g ∈ G.

The Cartan motion group associated with the pair (G0,K) is the semidirect
product G := V ⋊K. The group law of G is given by

(v, k).(v′, k′) = (v +Ad(k)v′, kk′)

for v, v′ in V and k, k′ ∈ K. The Lie algebra g of G is the space V × k endowed
with the Lie bracket

[(w,U), (w′, U ′)] = ([U,w′]0 − [U ′, w]0, [U,U
′]0)

where [·, ·]0 denotes the Lie bracket of g0.
Recall that β is positive defined on V and negative defined on k [16, p. 184].

Then, by using β, we can identify V ∗ with V and k∗ with k, hence g∗ ≃ V ∗ × k∗

with V × k. Under this identification, the coadjoint action of G on g∗ ≃ V × k is
given by

(v, k) · (w,U) = (Ad(k)w,Ad(k)U + [v,Ad(k)w]0)

for v, w in V , k in K and U in k. This is a particular case of the general formula
for the coadjoint action of a semidirect product, see for instance [22].

Let pc
k
and pcV be the projections of g0 on k and V associated with the de-

composition g0 = k ⊕ V . Recall that an element ξ1 of a is said to be regular if
λ(ξ1) 6= 0 for each λ ∈ ∆. We shall need the following lemma.
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Lemma 2.1. For each regular element ξ1 of a, the space ad ξ1 (V ) is the orthog-

onal complement of m in k.

Proof: For each λ ∈ ∆+, let Eλ 6= 0 be in gλ. Note that the space p
c
k
(n) = pc

k
(n̄)

is generated by the elements Eλ + θ(Eλ) and hence orthogonal to m. Now, by
applying successively pc

k
and pcV to the decomposition g0 = m+ a+ n+ n̄ we get

the decompositions k = m+pc
k
(n) and V = a+pcV (n). This shows that p

c
k
(n) is the

orthogonal complement of m in k. On the other hand, since pcV (n) is generated
by the elements Eλ − θ(Eλ), we see that the space ad ξ1 (V ) is generated by the
elements

ad ξ1 (Eλ − θ(Eλ)) = λ(ξ1)(Eλ + θ(Eλ))

where λ(ξ1) 6= 0 for λ ∈ ∆. Hence ad ξ1 (V ) = pc
k
(n) is the orthogonal complement

of m in k. �

The coadjoint orbits of the semidirect product of a Lie group by a vector space
were described in [22]. For each (w,U) ∈ g∗ ≃ g, we denote by O(w,U) the
orbit of (w,U) under the coadjoint action of G. The following lemma shows that,
for almost all (w,U), the orbit O(w,U) is of the form O(ξ1, ξ2) with ξ1 ∈ a and
ξ2 ∈ m.

Lemma 2.2. (1) Let O be a coadjoint orbit for the coadjoint action of G on

g∗ ≃ g. Then there exists an element of O of the form (ξ1, U) with ξ1 ∈ a.

Moreover, if ξ1 is regular then there exists ξ2 ∈ m such that (ξ1, ξ2) ∈ O.

(2) Let ξ1 be a regular element of a. Then M is the stabilizer of ξ1 in K.

Proof: (1) Let (w,U) ∈ O. For each k ∈ K we have

(0, k) · (w,U) = (Ad(k)w,Ad(k)U).

By [19, p. 120], we have Ad(K)a = V and then one can choose k ∈ K so that
Ad(k)w ∈ a. We set ξ1 := Ad(k)w. If we assume that ξ1 is regular then, by
Lemma 2.1, we can write U = ξ2 + [ξ1, v] where ξ2 ∈ m and v ∈ V . Then
(ξ1, U) = (v, e) · (ξ1, ξ2). Hence O = O(ξ1, ξ2).

(2) By [7, Lemma 4.2], the stabilizer of ξ1 in g0 is MA. Then, the stabilizer of
ξ1 in K is MA ∩K =M . �

Let ξ1 ∈ a be a regular element. Denote by OV (ξ1) the orbit of ξ1 in V under
the action of K. In the next section, we shall need the chart on OV (ξ1) ≃ K/M
which is given by the following lemma.

Lemma 2.3 ([26, Lemma 7.6.8]). The map τ : y → Ad(k̃(y))ξ1 is a diffeomor-

phism from N̄ onto a dense open subset of OV (ξ1). Let us consider the action of

k ∈ K on y ∈ N̄ defined by τ(k ·y) = Ad(k)τ(y) or, equivalently, by k ·y = n̄(ky).
Then the K-invariant measure on N̄ is given by e−2ρ(log ã(y))dy where dy is a Haar

measure on N̄ .

In the rest of the paper, we fix the normalization of dy as follows. Let (Ei)1≤i≤n

be an orthonormal basis of n̄ with respect to the scalar product defined by
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(Y, Z) := −β(Y, θ(Z)). Denote by (y1, y2, . . . , yn) the coordinates of Y ∈ n̄ in this
basis and let dY = dy1dy2 . . . dyn be the Euclidean measure on n̄. The exponential
map exp is a diffeomorphism from n̄ onto N̄ and we set dy := (exp−1)∗(dY ).

We shall also denote by k · Y the action of k ∈ K on Y ∈ n̄ defined by
exp(k · Y ) = k · exp(Y ).

3. Representations

We retain the notation of Section 2. Let ξ1 ∈ a be a regular element and let
ξ2 ∈ m. We denote by o(ξ2) the orbit of ξ2 under the adjoint action ofM onm. Let
σ be a unitary irreducible representation of M on a complex (finite-dimensional)
vector space E. In the rest of the paper, we assume that σ is associated with the
orbit o(ξ2) in the following sense, see [27, Section 4]. Given a maximal torus T of
M with Lie algebra t and a set of positive roots in ∆(tC,mC), the element iβ(ξ2, ·)
of it∗ is the highest weight of σ. Under these assumptions, the orbit O(ξ1, ξ2) is
associated with the unitarily induced representation

π̂ = IndGV ×M

(

eiβ(ξ1,·) ⊗ σ
)

(see [20], [22] and [23]). By a result of Mackey, π̂ is irreducible since σ is irreducible
[24, p. 149]. Moreover, in the terminology of [22] and [23], the group M is called
the little group and the orbit o(ξ2) the little orbit.

The representation π̂ is usually realized on the space of square-integrable sec-
tions of a Hermitian vector bundle over OV (ξ1), see [10], [22]. Following [23] and

using Lemma 2.3 and the section y → k̃(y) from N̄ to K, we immediately obtain
the realization π0 of π̂ defined by

(π0(v, k)ψ)(y) = eiβ(Ad(k̃(y))ξ1,v) σ
(

k̃(y)−1kk̃(k−1 · y)
)

ψ(k−1 · y)

on the Hilbert space H0 which is the completion of the space of compactly sup-
ported smooth functions ψ : N̄ → E with respect to the norm

‖ψ‖20 =

∫

N̄

〈ψ(y), ψ(y)〉E e
−2ρ(log ã(y)) dy.

For the Weyl calculus, it is more convenient to realize π̂ on the Hilbert space H :=
L2(n̄, E) which is the completion of the space C0(n̄, E) of compactly supported
smooth functions φ : n̄ → E with respect to the norm

‖φ‖2 =

∫

n̄

〈φ(Y ), φ(Y )〉E dY.

To this end, we use the unitary isomorphism B from H onto H0 defined by
B(φ)(exp Y ) = eρ(log ã(y))φ(Y ) and we set π(g) := B−1π0(g)B for g ∈ G. We
immediately obtain, for (v, k) ∈ G,

(π(v, k)φ)(Y ) = eiβ(Ad(k̃(y))ξ1,v)+ρ(log ã(k−1·y)−log ã(y)) σ(m(k, y))φ(k−1 · Y )
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where we have set y = expY and m(k, y) := k̃(y)−1kk̃(k−1 · y) ∈ M . This
formula can be simplified as follows. Let k ∈ K and y ∈ N̄ . Write k−1y =
n̄(k−1y)m(k−1y)a(k−1y)n(k−1y). Then k−1k̃(y) = k̃(n̄(k−1y))m(k−1y). Thus
m(k, y) = m(k−1y)−1. Also, we have that

ã(y) = ã(k−1y) = ã(n̄(k−1y))a(k−1y) = ã(k−1 · y)a(k−1y).

This gives

(π(v, k)φ)(Y ) = e−ρ(log a(k−1 expY ))+iβ(Ad(k̃(expY ))ξ1,v) σ(m(k−1 expY ))−1

× φ(log n̄(k−1 expY )).

Now, we compute the derived representation dπ. Let pa, pm and pn̄ be the
projections of g0 onto a, m and n̄ associated with the direct decomposition g0 =
a+m+ n+ n̄. For X ∈ n̄ we denote by X+ the right invariant vector field on N̄
generated by X , that is, X+(y) = d

dt
(exp tX)y

∣

∣

t=0
for y ∈ N̄ .

Lemma 3.1 ([7]). (1) For each X ∈ n̄ and each Y ∈ n̄, we have

d log(expY )
(

X+(expY )
)

=
adY

eadY − 1
(X).

(2) For each X ∈ g0 and each y ∈ N̄ , we have

d

dt
a(exp(tX)y)

∣

∣

∣

t=0
= pa(Ad(y

−1)X)

d

dt
m(exp(tX)y)

∣

∣

∣

t=0
= pm(Ad(y

−1)X)

d

dt
n̄(exp(tX)y)

∣

∣

∣

t=0
=

(

Ad(y) pn̄(Ad(y
−1)X)

)+
(y).

From this lemma, we immediately deduce the following proposition.

Proposition 3.2. For each (w,U) ∈ g, φ ∈ C0(n̄, E) and Y ∈ n̄, we have

(dπ(w,U)φ)(Y ) = iβ
(

Ad(k̃(expY ))ξ1, w
)

φ(Y )

+ ρ
(

pa(Ad(exp(−Y ))U)
)

φ(Y ) + dσ
(

pm(Ad(exp(−Y ))U)
)

φ(Y )

− dφ(Y )

(

adY

1− e− adY
pn̄(Ad(exp(−Y ))U)

)

.

4. Dequantization

In this section,we first introduce the Berezin-Weyl calculus on n̄2×o(ξ2). Recall
that the Berezin calculus on o(ξ2) associates with each operator B on the finite-
dimensional complex vector space E a complex-valued function s(B) on the orbit
o(ξ2) called the symbol of the operator B (see [2]). The following properties of
the Berezin calculus are well-known, see [12], [3], [10].
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Proposition 4.1. (1) The map B → s(B) is injective.

(2) For each operator B on E, we have s(B∗) = s(B).
(3) For each operator B on E, each m ∈M and each ϕ ∈ o(ξ2), we have

s(B)(Ad(m)ϕ) = s(σ(m)−1Bσ(m))(ϕ).

(4) For X ∈ m and ϕ ∈ o(ξ2), we have s(dσ(X))(ϕ) = iβ(ϕ,X).

In particular, we see that the map s−1 is an adapted Weyl transform on o(ξ2)
in the sense of Definition 1.1.

We say that a complex-valued smooth function f : (Y, Z, ϕ) → f(Y, Z, ϕ) is a
symbol on n̄2 × o(ξ2) if for each (Y, Z) ∈ n̄2 the function ϕ → f(Y, Z, ϕ) is the

symbol in the Berezin calculus on o(ξ2) of an operator on E denoted by f̂(Y, Z).

A symbol f on n̄2 × o(ξ2) is called an S-symbol if the function f̂ belongs to
the Schwartz space of rapidly decreasing smooth functions on n̄2 with values in
End(E). The Weyl calculus for End(E)-valued functions is a slight refinement of
the usual Weyl calculus for complex-valued functions [17], [15]. For each S-symbol
on n̄2 × o(ξ2), we define the operator W(f) on the Hilbert space L2(n̄, E) by

(4.1) (W(f)φ)(Y ) = (2π)
−n

∫

n̄2

ei( T,Z )f̂

(

Y +
1

2
T, Z

)

φ(Y + T ) dT dZ

for φ ∈ C0(n̄, E).
It is well-known that the Weyl calculus can be extended to much larger classes

of symbols (see for instance [17]). Here we only consider a class of polynomial

symbols. We say that a symbol f on n̄2×o(ξ2) is a P-symbol if the function f̂(Y, Z)
is polynomial in the variable Z. Let f be the P-symbol defined by f(Y, Z, ϕ) =
u(Y )Zα where u ∈ C∞(n̄) and Zα := zα1

1 zα2

2 . . . zαn

n for each multi-index α =
(α1, α2, . . . , αn). Then, by [25], we have

(4.2) (W(f)φ)(Y ) =

(

i
∂

∂Z

)α (

u(Y +
1

2
Z)φ(Y + Z)

)

∣

∣

∣

Z=0
.

In particular, if f(Y, Z, ϕ) = u(Y ) then (W(f)φ)(Y ) = u(Y )φ(Y ) and if
f(Y, Z, ϕ) = u(Y )zk then

(4.3) (W(f)φ)(Y ) = i

(

1

2
∂ku(Y )φ(Y ) + u(Y )∂kφ(Y )

)

where ∂k denotes partial derivative with respect to the variable yk.
We need the following lemma. The trace of an endomorphism u of n̄ is denoted

by Trn̄ u.

Lemma 4.2. For U ∈ k let cU : n̄ → n̄ be the map defined by

cU (Y ) = s(adY )pn̄(Ad(exp(−Y ))U)



134 B. Cahen

where s is the function defined by s(z) = ez

1−e−z for z 6= 0 and s(0) = 1. Then we

have

Trn̄ dcU (Y ) = −2ρ (pa(Ad(exp(−Y ))X)) .

Proof: This is a particular case of [7, Lemma 3.3]. �

Then we get the following proposition.

Proposition 4.3. For each (w,U) ∈ g, the Berezin-Weyl symbol of the operator

−idπ(w,U) is the P-symbol f(w,U) on n̄2 × o(ξ2) defined by

f(w,U)(Y, Z, ϕ) = β
(

Ad(k̃(expY )) ξ1, w
)

+ β
(

pm(Ad(exp(−Y ))U), ϕ
)

+ (cU (Y ), Z).

Proof: Set ckU (Y ) = (cU (Y ), Ek) for each k = 1, 2, . . . , n. By using (4) of Propo-
sition 4.1 and Formula (4.3), we immediately see that the symbol of −idπ(w,U)
is

f(w,U)(Y, Z, ϕ) = −iρ (pa(Ad(exp(−Y ))U)) + β
(

Ad(k̃(expY ))ξ1, w
)

+ β (pm(Ad(exp(−Y ))U), ϕ) +
n
∑

k=1

ckU (Y )zk −
i

2

n
∑

k=1

∂kc
k
U (Y ).

But by Lemma 4.2, we have

−
i

2

n
∑

k=1

∂kc
k
U (Y ) = −

i

2
Trn̄ (dcU (Y )) = iρ (pa(Ad(exp(−Y ))U)) .

The result follows. �

5. Adapted Weyl correspondence

In this section, we use the dequantization procedure of Section 4 in order to
obtain an explicit diffeomorphism from n̄2 × o(ξ2) onto the dense open subset

Õ(ξ1, ξ2) of O(ξ1, ξ2) defined by

Õ(ξ1, ξ2) = {(v, k) · (ξ1, ξ2) : v ∈ V, k ∈ K ∩ N̄MAN}

and then to construct an adapted Weyl correspondence on O(ξ1, ξ2).

Proposition 5.1. Let Ψ be the map from n̄2 × o(ξ2) to g defined by

Ψ(Y, Z, ϕ) =
(

Ad(k̃(expY ))ξ1 , p
c
k

(

Ad(expY )
(

ϕ+ pn
(

adY
ead Y −1

θ(Z)
))

))

.

Then, for each (w,U) ∈ g, we have

f(w,U)(Y, Z, φ) = 〈Ψ(Y, Z, ϕ), (w,U)〉.
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Proof: We use Proposition 4.3. Note that we have β(a + m, n + n̄) = (0),
β(n, n) = (0) and β(n̄, n̄) = (0). Then for (Y, Z, ϕ) ∈ n̄2 × o(ξ2) and (w,U) ∈ g,
we can write

(cU (Y ), Z) = −β(cU (Y ), Z)

= −β

(

adY

1− e− adY
pn̄(Ad(exp(−Y ))U), θ(Z)

)

= β

(

pn̄(Ad(exp(−Y ))U),
adY

eadY − 1
θ(Z)

)

= β

(

Ad(exp(−Y ))U, pn

( adY

eadY − 1
θ(Z)

)

)

= β

(

U, pc
k

(

Ad(expY ) pn

( adY

eadY − 1
θ(Z)

))

)

.

Similarly, we have

β(ϕ, pm(Ad(exp(−Y ))U)) = β(ϕ,Ad(exp(−Y ))U) = β(Ad(expY )ϕ,U).

The result then follows from Proposition 4.3. �

Let ω and ω0 be the Kirillov 2-forms on O(ξ1, ξ2) and o(ξ2), respectively. We
endow n̄2 with the symplectic form dY ∧ dZ :=

∑n

k=1 dyk ∧ dzk.

Proposition 5.2. The map Ψ is a symplectomorphism from the symplectic prod-

uct (n̄2 × o(ξ2), (dY ∧ dZ)⊗ ω0) onto (Õ(ξ1, ξ2), ω|Õ(ξ1,ξ2)
).

Proof: The proof is similar to that of Proposition 6.2 in [10]. �

Now, we obtain an adapted Weyl transform on O(ξ1, ξ2) by transferring to
O(ξ1, ξ2) the Berezin-Weyl calculus on n̄2× o(ξ2). We say that a smooth function
f on O(ξ1, ξ2) is a symbol on O(ξ1, ξ2) (respectively a P-symbol, an S-symbol) if
f ◦ Ψ is a symbol (respectively a P-symbol, an S-symbol) for the Berezin-Weyl
calculus on n̄2 × o(ξ2).

Proposition 5.3. Let A be the space of P-symbols on O(ξ1, ξ2) and let B be the

space of differential operators on n̄ with coefficients in C∞(n̄, E). Then the map

W : A → B that assigns to each f ∈ A the operator W(f ◦ Ψ) on L2(n̄, E) is an
adapted Weyl correspondence in the sense of Definition 1.1.

Proof: Properties (1), (2) and (3) of the definition of an adapted Weyl corre-
spondence are clearly satisfied with D = C0(n̄, E). Property (4) follows from (2)
of Proposition 4.1 and from the similar result for the usual Weyl calculus, see [17].
Finally, Property (5) is an immediate consequence of Proposition 4.1. �

Finally, let us consider the case when G0 is a complex Lie group. In this case,
we have V = ik and M is the maximal torus exp(ia) of K [19, p. 143 and p. 468].
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Moreover, o(ξ2) reduces to the point ξ2, σ is a character of M and E = C. So,
the map W is just the usual Weyl calculus.

Note that the construction of [10] can also be applied in this case. In [10], we

have defined a symplectomorphism Ψ0 from n2 onto Õ(ξ1, ξ2) and an adapted
Weyl correspondence W0 on O(ξ1, ξ2). We can easily verify that Ψ(Y, Z) =
Ψ0(θ(Y ), θ(Z)) for each (Y, Z) ∈ n̄× n̄ and that the spaces of symbols for W and
for W0 are the same. Moreover, choosing the orthonormal basis for n̄ in Section 2
and for n in [10] in compatible ways, we have that W0(f)(φ ◦ θ) = (W (f)φ) ◦ θ
for each S-symbol f on O(ξ1, ξ2) and for each φ ∈ C0(n̄).
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Acad. Sci. Paris Sér. I Math. 325 (1997), 803–806.
[5] Cahen B., Contractions of SU(1, n) and SU(n+1) via Berezin quantization, J. Anal. Math.

97 (2005), 83–102.
[6] Cahen B., Weyl quantization for semidirect products, Differential Geom. Appl. 25 (2007),

177–190.
[7] Cahen B., Weyl quantization for principal series, Beiträge Algebra Geom. 48 (2007), no. 1,
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