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K Y BE R NE T IK A — VO L UM E 4 6 ( 2 0 1 0 ) , NU MB E R 6 , P AGE S 9 8 2 – 9 9 5

QUANTUM LOGICS AND BIVARIABLE FUNCTIONS

Eva Drobná, Ol’ga Nánásiová and L’ubica Valášková

New approach to characterization of orthomodular lattices by means of special types
of bivariable functions G is suggested. Under special marginal conditions a bivariable
function G can operate as, for example, infimum measure, supremum measure or symmetric
difference measure for two elements of an orthomodular lattice.

Keywords: finite atomistic quantum logic, orthomodular lattice, conditional state, s-map,
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1. INTRODUCTION

To model noncompatible events, a quantum logic was chosen among various algebraic
structures as the suitable one. This paper deals with a characterization of a center
in various types of quantum logics by means of special bivariable functions defined
on them. Any quantum logic can be described as a union of blocks (a block in a
given quantum logic L is the maximal Boolean subalgebra of L) [16]. Center C(L)
of a quantum logic L is its Boolean subalgebra of elements compatible with all other
elements of L. Each quantum logic L has a center that can be taken as a common
part of its blocks. In this paper three types of quantum logics are studied:

(T1) a quantum logic L as a horizontal sum of k maximal Boolean algebras (blocks);

(T2) a quantum logic L created from two blocks with non trivial center;

(T3) a quantum logic L with nontrivial center as a union of k blocks Bi, i ≤ k, where
Bi ∩ Bj ⊂ C(L) for i 6= j.

2. PRELIMINARIES

This section is devoted to basic notions of quantum logics theory. For more infor-
mation see [3, 5, 15, 16, 17].

Definition 2.1. Let L be a lattice (a nonempty set endowed with a partial ordering
≤, the lattice operations supremum ∨ and infimum ∧) with the greatest element 1L

and the smallest element 0L. Let ⊥: L → L be a unary operation on L with the
following properties:
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1. for any a ∈ L there is a unique a⊥ ∈ L such that (a⊥)⊥ = a and a ∨ a⊥ = 1L;

2. if a, b ∈ L and a ≤ b then b⊥ ≤ a⊥;

3. if a, b ∈ L and a ≤ b then b = a ∨ (a⊥ ∧ b) (orthomodular law).

Then L = (L, 0L, 1L,∨,∧,⊥) is said to be an orthomodular lattice.

Definition 2.2. Let L be an orthomodular lattice. Then the elements a, b ∈ L are:

1. orthogonal (a ⊥ b) if a ≤ b⊥;

2. compatible (a ↔ b) if a = (a ∧ b) ∨ (a ∧ b⊥) and b = (a ∧ b) ∨ (a⊥ ∧ b).

Definition 2.3. Let L be an orthomodular lattice. Then the element a ∈ L−{0L}
is called an atom of L if the following statement is true: b < a implies b = 0L.

Definition 2.4. Let L be an orthomodular lattice. L is called atomistic if each
non-zero element from L is supremum of atoms of L. If the set of all atoms of L is
finite, then it is said to be finite

Definition 2.5. Let L be a quantum logic. A finite orthogonal partition of 1L is a
system {ai}

k
i=1, k ∈ N of mutually orthogonal elements of L such that

∨k

i=1 ai = 1L.

In this paper we will deal only with finite orthogonal partitions.

Definition 2.6. Let L be an orthomodular lattice. A map m : L → [0, 1] satisfying
conditions:

1. m(0L) = 0 and m(1L) = 1

2. if a ⊥ b; a, b ∈ L then m(a ∨ b) = m(a) + m(b)

is called a state on L.

Let us recall the existence of orthomodular lattices without any state [4, 14].

Definition 2.7. A quantum logic is an orthomodular lattice with at least one state.

Multidimensional states play an important role in this paper. So we introduce
some essential definitions and properties. For more details see [6, 7, 13].

Definition 2.8. Let L be a quantum logic and L0 = L−{0L}. A map m : L×L0 →
[0, 1] satisfying conditions:

1. for all a ∈ L0 m(.|a) is a state on L;

2. for all a ∈ L0 m(a|a) = 1;

3. if {ai}
n
i=1, n ∈ N are mutually orthogonal elements of L0, then for each b ∈ L

m
(

b|
n
∨

i=1

ai

)

=
n

∑

i=1

m
(

ai|
n
∨

j=1

aj

)

· m(b|ai)
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is called a conditional state on L.

Definition 2.9. Let L be an orthomodular lattice. An s-map on L (a simultaneous
measurement map) is a map p : L2 → [0, 1] satisfying the following conditions:

(s1) p(1L, 1L) = 1;

(s2) if a ⊥ b for some a, b ∈ L, then p(a, b) = 0;

(s3) if a ⊥ b for some a, b ∈ L, then for each c ∈ L

p(a ∨ b, c) = p(a, c) + p(b, c) and p(c, a ∨ b) = p(c, a) + p(c, b).

Definition 2.10. Let L be a quantum logic. A d-map on L (a difference map) is a
map d : L2 → [0, 1] satisfying the following conditions:

(d1) d(1L, 1L) = 0 and d(0L, 1L) = d(1L, 0L) = 1;

(d2) if a ⊥ b then d(a, b) = d(a, 0L) + d(0L, b);

(d3) if a ⊥ b then for each c ∈ L

d(a ∨ b, c) = d(a, c) + d(b, c) − d(0L, c),

d(c, a ∨ b) = d(c, a) + d(c, b) − d(c, 0L).

Lemma 2.11. Let L be a quantum logic and let p be an s-map on L. Then

(1) if a ↔ b, a, b ∈ L then p(a, b) = p(b, a),

(2) for any a ∈ L : p(a, 1L) = p(a, a),

(3) for any a ∈ L : p(a⊥, a⊥) = 1 − p(a, a).

Lemma 2.12. Let L be a quantum logic and let d be a d-map on L. Then

(1) if a ↔ b, a, b ∈ L then d(a, b) = d(b, a),

(2) for any a ∈ L : d(a⊥, a) = 1,

(3) for any a ∈ L : d(a, a) = 0.

Lemma 2.13. Let L be a quantum logic, let p be an s-map on L and let d be a
d-map on L. Then

(1) a map νp : L → [0, 1], νp(a) = p(a, a) is a state on L,

(2) a map µd : L → [0, 1], µd(a) = d(a, 0L) is a state on L.

Moreover if L is a Boolean algebra, then an s-map represents a measure of infimum,
i.e p(a, b) = νp(a∧b) and a d-map represents measure of symmetric difference of two
elements, i. e. d(a, b) = µd(a △ b), where a △ b = (a ∧ b⊥) ∨ (a⊥ ∧ b).
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Lemma 2.14. Let L be a quantum logic and let p be an s-map on L. Then a map
dp : L2 → [0, 1], dp(a, b) = p(a, b⊥) + p(a⊥, b) is a d-map.

A special type of a d-map from Lemma 2.14 is said to be a d-map induced by an
s-map p. It is clear, that dp(a, 0L) = p(a, a) for any a ∈ L.

An orthogonal partition of unit 1L gives the whole information about the exper-
iment that it creates. Indeed, let {a1, . . . , an} be an orthogonal partition of unit
1L. Knowing values that a state m admits at each ai, in fact we have information
about the values of m on the whole Boolean algebra given by the partition, where
ai, i = 1, 2, . . . , n are its atoms.

The problem arises when the experiment organization leads to two partitions
of 1L, {ai}

n
i=1 a {bj}

k
j=1, but we are not able to get information about the set

of elements {ai ∧ bj}
n×k
ij that need not be, in general, a partition of 1L (while a

refinement of a partition always exists in a Boolean algebra).
In that case we have

n
∨

i=1

k
∨

j=1

ai ∧ bj < 1L ,

which means that {ai ∧ bj}i,j is not a partition of unit 1L.
Despite this fact the number

n
∑

i=1

k
∑

j=1

m(ai ∧ bj)

can be anywhere in [0, 1]. Especially if
∑n

i=1

∑k

j=1 m(ai ∧ bj) = 1, virtually we are
in a Boolean algebra.

To eliminate such lack of information about ai ∧ bj we can use information about
ai conditioned by bj, i = 1, . . . , n, j = 1, . . . , k, or probability (relative frequency)
of event bj (i. e. m(bj)) and ai under condition bj (i. e. m(ai|bj), where i = 1, . . . , n,
j = 1, . . . , k and m(·|·) is a conditional state defined in [7]. It was proved in [6] that
a function p(u, v) = m(u)m(v|u) behaves for compatible elements as a measure of
intersection (p(u, v) = m(u∧ v)), while for noncompatible elements p(u, v) 6= p(v, u)
can occur. Function p on a quantum logics is an s-map (Definition 2.9) and its
properties are studied in [1, 2, 6, 8, 9, 10, 11].

Let p be an s-map on L. Then for any two finite orthogonal partitions A, B of
unit 1L there is a probability distribution matrix

P (B) =







m(b1) · · · 0
...

. . .
...

0 · · · m(bk)







and conditional probability P (A|B) distribution matrix

P (A|B) =







m(a1|b1) · · · m(a1|bk)
...

. . .
...

m(an|b1) · · · m(an|bk)






.
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Then “a common effect” matrix P (A, B) of two orthogonal partitions of unit 1L can
be expressed as product of matrices P (A|B) ·P (B). A matrix P (A, B) can have the
following expression by means of an s-map [6]:

P (A, B) =







p(a1, b1) · · · p(a1, bk)
...

. . .
...

p(an, b1) · · · p(an, bk)






,

where p(ai, bj) = m(bj)m(ai|bj), i = 1, . . . , n a j = 1, . . . , k.
At the first sight that approach described above is the same as in the classi-

cal probability theory. But, in contrast with it, Bayes theorem is not, in general,
true. P (A, B) = P (B, A)T does not hold, in general. An s-map p need not give a
metrics [13].

3. CHARACTERIZATION VIA S-MAPS AND D-MAPS

In the remaining part of this paper we will deal with a finite atomistic quantum logic
L. In this section we will deal with induced d-maps only, so we will use a notation
d instead of dp.

Simple assertion in the next lemma will be helpful in several proofs.

Lemma 3.1. Let L be a quantum logic and let a1, a2, . . . , an, n ∈ N be mutually
orthogonal elements of L. Then for any c ∈ L:

n
∑

i=1

d(ai, c) = d
(

n
∨

i=1

ai, c
)

+ (n − 1)d(0L, c).

The proof of Lemma 3.1 is just a routine application of mathematical induction
to (d3) of Definition 2.10.

3.1. A horizontal sum of k Boolean subalgebras

Lemma 3.2. Let L be a horizontal sum of blocks B1,B2 and let Ai be the set of all
atoms of the block Bi, where ni = card(Ai) < ∞, i = 1, 2. Let p be an s-map on L
and d be the d-map induced by the s-map p. Then

(1)
∑

u∈A1,v∈A2

p(u, v) = 1;

(2)
∑

u∈A1,v∈A2

d(u, v) = n1 + n2 − 2 .

P r o o f . Let us realize that elements of Ai are mutually orthogonal and
∨

u∈Ai
u =

1L, i = 1, 2.
(1) It is enough to use a finite additivity of an s-map p in each coordinate.

∑

u∈A1,v∈A2

p(u, v) =
∑

u∈A1

∑

v∈A2

p(u, v) =
∑

u∈A1

p
(

u,
∨

v∈A2

)

=
∑

u∈A1

p(u, 1L) = p
(

∨

u∈A1

u, 1L

)

= p(1L, 1L) = 1 .
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(2) Let d be the d-map induced by the s-map p and let ni = card(Ai), i = 1, 2.
Applying Lemma 3.1 we get

∑

u∈A1,v∈A2

d(u, v) =
∑

u∈A1

∑

v∈A2

d(u, v)

=
∑

u∈A1

(

d
(

u,
∨

v∈A2

v
)

+ (n2 − 1)d(u, 0L)
)

=
∑

u∈A1

d(u, 1L) + (n2 − 1)
∑

u∈A1

d(u, 0L)

= d
(

∨

u∈A1

u, 1L

)

+ (n1 − 1)d(0L, 1L) + (n2 − 1)d
(

∨

u∈A1

u, 0L

)

= d(1L, 1L) + (n1 − 1)d(0L, 1L) + (n2 − 1)d(1L, 0L)

= (n1 + n2 − 2) .

�

Proposition 3.3. Let a quantum logic L be a horizontal sum of blocks B1,B2, . . . ,Bk,
where Ai is the set of all atoms of the block Bi, i = 1, 2, . . . , k and let A be the set of
all atoms of L, T = card(A). Let p be an s-map on L and d be the d-map induced
by the s-map p. Then

Sp =
∑

u,v∈A

p(u, v) = k2 ,

Sd =
∑

u,v∈A

d(u, v) = 2k(T − k) .

P r o o f .

Sp =
∑

u,v∈A

p(u, v) =

k
∑

i=1

k
∑

j=1

∑

u∈Ai,v∈Aj

p(u, v) =

k
∑

i=1

k
∑

j=1

1 = k2,

Sd =
∑

u,v∈A

d(u, v) =

k
∑

i=1

k
∑

j=1

∑

u∈Ai,v∈Aj

d(u, v) =

k
∑

i=1

k
∑

j=1

(ni + nj − 2) = 2k(T − k).

�

Corollary 3.4. If a quantum logic L is a horizontal sum of k blocks, k ∈ N , where A
is the set of all atoms of L then Sp =

∑

u,v∈A p(u, v) ∈ N and Sd =
∑

u,v∈A d(u, v) ∈ N .

From the corollary it results that if Sp =
∑

u,v∈A p(u, v) /∈ N, then L cannot be
a horizontal sum of blocks. The opposite is not true as we can see from Example
3.7 in the following subsection.
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3.2. Quantum logic with nontrivial center consisting of two blocks

Lemma 3.5. Let a quantum logic L with a non-trivial center C(L) consists of blocks
Bi, i = 1, 2. Let Ai ∪C be the sets of all atoms of the block Bi, i = 1, 2 and let A be
the set of all atoms of L. Let p be an s-map on L and let d be the d-map induced
by the s-map p. Then

(1)
∑

u∈A1,v∈A2

d(u, v) = (n1 + n2 − 2)p(c⊥, c⊥) =
∑

u∈A2,v∈A1

d(u, v) ,

(2)
∑

u∈A1,v∈C

d(u, v) = n1p(c, c) + rp(c⊥, c⊥) =
∑

u∈C,v∈A1

d(u, v) ,

(3)
∑

u,v∈C

d(u, v) = 2(r − 1)p(c, c) ,

where ni = card(Ai), i = 1, 2, r = card(C), c =
∨

u∈C u and c⊥ =
∨

u∈A1
u =

∨

u∈A2
u .

P r o o f . Using Lemma 3.1 and the facts
∨

u∈A1
u =

∨

u∈A2
u = c⊥,

∨

u∈C u = c we
get

(1)
∑

u∈A1,v∈A2

d(u, v) = d
(

∨

u∈A1

u,
∨

v∈A2

v) + (n1 − 1)d(0L,
∨

v∈A2)

v
)

+(n2 − 1)d
(

∨

u∈A1

u, 0L

)

= d(c⊥, c⊥) + (n1 − 1)d(0L, c⊥) + (n2 − 1)d(c⊥, 0L)

= (n1 + n2 − 2)d(0L, c⊥)

= (n1 + n2 − 2)p(c⊥, c⊥) .

(2)
∑

u∈A1,v∈C

d(u, v) = d
(

∨

u∈A1

u,
∨

v∈C

v
)

+ (n1 − 1)d
(

0L,
∨

v∈C

v
)

+ (r − 1)d
(

∨

u∈A1

u, 0L

)

= d(c⊥, c) + (n1 − 1)d(0L, c) + (r − 1)d(c⊥, 0L)

= 1 + (n1 − 1)p(c, c) + (r − 1)p(c⊥, c⊥)

= p(c, c) + p(c⊥, c⊥) + (n1 − 1)p(c, c) + (r − 1)p(c⊥, c⊥)

= n1p(c, c) + rp(c⊥, c⊥) .

The property (3) can be proved by analogy.
�

Proposition 3.6. Let a quantum logic L with a non-trivial center C(L) consist of
blocks Bi i = 1, ..., k. Let Ai ∪ C be the sets of all atoms of the block Bi i = 1, ..., k
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and let A be the set of all atoms of L. Let p be an s-map on L and let d be the
d-map induced by the s-map p. Then

∑

u,v∈A

d(u, v) = 2(n1 + n2 + r − 1)p(c, c) + 4(n1 + n2 + r − 2)p(c⊥, c⊥),

where ni = card(Ai), i = 1, 2, r = card(C), c =
∨

u∈C u and c⊥ =
∨

u∈A1
u =

∨

u∈A2
u.

P r o o f .

∑

u,v∈A

d(u, v) =
∑

u,v∈A1

d(u, v) +
∑

u,v∈A2

d(u, v) +
∑

u,v∈C

d(u, v)

+2
∑

u∈A1,v∈A2

d(u, v) + 2
∑

u∈A1,v∈C

d(u, v) + 2
∑

u∈A2,v∈C

d(u, v)

= 2(n1 − 1)p(c⊥, c⊥) + 2(n2 − 1)p(c⊥, c⊥) + 2(r − 1)p(c, c)

+(n1 + n2 − 2)p(c⊥, c⊥) + 2(n1p(c, c) + rp(c⊥, c⊥))

+2(n2p(c, c) + rp(c⊥, c⊥))

= 2(n1 + n2 + r − 1)p(c, c) + 4(n1 + n2 + r − 2)p(c⊥, c⊥)

�

Example 3.7. Let L be a quantum logic. Let A = {a1, a2, c} and B = {b1, b2, c}
be two orthogonal partitions of unit of L (L = BA ∪ BB). So it is a special case of
the previous proposition, where n1 = 2, n2 = 2, r = 1. Then

Sd = 2(n1 + n2 + r − 1)p(c, c) + 4(n1 + n2 + r − 2)p(c⊥, c⊥)

= 8p(c, c) + 12p(c⊥, c⊥)

= 12 − 4p(c, c) .

So Sd ∈ [8, 12]. If we choose p(c, c) ∈ {0, 0.25, 0.5, 0.75, 1}, then characteristic
number Sd is in N even the quantum logic L is not a horizontal sum of two blocks.

3.3. Quantum logic with nontrivial center consisting of k blocks

Proposition 3.8. Let a quantum logic L with a non-trivial center C(L) consists of
blocks Bi i = 1, . . . , k. Let Ai∪C be the sets of all atoms of the block Bi i = 1, . . . , k
and let A be the set of all atoms of L. Let p be an s-map on L and let d be the
d-map induced by the s-map p. Then

Sd =
∑

u,v∈A

d(u, v) = 2(T − 1)p(c, c) + 2k(T − k)p(c⊥, c⊥),

where T = card(A), c =
∨

u∈C u and c⊥ =
∨

u∈Ai
u for each i = 1, 2, . . . , k.
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P r o o f . Let us denote ni = card(Ai), i = 1, 2, . . . , k, r = card(C) and t =
∑k

i=1 ni.
Then

Sd =
∑

u,v∈A

d(u, v)

=

k
∑

i=1

k
∑

j=1

∑

u∈Ai,v∈Aj

d(u, v) + 2

k
∑

i=1

∑

u∈Ai,v∈C

d(u, v) +
∑

u,v∈C

d(u, v)

=

k
∑

i=1

k
∑

j=1

(ni + nj − 2)p(c⊥, c⊥) + 2

k
∑

i=1

(nip(c, c) + rp(c⊥, c⊥)) + 2(r − 1)p(c, c)

= 2k(t − k)p(c⊥, c⊥) + 2tp(c, c) + 2krp(c⊥, c⊥) + 2(r − 1)p(c, c)

= 2(t + r − 1)p(c, c) + 2k(t + r − k)p(c⊥, c⊥)

= 2(T − 1)p(c, c) + 2k(T − k)p(c⊥, c⊥).

�

4. SPECIAL BIVARIABLE FUNCTIONS ON A QUANTUM LOGIC

In [12] a bivariable map on a quantum logic L was introduced. Under special
marginal conditions it represents, for example, infimum measure, supremum measure
or symmetric difference measure for two elements of L.

4.1. Basic notions

Definition 4.1. Let L be a quantum logic. A map G : L2 → [0, 1] satisfying the
conditions:

(G1) if u, v ∈ {0L, 1L} then G(u, v) ∈ {0L, 1L} and G(0L, 1L) = G(1L, 0L);

(G2) if a ⊥ b then G(a, b) = G(a, 0L) + G(0L, b) − G(0L, 0L);

(G3) if a ⊥ b, c ∈ L then

G(a ∨ b, c) = G(a, c) + G(b, c) − G(0L, c),

G(c, a ∨ b) = G(c, a) + G(c, b) − G(c, 0L);

is said to be a special bivariable map on L. The set of all special bivariable maps G
on L will be denoted by Γ.

Now we recall the basic properties of special bivariable maps (see [12]).

Lemma 4.2. Let L be a quantum logic and let G ∈ Γ. Then

1. G(a, b) = G(b, a) if a ↔ b a, b ∈ L;

2. G(1L, 0L) = G(a, a⊥) for any a ∈ L.
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In the same way as it was done for a d-map, the following lemma can be proved
by using (G3) from Definition 4.1 and mathematical induction.

Lemma 4.3. Let L be a quantum logic and let a1, a2, . . . , an, n ∈ N be mutually
orthogonal elements of L. Then for any c ∈ L:

n
∑

i=1

G(ai, c) = G
(

n
∨

i=1

ai, c
)

+ (n − 1)G(0L, c).

Remark 4.4. The invariance w.r.t. order is not true in general. It means, that
there is a map G ∈ Γ and a, b ∈ L such that G(a, b) 6= G(b, a). If G(a, b) 6= G(b, a)
we know, that a, b are not compatible. This fact can be rewritten as follows: a >
(a ∧ b) ∨ (a ∧ b⊥). On the other hand G(a, b) = G(b, a) does not imply a ↔ b.

We can get eight families Γi (i = 1, . . . , 8) of maps G according to values in vertex
points (0L, 0L), (0L, 1L), (1L, 0L), (1L, 1L):

Γ1 Γ2 Γ3 Γ4 Γ5 Γ6 Γ7 Γ8

G(0L, 0L) 0 0 0 0 1 1 1 1
G(0L, 1L) 0 0 1 1 1 0 0 1
G(1L, 1L) 0 1 1 0 0 0 1 1

Remark 4.5. It is clear that Γ1 and Γ8 are one element sets. It means that

Γ1 = {G0L
}, where G0L

(a, b) = 0 for all a, b ∈ L;
Γ8 = {G1L

}, where G1L
(a, b) = 1 for all a, b ∈ L.

Moreover, G ∈ Γ2 is an s-map and G ∈ Γ4 is a d-map. (see [12])

4.2. Characterization of a quantum logic via G

First we suppose a quantum logic L as a horizontal sum of k blocks.

Lemma 4.6. Let L be a horizontal sum of blocks B1,B2 and let Ai be the set of all
atoms of the block Bi, i = 1, 2. Let G be a special bivariable map on L. Then

∑

u∈A1,v∈A2

G(u, v) = G(1L, 1L)+ (n1 + n2 − 2)G(0L, 1L)+ (n1 − 1)(n2 − 1)G(0L, 0L).

P r o o f . Applying Lemma 4.3.

∑

u∈A1,v∈A2

G(u, v) = G
(

∨

u∈A1

u,
∨

v∈A2

v
)

+ (n1 − 1)G
(

0L,
∨

v∈A2

v
)

+(n2 − 1)
(

G
(

∨

u∈A1

u, 0L

)

+ (n1 − 1)G(0L, 0L)
)

.
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As
∨

u∈A1
u =

∨

v∈A2
v = 1L, we get

∑

u∈A1,v∈A2

G(u, v) = G(1L, 1L)+ (n1 +n2− 2)G(0L, 1L)+ (n1 − 1)(n2 − 1)G(0L, 0L) .

�

Proposition 4.7. Let a quantum logic L be a horizontal sum of blocks B1,B2, . . . ,Bk,
where Ai is the set of all atoms of the block Bi, i = 1, 2, . . . , k and let A be the set
of all atoms of L, T = card(A). Let G be a special bivariable map on L. Then

SG =
∑

u,v∈A

G(u, v) = k2G(1L, 1L) + 2k(T − k)G(1L, 0L) + (T − k)2G(0L, 0L).

P r o o f .

SG =
∑

u,v∈A

G(u, v) =

k
∑

i=1

k
∑

j=1

∑

u∈Ai,v∈Aj

G(u, v)

=

k
∑

i=1

k
∑

j=1

(G(1L, 1L) + (ni + nj − 2)G(0L, 1L) + (ni − 1)(nj − 1)G(0L, 0L))

=

k
∑

i=1

(kG(1L, 1L) + (kni + T − 2k)G(0L, 1L) + (ni − 1)(T − k)G(0L, 0L))

= k2G(1L, 1L) + 2k(T − k)G(1L, 0L) + (T − k)2G(0L, 0L).

�

Corollary 4.8. Let a quantum logic L be a horizontal sum of blocks B1,B2, . . . ,Bk,
where Ai is the set of all atoms of the block Bi, i = 1, 2, . . . , k and let A be the
set of all atoms of L, T = card(A). Let Gi ∈ Γi i = 1, . . . , 8. Then SG1

= 0,
SG2

= k2, SG3
= k(2T − k), SG4

= 2k(T − k), SG5
= T 2 − k2, SG6

= (T − k)2,
SG7

= (T − k)2 − k2, SG8
= T 2.

Corollary 4.9. If a quantum logic L is a horizontal sum of blocks,where A is the
set of all atoms of L then SG =

∑

u,v∈A G(u, v) ∈ N for each special bivariable
function G.

From the corollary it results that if SG /∈ N, then L cannot be a horizontal sum
of two Boolean algebras. The opposite is not true.

Now we concentrate to a quantum logic with a nontrivial center, which consists
of two Boolean algebras. The proofs of the following lemma and propositions imme-
diately result from the previous ones.
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Lemma 4.10. Let a quantum logic L with a non-trivial center C(L) consist of
blocks Bi, i = 1, 2. Let Ai ∪ C be the sets of all atoms of the blocks Bi, i = 1, 2 and
let A be the set of all atoms of L. Let G be a special bivariable map on L. Then

(1)
∑

u∈A1,v∈A2

G(u, v) =
∑

u∈A2,v∈A1

G(u, v)

= G(c⊥, c⊥) + (n1 + n2 − 2)G(0L, c⊥) + (n1 − 1)(n2 − 1)G(0L, 0L) ,

(2)
∑

u∈A1,v∈C

G(u, v) =
∑

u∈C,v∈A1

G(u, v)

= n1G(0L, c) + rG(0L, c⊥) + ((n1 − 1)(r − 1) − 1)G(0L, 0L) ,

(3)
∑

u,v∈C

G(u, v) = G(c, c) + 2(r − 1)G(0L, c) + (r − 1)2G(0L, 0L) ,

where ni = card(Ai), i = 1, 2, r = card(C), c =
∨

u∈C u and c⊥ =
∨

u∈A1
u =

∨

u∈A2
u.

Proposition 4.11. Let a quantum logic L with a non-trivial center C(L) consist of
blocks Bi, i = 1, 2. Let Ai ∪ C be the sets of all atoms of the blocks Bi, i = 1, 2 and
let A be the set of all atoms of L. Let G be a special bivariable map on L. Then

∑

u,v∈A

G(u, v) = G(c, c) + 4G(c⊥, c⊥) + 2(n1 + n2 + r − 1)G(0L, c)

+4(n1 + n2 + r − 2)G(0L, c⊥)

+((n1 + n2 + r − 3)2 − 4)G(0L, 0L),

where ni = card(Ai), i = 1, 2, r = card(C), c =
∨

u∈C u and c⊥ =
∨

u∈A1
u =

∨

u∈A2
u.

And, finally, we assume that a quantum logic with a nontrivial center consists of
k blocks .

Proposition 4.12. Let a quantum logic L with a non-trivial center C(L) consist of
blocks Bi i = 1, . . . , k. Let Ai∪C be the sets of all atoms of the block Bi i = 1, . . . , k
and let A be the set of all atoms of L. Let G be a special bivariable map on L. Then

∑

u,v∈A

G(u, v) = G(c, c) + k2G(c⊥, c⊥) + 2(T − 1)G(0L, c)

+2k(T − k)G(0L, c⊥) + ((T − k − 1)2 − 2k)G(0L, 0L),

where T = card(A), c =
∨

u∈C u and c⊥ =
∨

u∈Ai
u for each i = 1, 2, . . . , k.

5. CONCLUSION

Let us realize the process of investigation of two events A, B, each of them expressed
as A = {a1, . . . , an}, B = {b1, . . . , bk}, according to its organization. How to face the
situation, when simple events ai, bj cannot be verified simultaneously, but, despite
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this fact, we are able to obtain some information about ai while one of bj does
not come into being? Videlicet, how to deal with f(ai|b

⊥
j ) or f(bj |a

⊥
i )? For that

reason we effort to find a basic structure created by these observations (e.g. whether
some “property levels” of A, B are the same). More precisely let A, B be orthogonal
partitions of unit 1L. Let us denote B⊥ = {b⊥1 , . . . , b⊥k } and A⊥ = {a⊥

1 , . . . , a⊥
n }.

Then

P (A, B⊥) =







p(a1, b
⊥
1 ) · · · p(a1, b

⊥
k )

...
. . .

...
p(an, b⊥1 ) · · · p(an, b⊥k )






,

where p(ai, b
⊥
j ) = m(bj)m(ai|b

⊥
j ), i = 1, . . . , n and j = 1, . . . , k . By analogy we get

P (B, A⊥). Let us denote ps = 0.5(p(a, b) + p(b, a)). In [11], inter alia, it has been
proved that ps is an s-map and ps(a, b) = ps(b, a) for any a, b ∈ L and, moreover,
p(a, a) = ps(a, a) for each a ∈ L. As dp(ai, bj) = p(ai, b

⊥
j ) + p(a⊥

i , bj), the matrix

Dps
(A, B) =

1

2
(P (A, B⊥) + P (B, A⊥)T )

is the matrix for the function dps
. The sum of dps

throughout all levels gives us
basic information about given structure. For example if Sdps

is not integer number
then A, B do not create one Boolean algebra. Conversely if Sdps

∈ N , it does not
mean then A and B belong to one Boolean algebra.

In the last section it was shoved that this holds for every function G and thus
also for G ∈ Γ4 (i. e. G is d-map, see Remark 4.5). On a quantum logic a d-map
need not create an s-map, in general [12], i. e. it is not a metrics.

In conclusion we call attention to the formula

Sd = 2(T − 1)p(c, c) + 2k(T − k)p(c⊥, c⊥)

• Assuming one Boolean algebra p(c, c) = 1 and p(c⊥, c⊥) = 0, we obtain Sd =
2(T − 1). For a horizontal sum of k Boolean algebras we have p(c, c) = 0 and
p(c⊥, c⊥) = 1 and we get Sd = 2k(T − k).

Then Df =
Sd

2k
expresses degrees of freedom for a diagonal s-map. It is at

least T − k, and T − 1 at the most and it need not be an integer number.

• The value p(c, c) can be denominated as a potency of a center C(L). For
p(c, c) = 1 we obtain Sd = 2(T − 1). This evokes a Boolean algebra with T
elements. If p(c, c) = 0 then Sd = 2k(T − k) and this system seems to be a
horizontal sum with k blocks.
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[1] A.M. Al-Adilee and O. Nánásiová: Copula and s-map on a quantum logic. Inform.
Sci. 179 (2009), 4199–4207.

[2] G. Dohnal: Markov property in quantum logic. A reflection. Inform. Sci. 179 (2009),
485–491.
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