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QUANTUM BOCHNER THEOREMS

AND INCOMPATIBLE OBSERVABLES

RobinL. Hudson

A quantum version of Bochner’s theorem characterising Fourier transforms of proba-
bility measures on locally compact Abelian groups gives a characterisation of the Fourier
transforms of Wigner quasi-joint distributions of position and momentum. An analogous
quantum Bochner theorem characterises quasi-joint distributions of components of spin.
In both cases quantum states in which a true distribution exists are characterised by the
intersection of two convex sets. This may be described explicitly in the spin case as the
intersection of the Bloch sphere with a regular tetrahedron whose edges touch the sphere.

Keywords: Bochner’s Theorem, multiplier-nonnegative-definiteness, Wigner quasidensi-
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1. BOCHNER’S THEOREM ON LOCALLY COMPACT ABELIAN GROUPS

The Fourier transforms

f(x) =

∫

R

eixy dµ(y) (1)

of probability measures µ on the real line R have three easily established properties:

• normalisation: f(0) = 1

• continuity: f is continuous

• nonnegative-definiteness : for arbitrary N ∈ N, z1, z2, . . . , zN ∈ C and x1, x2,

. . . , xN ∈ R,
N
∑

j,k=1

z̄jzkf(−xj + xk) ≥ 0.

Conversely, Bochner’s theorem [1] is that every complex-valued function f sat-
isfying these properties is the Fourier transform of a unique probability measure
on R. A generalisation [8] replaces (R,+) by an arbitrary locally compact Abelian
topological group (lcAg), characterising the Fourier transforms of probability mea-
sures as complex-valued functions on the dual group of continuous homomorphisms
to the group T of unimodular complex numbers with the same three properties of
normalisation, continuity and nonnegative-definiteness.



1062 R.L. HUDSON

2. OBSERVABLES AND STOCHASTIC PROCESSES

Bochner’s theorem on the real line allows us to define a real valued observable in
quantum mechanics as a continuous unitary representation R ∋x 7→ Ux ∈ U(H) of
(R,+) in the underlying Hilbert space H, in that, given such a representation and
a state represented by a density operator ρ on H it is not difficult to show that the
function

f(x) = tr ρUx

is normalised, continuous and nonnegative-definite. The corresponding probability
measure µ for which (1) holds gives us directly the probability distribution of the
observable in the state ρ. This definition of observable, while somewhat indirect,
has the pedagogical advantage of combining rigour with avoidance of involvement
of either the spectral theorem for an unbounded self-adjoint operator or Stone’s
theorem. Of course Bochner’s theorem also provides a relatively easy route to proofs
of both these theorems.

Given two observables (Ux)x∈R and (Vx)x∈R in this sense which are compatible,
in the sense that Ux commutes with Vy for arbitrary x, y ∈ R, it may be verified
easily that the function on R2

f(x, y) = tr ρUxVy (2)

is normalised, continuous and nonnegative-definite. Bochner’s theorem for the lcAg
R2 allows us to define the joint probability distribution of these observables as the
probability measure M on R2, identified as its own dual group, for which

f(x, y) =

∫

R2

ei(xx′+yy′) dM(x′, y′).

Note that M gives the correct marginal distributions for the two observables (Ux)x∈R

and (Vx)x∈R, for which the corresponding Fourier transforms are given in terms of
(2) by the functions x 7→ f(x, 0) and x 7→ f(0, x) respectively.

More generally, given an arbitrary family
(

(Uλ
x )x∈R

)

λ∈Λ
of mutually compatible

observables, using Bochner’s theorem on the groups Rn we can construct a corre-
sponding stochastic process, in the sense [5] of a family of mutually coherent joint
probability distributions M(λ1,λ2,...,λn), n ∈ N, λ1, λ2, . . . , λn ∈ Λ on Rn for which

tr ρUλ1

x1
Uλ2

x2
· · ·Uλn

xn
=

∫

R2

ei(x1y1+x2y2+···+xnyn) dM(λ1,λ2,...,λn)(y1, y2, . . . , yn).

3. BOCHNER’S THEOREM FOR CANONICAL PAIRS

Of course quantum mechanics has to deal with incompatible observables such as mo-
mentum and position of a particle. If (Ux)x∈R and (Vx)x∈R denote the avatars of the
momentum and position observables p and q as continuous unitary representations
of R then we have the Weyl commutation rule

UxVy = eixyVyUx. (3)
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If, ignoring the noncommutativity, we use (2) to define the Fourier transform of a
joint probability distribution, then, since

(UxVy}
∗ = V ∗

y U
∗

x = V−yU−x = e−ixyU−xV−y

we have

f̄(x, y) = tr (ρUxVy)
∗

= tr ((UxVy)∗ρ) = tr (ρ(UxVy)∗) = e−ixyf(−x,−y).

Thus f fails to satisfy the necessary condition f̄(x, y) = f(−x,−y) for nonnegative-
definiteness.

A more plausible candidate for joint Fourier transform which does satisfy this con-
dition is got by replacing the operators UxVy in (2) by the family of Weyl operators

Wx,y, defined for (x, y) ∈ R2 by

Wx,y = e−
1

2
ixyUxVy = e

1

2
ixyVyUx.

Because of (3) these satisfy

Wx,yWx′,y′ = e
1

2
i(xy′

−yx′)Wx+x′,y+y′ , (4)

thus they form a multiplier representation of the group R2 with multiplier

ω((x, y), (x′, y′)) = e
1

2
i(xy′

−yx′).

Then the candidate joint Fourier transform

f(x, y) = tr ρWx,y (5)

is normalised and continuous, as in the commutative case. But instead of being
nonnegative-definite, it is ω-nonnegative-definite, meaning that, for arbitraryN ∈ N,
z1, z2, . . . , zN ∈ C and (x1, y1), (x2, y2), . . . , (xN , yN) ∈ R2,

N
∑

j,k=1

z̄jzkω(−(xj , yj), (xk, yk))f(−xj + xk,−yj + yk) ≥ 0.

Indeed
N
∑

j,k=1

z̄jzkω(−(xj , yj), (xk, yk))f(−xj + xk,−yj + yk)

=

N
∑

j,k=1

z̄jzkω(−(xj , yj), (xk, yk)) tr ρW−xj+xk,−yj+yk

=
N
∑

j,k=1

z̄jzk tr ρW−xj ,−yjk
Wxk,yk

= tr ρ





N
∑

j=1

z̄jW
∗

xj ,yj





(

N
∑

k=1

zkW(xk,yk)

)

= tr ρ





N
∑

j=1

zjWxj ,yj





∗
N
∑

k=1

zkW(xk,yk) ≥ 0



1064 R.L. HUDSON

using (4) together with the facts that W ∗

xj ,yj
= W−xj ,−yj

and that tr ρT ∗T ≥ 0 for
an arbitrary bounded operator T.

It is easily be verified using (3) that, for fixed (x, y) ∈ R2 the map R ∋t 7→

Wtx,ty = e−
1

2
it2xyUtxVty is a unitary representation of R whose infinitesimal gener-

ator −i d
dt
Wtx,ty |t=0 is given formally by

−i
d

dt
Wtx,ty |t=0 = xp+ yq

where p and q are the infinitesimal generators p = −i d
dx
Ux |t=0 and q = −i d

dx
Vx |t=0 .

This suggests that the function (5) be written formally as

f(x, y) = tr ρei(xp+yq), (6)

and reinforces its claim to be the Fourier transform of a joint probability distribution
of the momentum and position observables. It can be shown [7] that f is necessarily
square-integrable and is thus indeed the Fourier–Plancherel transform of a square
integrable function on R

2. However the resulting Wigner distribution [9] may not
be a true probability distribution in that it gives rise to negative probabilities.

Assume now that the representations (Ux)x∈R and (Vx)x∈Rsatisfying (3) are ir-
reducible, equivalently by the von Neumann uniqueness theorem [6] that they are
unitarily equivalent to the Schrödinger representations in L2(R) given by

(Uxf)(t) = f(x+ t), (Vyf)(t) = eiytf(y).

Then the following quantum Bochner’s theorem can be proved [2, 3].

Theorem 3.1. There is a one-one correspondence, given by (5) between the sets
of density operators ρ on H and of complex-valued functions f on R2 which are
normalised, continuous and ω-positive definite.

4. WIGNER QUASIDENSITIES

While true joint probability distributions are characterised by their Fourier trans-
forms, which are normalised continuous nonnegative-definite functions, Wigner dis-
tributions are characterised by Fourier transforms which are normalised, continuous
and ω-nonnegative definite. The intersection of these two sets is by no means empty.
For example in the pure state whose density operator in the Schrödinger represen-
tation is the projection ρ = |ψ0 〉 〈ψ0 | onto the ground state

ψ0(t) = π−
1

4 e−
1

2
t2

of the oscillator 1
2 (p2 + q2). it may be verified that the corresponding Wigner distri-

bution is the joint Gaussian distribution with density

γ(u, v) = π−1e−(u2+v2) (7)

whose Fourier transform is the function

f0(x, y) = e−
1

4
(x2+y2)
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which is thus both nonnegative definite and ω-nonnegative definite. It follows from
the fact that the entry-by entry product [Aj,kBj,k] of nonnegative-definite matrices is
itself nonnegative-definite that the product of an ω1-nonnegative-definite and an ω2-
nonnegative-definite function is ω1ω2-nonnegative-definite. Also, an ω-nonnegative
definite function is also ω̄-nonnegative-definite. Thus the product ff0 of an ω-
nonnegative definite function f with the function f0 is both ω-nonnegative definite
(since f0 is nonnegative-definite)and nonnegative-definite (since f0 is ω̄-nonnegative-
definite and ωω̄ ≡ 1). However such functions ff0 never correspond to pure states.
It can be shown [4] that the only normalised continuous and simultaneously ω-
nonnegative definite and nonnegative definite functions f which correspond as in to
pure state density operators ρ are of form ρ = |ψ 〉 〈ψ | where the state vectors in
Schrödinger representation is the exponential of a quadratic polynomial,

ψ(t) = exp(at2 + bt+ c), a, b, c ∈ C, Re a < 0.

The corresponding Wigner densities, generalising (7), are bivariate Gaussians

γ(u, v) = π−1e−
1

2
(A(u−l)2+2B(u−l)(v−m)+C(v−m)2), A,B,C, l,m ∈ R

whose covariance matrices Γ achieve equality in the generalised Heisenberg uncer-
tainty relation

det Γ ≥
1

4

so that AC −B2 = 4.

5. SPIN COMPONENTS

The Pauli spin matrices

σx =

[

0 1
1 0

]

, σy =

[

0 −i
i 0

]

, σz =

[

1 0
0 −1

]

satisfy

σ2
x = σ2

y = σ2
z = I,

σyσz = −σzσy = iσx, σzσx = −σxσz = iσy, σxσy = −σyσx = iσx.

Thus, together with the identity matrix I they form a multiplier unitary represen-
tation e 7→ I, x 7→ σx, y 7→ σy, z 7→ σz of the Klein 4-group G which is the Abelian
group whose four elements e, x, y, z satisfy

x2 = y2 = z2 = e,

yz = zy = x, zx = xz = y, xy = yx = z.

The multiplier ω for this representation is nontrivial, that is, it cannot be expressed
in the form

ω(g, h) =
φ(g + h)

φ(g)φ(h)
(8)
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for some T-valued function φ on G and the multiplier representation cannot thereby
be reduced to a true representation, since for example ω(x, y) 6= ω(y, x) which is
incompatible with (8).

Regarding G as a lcAg with the discrete topology, and noticing that G is iso-
morphic to the direct sum Z2 ⊕ Z2 of two copies of the two element group and is
therefore isomorphic to its dual, let us determine the convex set of all normalised
ω-nonnegative-definite functions f on the dual group Ĝ. We require that the matrix









1 f(x) f(y) f(z)
f(x) 1 if(z) −if(y)
f(y) −if(z) 1 if(x)
f(z) if(y) −if(x) 1









be nonnegative. Applying the Schur criterion we find from the nonnegativity in
turn, of the principal 2 × 2 minors

1 − f(x)2 ≥ 0, 1 − f(y)2 ≥ 1, 1 − f(z)2 ≥ 0, (9)

in particular f must be real-valued, and of the principal 3 × 3 minors

1 − f(x)2 − f(y)2 − f(z)2 ≥ 0.

The latter condition also ensures nonnegativity of the complete 4 × 4 determinant.
Thus the convex set of all normalised, (trivially) continuous ω-nonnegative-definite
functions on Ĝ coincides with the unit ball B =

{

(ξ, η, ζ) ∈ R
3 : ξ2 + η2 + ζ2 ≤ 1

}

.

Recalling that the convex set of density operators on C2 is also affinely equivalent
to the unit ball in R3 by expressing the corresponding density matrix as 1

2 (I+ ξσx +
ησy + ζσz) we recover the quantum Bochner theorem in this case.

Similarly, to determine the convex set of all normalised nonnegative-definite func-
tions f on Ĝ, we require that the matrix









1 f(x) f(y) f(z)
f(x) 1 f(z) f(y)
f(y) f(z) 1 f(x)
f(z) f(y) f(x) 1









be nonnegative. Applying the Schur criterion in the same way we find again that
(9) holds and f is real valued. But the condition on the principal 3 × 3 minors is
now

1 + 2f(x)f(y)f(z) − f(x)2 − f(y)2 − f(z)2 ≥ 0, (10)

whereas nonnegativity of the whole determinant gives

1 − 2f(x)2 − 2f(y)2 − 2f(z)2 + 8f(x)f(y)f(z) + f(x)4 + f(y)4 + f(z)4

−2f(y)2f(z)2 − 2f(x)2f(z)2 − 2f(x)2f(y)2

≥ 0,
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that is

(1 + f(x) + f(y) + f(z))(1 + f(x) − f(y) − f(z))(1 − f(x) + f(y) − f(z))

(1 − f(x) − f(y) + f(z))

≥ 0.
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1
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Fig. 1.

The latter condition when combined with (9) is equivalently that (f(x), f(y), f(z))
belong to the simplex bounded by the regular tetrahedron T in R3 whose vertices
are the points (1, 1, 1), (1,−1,−1), (−1, 1,−1) and (−1,−1, 1). Condition (10) holds
automatically for all such points. Thus the convex set of normalised, continuous
nonnegative-definite functions on Ĝ is affinely equivalent to the convex set of prob-
ability measures on the 4-point set G in accordance with Bochner’s theorem for the
lcAg G.

The midpoints of the edges of the tetrahedron T are the points (±1, 0, 0, ),
(0,±1, 0) and (0, 0,±1) of B. Thus T is escribed to B in the sense that its edges
are tangent to the unit sphere; see Figure 1. Note that neither of T or B is con-
tained in the other. The set of pure states which correspond in this way to classical
probability measures (that is, the analogues of the pure Gaussian states which have
nonnegative Wigner densities) is coextensive with the region of the unit sphere in
R3 which remains after the excision of the four mutually tangent small circles which
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are external to T cut by the faces

−ξ + η + ζ = 1, ξ − η + ζ = 1, ξ + η − ζ = 1, ξ + η + ζ = −1

of T.

(Received June 14, 2010)
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