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K Y BE R NE T IK A — VO L UM E 4 7 ( 2 0 1 1 ) , NU MB E R 1 , P AGE S 1 4 4 – 1 6 3

INFORMATION MEASURES AND UNCERTAINTY

OF PARTICULAR SYMBOLS

Milan Mareš

The measurement of information emitted by sources with uncertainty of random type
is known and investigated in many works. This paper aims to contribute to analogous
treatment of information connected with messages from other uncertain sources, influenced
by not only random but also some other types of uncertainty, namely with imprecision
and vagueness. The main sections are devoted to the characterization and quantitative
representation of such uncertainties and measures of information produced by sources of
the considered type.

Keywords: information measure, uncertainty, randomness, vagueness, imprecision, infor-
mation source, alphabet, message

Classification: 94A20, 94A15, 94D05, 28E10

1. INTRODUCTION

The common intuitive feeling ranks information and knowledge among phenomena
too subtle to be measured and quantitatively processed. In spite of it, there exists
a relatively long tradition of successful attempts to compare the informational val-
ues of symbols, messages or even their entire sources. One of the first information
measures was suggested by R. A. Fisher in [7], others were published in the seminal
works of rising cybernetics in [27, 28], and the most successful attempt was done
by Shannon and Weaver in [26]. Their model of information source and informa-
tion transmission via a communication channel has established a pattern, further
developed by numerous authors (just for illustration, see [6, 29]). It is, usually quite
explicitly, observable even in the modern construction of the measures of fuzziness
(see, e. g., [1, 2, 4, 10, 15, 20, 25, 30], and less explicitly, also in [13, 19] or even in
[32]).

The information is, at least in the frame of information theory, inseparable of
uncertainty and chaos as their complementary concept. The Shannon model of
information is connected with the randomness and probability theory. This approach
to the uncertainty is especially effective as the stability of random events allows to
apply the statistical estimations of probabilities. A very significant attribute of the
Shannon probabilistic model of information is the additivity of probabilistic measure
as a set function.
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The pattern of the probabilistic model of the information has proved to be so
effective that it motivated significant generalizations and modifications. Let us rec-
ollect here, at least, the contribution of Jean-Maria Kampé de Fériet, e. g. his works
[11] and[12].

Most of the later alternative models of information measures are focused on the
vagueness as further specific type of uncertainty, and its mathematical models deal
with fuzzy sets and further fuzzy objects derived from them (for fuzziness and its
derivatives see, e. g., [5, 16, 17, 31]). The main general differences between proba-
bilistic tools and fuzzy set functions are discussed in [14], and partly in [21], including
the properties of fuzzy set functions, among which the most typical is their mono-
tonicity substituting the additivity of probabilistic measures. One of the main goals
of this paper is to suggest a fuzzy information concept respecting that monotonicity.

The attempts to the fuzzy information published in the referred literature (es-
pecially in [2, 4, 10, 15]) and other papers is effective and offers valuable results,
but it includes some elements in which the additive view on the uncertainty prevails
the monotonicity. Moreover, the referred papers are focused on the fuzzy entropy
as a measure of vagueness of a fuzzy set, and they do not deal with the information
theoretical concepts like symbol, message, information included in a symbol, and
some others. From such point of view, the information acquisition is not a process
of the acceptance of new knowledge symbol by symbol, but some fixed attribute of a
fuzzy set. The suggestion of a fuzzy set theoretical model of the information source
represents further of the main goals of this paper.

The following sections are devoted to the suggestion and a brief discussion of
an information source contaminated by uncertainty. This uncertainty is defined as
general as possible to include its important specific types like randomness, impreci-
sion or vagueness. Let us note that it cannot be directly used for the description of
uncertainty of the type of granulation formally described by rough sets (cf. [24]).

The following chapters are organized as follows. The next Chapter 2 is devoted
to the elementary model of information source and its uncertainty, including three
special cases. Chapter 3 deals with the information connected with particular sym-
bols from the alphabet of the source, and with the information included in the finite
sequences of symbols – the messages. Brief Chapter 4 offers some interpretation of
the model.

The motivation of the suggested model is connected with non-traditional appli-
cations of the information theoretical models and concepts. There exist situations,
connected rather with vagueness than with randomness which can appear, e. g.,
in the model of human or social choice, decision-making, strategic or cooperative
collisions of interest, etc. (see, e. g., [8, 9, 18, 23]) in which the uncertainty and
information play essential role, but the Shannon’s model of information transmis-
sion is not adequate to them. The models suggested here are intended to offer some
elementary concepts and results as tools for the processing of uncertain information
even in the mentioned sort of models.
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2. HEURISTIC PRINCIPLES OF INFORMATION

In the seminal work by Shannon and Weaver [26], the measurement of information
was based on the phenomenon of randomness with probability as the main tool for
its formal processing.

The theory of fuzzy sets and fuzzy phenomena has pointed at the fact that there
are other sources of uncertainty than only the randomness, and that they deserve
their own information measures, starting from the analysis of the information offered
by them. The papers dealing with this problem, like [2, 4, 15, 20, 30], focus their
attention on more advanced topic, namely on the analysis of the entropy – like
complex characteristics of the information source as a closed unit.

Hence, the aim of this paper is to suggest and describe, analogously to the Shan-
non’s probabilistic model, the measure of information transmitted by a single ele-
ment of a message produced by the source contaminated by uncertainty of various
type. We turn our attention on three such sources – we briefly recollect the concept
suggested by Shannon for sources with random uncertainty formally described by
probabilistic tools, then we suggest the information measure for sources with vague

uncertainty, described by fuzzy set theoretical concepts and, finally, we suggest the
information measure for the sources with crisp imprecise uncertainty represented by
crisp intervals.

We formulate, first of all heuristically, the basic principles that would be respected
by any of, in principle so different, information measures. They can be summarized
in the following verbal postulated.

(A) The value of information transmitted by a single symbol depends exclusively
on the uncertainty connected with the appearance of the symbol.

(B) The information value increases with the decreasing degree of uncertainty.

(C) The information measure is cummulative, i. e., the total information transmit-
ted by two symbols cannot be smaller than any of the individual informations
values of those two symbols.

(D) The information measure is non-negative.

(E) The information transmitted by deterministically sure symbol vanishes.

3. FORMAL MODEL

First of all, we introduce a few symbols used in the remaining parts of this paper.
Let M be a non-empty set. Then

2M is the class of all (crisp) subsets of M, (1)

P(M) is the class of all probability distributions over M, (2)

F(M) is the class of all fuzzy subsets of M. (3)
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3.1. Information source with uncertainty

Let us consider a non-empty and discrete set A, called an alphabet. Its elements
a, b, c, . . . ∈ A are called symbols, and a sequence (finite or infinite) of symbols is
called a message. By A∗, where

A∗ = A ∪ (A × A) ∪ (A × A × A) ∪ . . . , (4)

we denote the class of all possible finite messages.
Each symbol is connected with some uncertainty regarding its frequency in mes-

sages, the exactness of its meaning, its precision or its expectedness. It means that
there exist several formal representations of particular types of uncertainty. Many
of them can have the theoretical background characterized in [14] by means of the
apparatus of the set functions theory.

In general, let us consider a mapping u : A → R, such that u(a) ≥ 0 for all a ∈ A,
and called the uncertainty measure. Then we call the pair

(A, u) (5)

the source of uncertain information.
Let us extend the uncertainty measure u on the entire class A∗ and define the

extended uncertainty measure u∗ : A∗ → R, such that for any n = 1, 2, . . ., a∗ =
(a1, a2, . . . , an) ∈ An ⊂ A∗

u∗(a∗) ≥ 0, (6)

if a∗ = (a), a ∈ A then u∗(a∗) = u(a), (7)

u∗(a∗) ≤ min (u(a1), . . . , u(an)) . (8)

The previous conditions characterize the general uncertainty measures. The next
condition is not necessary but it simplifies eventual interpretation of the source
concept, when being senseful. In the case of one signal, it is trivial.

If a∗ = (a1, . . . , an) ∈ An, b∗ = (b1, . . . , bn) ∈ An and u∗(ai) ≥ u∗(bi)
for all i = 1, 2, . . . , n, and some n = 1, 2, . . . then

u∗(a∗) ≥ u∗(b∗).
(9)

Remark 1. Let a∗, b∗, c∗ ∈ A∗, a∗ = (a1, . . . , am) ∈ Am, b∗ = (b1, . . . , bn) ∈ An,
and let c∗ = (c1, . . . , cm+n) ∈ Am+n be such that

ci = ai for i = 1, . . . , m, ci = bi+m for i = m + 1, . . . , m + n.

Then (8) immediately implies that

u∗(c∗) ≤ min (u(a∗), u∗(b∗)) .

The general concepts presented above can be illustrated by the following more
specific examples.



148 M. MAREŠ

3.1.a Probabilistic information source

In this case, A is a general alphabet and we suppose that it is finite in order to
simplify the notations.

The uncertainty measure uP : A → [0, 1] is a probability distribution uP ∈ P(A).
Such information sources are investigated in the classical papers on information
theory starting by [26] and in many fundamental works like [6, 29]. Also the Fisher’s
statistical information concept [7] is developed on this ground. Let us briefly recollect
that in this model

0 ≤ uP (a) ≤ 1 for all a ∈ A,
∑

a∈A
uP (a) = 1.

The probability distribution uP can be extended on the class of all finite sequences
of symbols A∗ by means of the conditional probabilities. Let a1, a2, . . . , an be sym-
bols from A, and let us for every m-tuple, m = 1, 2, . . . , n − 1, u(am|a1, . . . , am−1)
be the conditional probability of am under the condition that the ordered m-tuple
a1, a2, . . . , am−1, am of symbols was emitted. Then the extended probability distri-
bution u∗

P over A∗ is defined for any a∗ = (a1, . . . , an) ∈ An ⊂ A∗ by

u∗

P (a∗) = uP (a1) · uP (a2 | a1) · · · · · uP (an | a1, . . . , an−1), (10)

where the previous notation was preserved. If the symbols in A are independent
then the conditional probabilities uP (am|a1, . . . , am−1) are equal to uP (am) for any
(a1, . . . , am−1, am), and (10) turns into

u∗

P (a∗) = uP (a1) · uP (a2) · · · · · uP (an). (11)

Lemma 1. Probabilistic information source (A∗, u∗

P ) fulfils conditions (6), (7), (8),
and it fulfils (9) if (11) is fulfilled.

P r o o f . The statement follows from (10), eventually (11), and from the fact that
0 ≤ u∗

P (a) ≤ 1, immediately. �

3.1.b Interval represented imprecision

Here, we consider the uncertain information generated by imprecise measuring of
some physical, technical or generally natural quantity. Such measuring, however
careful it is, cannot be absolutely accurate, and the unknown measured quantity
α ∈ R is approximated by a (closed) real interval a = [xa, ya] ⊂ R. This interval
represents the information generated by means of one measurement. If one unknown
quantity α is measured repeatedly or by different methods, the sequence of the
results can be considered for a message mediating information about the value of
the quantity.

More formally. If α ∈ R is the measured quantity, then each measurement results
into an interval [x(α), y(α)]. In this sense, the alphabet Aα is defined as the set

Aα = {[x, y] ⊂ R : x < y, α ∈ [x, y]} . (12)
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If the measurement of the quantity α ∈ R are n-times repeated (by different ob-
servers, different devices or under different conditions) then the sequence of imprecise
results

([x1, y1], [x2, y2], . . . , [xn, yn]) ∈ An ⊂ A∗

forms a message [x, y]∗ ∈ A∗ informing about the value of quantity α.

Remark 2. Evidently, uα ∈ [xi, yi] for all i = 1, 2, . . . , n, as follows from (12).

The uncertainty measure uα : A → R is defined as a difference

uα([x, y]) = y − x, (13)

and its extension on A∗ is defined by means of an intersection

[

x(n), y(n)
]

= [x1, y1] ∩ [x2, y2] ∩ · · · ∩ [xn, yn] ,

as the difference

u∗

α

(

[x(n), y(n)]
)

= y(n) − x(n). (14)

Lemma 2. Preserving the previous notations,

u∗

α

(

[x(n), y(n)]
)

= min (y1, y2, . . . , yn) − max (x1, x2, . . . , xn) .

P r o o f . Due to Remark 2, for all i = 1, 2, . . . , n, yi ≥ α and xi ≤ α, and

x(n) ≤ α, y(n) ≥ α, x(n) ≥ xi, y(n) ≤ yi for all i = 1, . . . , n.

The statement follows from these inequalities, immediately. �

Lemma 3. Uncertainty measure u∗

α fulfils conditions (6), (7), (8).

P r o o f . Property (6) follows from (13), properties (7) and (8) follow from Lemma 2,
immediately. �

Condition (9) is not generally fulfilled but it is valid in a rather weakened form.

Lemma 4. Let [x[n], y[n]] = ([x1, y1], . . . , [xn, yn]) ∈ A∗

α, [s[n], t[n]] = ([s1, t1], . . .
. . . , [sn, tn]) ∈ A∗

α, and let for each i = 1, 2, . . . , n, [xi, yi] ⊂ [si, ti]. Then

u∗

α

(

[x[n], y[n]
)

≤ u∗

α

(

[s[n], t[n]]
)

.

P r o o f . Under the assumptions of this lemma, x[n] ≥ s[n] and y[n] ≤ t[n] if the
notation used in (14) is preserved. Then (14) implies the inequality. �
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3.1.c Fuzzy information sources

The last example of uncertain information source will be the one in which the gen-
erated information is vague. It means that the emitted signals are well (or relatively
well) identified but their interpretation, the real content of the data represented by
them, is deformed by subjectivity of imprecise understanding (cf. [16, 17, 19, 31,
32], e. g.). Such sources are, in fact, intensively investigated in many papers like
[1, 2, 4, 13, 15, 30] where the main attention of this investigations is focused on the
entire sources and their entropy-like characteristics.

The alphabet A of a fuzzy information source is a general alphabet. The uncer-
tainty measure uF is a fuzzy subset of A, i. e., uF ∈ F(A), and we use the symbol
uF for its membership function, as well. Hence uF (a), for an a ∈ A, denotes the
possibility with which the symbol a will be (or was) emitted by the source.

If a∗ = (a1, . . . , an) ∈ An ⊂ A∗, then we define the value uF by means of

u∗

F (a∗) = min (uF (a1), . . . , uF (an)) . (15)

Remark 3. Obviously, function uF displays the properties of membership func-
tion, i. e., it identifies a fuzzy subset of An.

Even in this case the general properties of the uncertainty measures are fulfilled.

Lemma 5. Fuzzy information source (A∗, u∗

F ) fulfils properties (6), (7), (8), (9).

P r o o f . The validity of (6) follows from the definitoric properties, immediately,
(7), (8) and (9) are immediate consequences of (15). �

3.2. General properties of uncertainty measures

The presentation of three illustrative examples motivates a few general comments
and formal results. The main comment regards the choice of the above examples.
Two of them, the probabilistic and the fuzzy information sources represent the un-
certainty which is described by some distribution of its measures over the alphabet
as a basic universum. The alphabet itself need not be limited by any essential for-
mal assumptions, even if its finiteness simplifies the formalism of the model. In both
cases the uncertainty measure represents something what can be called “density of
uncertainty” and related to some non-negative set functions (generalized measures,
by [14]). One of them is additive, another one is monotonous. The remaining exam-
ple is focused on the uncertain information source with a strictly specified alphabet
(each unknown measured quantity α has its own alphabet), and particular signals,
themselves are subsets of the set of possible results of measurements. These impre-
cise measurements mean a different point of view on the uncertainty (cf., [21], too),
and evidently extend the scale of abstract information sources.

The following statements formalize the consequences of combinations of several
uncertainty measures. We consider a general non-empty and finite alphabet A.
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Lemma 6. Let (A, u1), (A, u2) be uncertain information sources, let u∗

1, u∗

2 be
their extensions fulfilling (6), (7), (8), and let (A, u) be an information source. Let
u∗ be a mapping, u∗ : A∗ → R. Then the following statements are true if their
assumptions are fulfilled for any a ∈ A, a∗ ∈ A∗.

(a) If u(a) = u1(a) + u2(a), u∗(a∗) = u∗

1(a
∗) + u∗

2(a
∗) then u∗ fulfils (6), (7), (8).

(b) If r ∈ R, r > 0, and u(a) = r · u1(a), u∗(a∗) = r · u∗

1(a
∗) then u∗ fulfils

(6), (7), (8).

(c) If u(a) = u1(a) · u2(a), u∗(a∗) = u∗

1(a
∗) · u∗

2(a
∗), then u∗ fulfils (6), (7), (8).

(d) If u(a) = min(u1(a), u2(a)), u∗(a∗) = min(u∗

1(a
∗), u∗

2(a
∗)), then u∗ fulfils

(6), (7), (8).

P r o o f . The validity of (6) for u∗ follows from its validity for u∗

1 and u∗

2 and from
the operations defining u∗ in (a), (b), (c), (d), immediately. Analogously, (7) is an
immediate consequence of the assumptions of this lemma and of its validity for u∗

1

and u∗

2. Let us turn our attention to (8).

If (a) is fulfilled, then

u∗(a∗) = u∗

1(a
∗) + u∗

2(a
∗)

≤ min (u1(a1), . . . , u1(an)) + min (u2(a1), . . . , u2(an))

≤ min (u1(a1) + u2(a1), . . . , u1(an) + u2(an))

= min (u(a1), . . . , u(an)) .

Analogously, if assumptions of (b) are fulfilled then

u∗(a∗) = r · u∗

1(a
∗) ≤ r · min (u1(a1), . . . , u1(an))

= r · min (r · u1(a1), . . . , r · u1(an)) = min (u(a1), . . . , u(an)) .

If assumptions of (c) are fulfilled then

u∗(a∗) = u∗

1(a
∗) · u∗

2(a
∗) ≤ min (u1(a1), . . . , u1(an)) · min (u2(a1), . . . , u2(an))

≤ min (u1(a1) · u2(a1), . . . , u1(an) · u2(an)) = min (u(a1), . . . , u(an)) .

And if assumptions of (d) are fulfilled then

u∗(a∗) = min (u∗

1(a
∗), u∗

2(a
∗))

≤ min
(

min
(

u1(a1), . . . , u1(an)
)

, min
(

u2(a1), . . . , u2(an)
))

≤ min
(

min
(

u1(a1), u2(a1)
)

, . . . , min
(

u1(an), u2(an)
))

= min (u(a1), . . . , u(an)) .
�
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3.3. Information measure for sources with uncertainty

Having introduced the concept of the source of signals contaminated by uncertainty,
we can suggest the measure of information mediated by such signals. Information
contained in each particular symbol appears to be the elementary starting concept
for the total characteristics of the entire source and its structure. The most famous of
such total characteristics is the information entropy. For the probabilistic sources, it
was suggested and analyzed by Shannon and Weaver (cf. [26] where its introduction
starts from the information mediated by particular signals).

Its analogy for fuzzy information sources was analyzed in [2, 4, 15, 20, 29, 30]
where the information of the signal is treated rather as an implicite concept, and
the main attention is focused on integrating entropy-like structures.

Let (A, u) be an uncertain information source with alphabet A and uncertainty
measure u. Let A∗ be the set of finite messages and u∗ be the extension of u on A∗,
as formulated in (4) and in properties (6), (7), (8).

If I : A∗ → R is a mapping such that

I(a∗) ≥ 0, (16)

if a∗, b∗ ∈ A∗, u∗(a∗) ≥ u∗(b∗), then I(a∗) ≤ I(b∗), (17)

then we say that I is an information measure on (A, u).

Remark 4. If a∗ = (a1, . . . , an) ∈ An, and if b∗ = (a1, . . . , an, an+1) ∈ An+1 then
(8) and Remark 1 imply that I(a∗) ≤ I(b∗).

Remark 5. Keeping notations of (9), if (9) is fulfilled then I(a∗) ≤ I(b∗).

Let us test the adequacy of the suggested concept of information measure to our
intuitive (or also traditional) expectations regarding the three examples of sources
analyzed in Section 3.1.

3.3.a Probabilistic information source

The information measure for probabilistic source (A, uP ), where uP ∈ P(A), was
suggested in [26], and its properties are well known. Let us recollect that

IP (a) = − logu(a) for a ∈ A, (18)

where, usually, the logarithmic function is supposed to be the binary one, log2. Using
(10) and (11), it is easy to see that for any a∗ = (a1, . . . , an)

IP (a∗) = IP (a1) + IP (a2 | a1) + · · · + IP (an | a1, . . . , an−1) (19)

or, in the case of independence,

IP (a∗) = IP (a1) + IP (a2) + · · · + IP (an). (20)

The definition of the uncertainty measure uP as a probability distribution over
A, immediately implies the following statements.
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Remark 6. Conditions (16) and (17) are fulfilled for the Shannon information
measure (18) and its extension (19), as follows from Lemma 1, namely from (6)
and (7).

Remark 7. If uP (a) = 1 for some a ∈ A then IP (a) = 0, and a does not represent
any information.

The previous two simple statements illustrate the fact, well known from [26] and
other works developing its approach to the information. Namely, the classical Shan-
non information measure is a natural and adequate representation of information
connected with particular signals of probabilistic information source.

Remark 8. Evidently, if the probability uP (a) for some a ∈ A vanishes then the
respective information value IP (a) groves to infinity. The same does the information
mediated by any message a∗ ∈ A∗ including a as one of its components.

3.3.b Interval represented imprecision

The result of imprecise measurement of a real-valued quantity α ∈ R, as described
in Subsection 3.1.b, offers some information about its value. In our case, the result
of a measurement is an interval [x, y] about which we assume that α ∈ [x, y], and its
uncertainty is measured by its length, uα([x, y]) = y − x.

Then, it is quite natural to define the information obtained by such single mea-
surement by

Iα([x, y]) = uα([x, y])−1 = 1
/

(y − x). (21)

Using (14) we define for α∗ = ([x1, y1], . . . , [xn, yn])

Iα(a∗) = u∗

α ([x1, y1] ∩ · · · ∩ [xn, yn]) . (22)

The following statement is an immediate consequence of (21) and Lemma 3.

Remark 9. Note that, due to (12) y > x. This inequality need not be the truth
for u∗

α(a∗) defined by (14). If [x1, y1] ∩ · · · ∩ [xn, yn] = {α} then Iα(a∗) increases to
infinity.

Lemma 7. Information measure Iα defined by (21)and (22) fulfills conditions (16)
and (17).

Remark 10. Let [x, y] ∈ Aα, [s, t] ∈ Aα, and let [x, y] ⊂ [s, t]. Then, evidently,
Iα([x, y]) ≥ Iα([s, t]).

The previous remark can be extended in the sense of Lemma 4.
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Lemma 8. Let ([xi, yi])i=1,...,n, ([si, ti])i=1,...,n be messages from A∗

α, for some n.
Let [xi, yi] ⊂ [si, ti] for all i = 1, 2, . . . , n. Then

Iα ([xi, yi]i=1,...,n) ≥ Iα ([si, ti]i=1,...,n) .

P r o o f . The statement follows from Remark 9, Lemma 4 and from (17), immedi-
ately. �

The repetitive measurements of one quantity α ∈ R, and their aggregation by
means of intersection (cf. (14)) effectively increases the information about the un-
known real value of α.

Lemma 9. Let us denote by

[x1, y1], [x2, y2], . . . , [xn, yn], . . . (23)

a sequence of intervals from Aα, and by
[

x(1), y(1)
]

,
[

x(2), y(2)
]

, . . . ,
[

x(n), y(n)
]

, . . . (24)

the sequence of partial intersections,
[

x(1), y(1)
]

= [x1, y1],
[

x(k), y(k)
]

=
[

x(k−1), y(k−1)
]

∩ [xk, yk] for k = 1, 2, . . .

Then

(a) The sequence of information values (Iα([x(k), y(k)]))k=1,2,... is not decreasing.

(b) If the limit of sequence (24) is the one-element set {α} then the sequence
(Iα([x(k), y(k)]))k=1,2,... is increasing to infinity.

(c) If we, vice versa, denote by ([X(j), Y (j)])j=1,2,... the sequence of partial unions
[

X(1), Y (1)
]

= [x1, y1],
[

X(j), Y (j)
]

=
[

X(j−1), Y (j−1)
]

∪ (xj , yj) for j =
= 1, 2, . . . , then the sequence of information values

(

Iα([X(j), Y (j)])
)

j=1,2,...
(25)

is not increasing and it has a non-negative limit.

P r o o f . The statements easily follow from assumptions. Evidently α ∈ [xi, yi] ∩
[x(i), y(i)] ∩ [X(i), Y (i)] for all i = 1, 2, . . . Hence, all considered sets are non-empty
closed intervals or one-element sets. It means that definition (13) can be used for
them, as well, and due to (21) Iα([x, y]) > 0 for x 6= y, and statement (a) is proven.
Definitions (21) and (24) mean that Iα([(x(n)), y(n)]) → ∞ if

lim
n→∞

x(n) = lim
n→∞

y(n) = α,

hence statement (b) is obviously true. Finally, (25) is an increasing sequence of
closed intervals containing α. Due to (21), sequence Iα([X(n), Y (n)]) for n → ∞, is
decreasing and limited by 0 from below (cf. (a)). This implies statement (c). �
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3.3.c Fuzzy information sources

Let us consider, now, the fuzzy information source (A, uF ) defined in Subsection 3.1.c,
where uF is a membership function of a fuzzy subset of the alphabet A, and its ex-
tension u∗

F on A∗ is introduced by (15). Such fuzzy information sources are carefully
analyzed by a wide class of works, some of which are referred here, as well. These
works deal with a total view on fuzzy sources as compact objects, and the analysis
of informational content of particular symbols (or its measure) does not represent
the essential object of attention.

Nevertheless, the papers mentioned above, deal with some implicite concept of
the information of single symbols. Namely, the fuzzy entropy dealt by them, is a
very close analogy of the probabilistic source entropy suggested in [26]. The Shannon
entropy HP is defined as a mean value of probabilistic informations IP (a) for a ∈ A,
i. e.

HP (A, uP ) =
∑

a∈A
p(a) · IP (a) = −

∑

a∈A
p(a) · log2 p(a), (26)

where − log2 pa is the information transmitted by the symbol a (cf. (18) in Subsec-
tion 3.3.a). Analogously to this probabilistic entropy, its fuzzy counterpart is usually
defined as a value formally similar to the mean value,

HF (A, uF ) = −
∑

a∈A
uF (a) · log2 uF (a). (27)

Formula (27) implies the conclusion that its authors consider

IF (a) = − log2 uF (a) (28)

for the (implicitly introduced) measure of information contained by symbol a of the
information source (A, uF ).

The above discussion shows that we may consider value (28) for a correct defi-
nition of fuzzy information of symbol a. This fuzzy information has the properties
demanded for an information measure and it can be extended on the set A∗ in sev-
eral ways. Here, respecting the analogy with the probabilistic case, we may define,
for a∗ = (a1, a2, . . . , an) ∈ An,

IF (a∗) = IF (a1) + IF (a2) + · · · + IF (an) (29)

= − log2 (uF (a1) · uF (a2) · · · · · uF (an)) .

Lemma 10. The fuzzy information measure IF defined by (28) and (29) fulfils
conditions (6) and (7).

P r o o f . The statement follows from the elementary properties of logarithmic func-
tion, immediately. �

Remark 11. If uF (a) = 1 for some a ∈ A then IF (a) = 0.
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Lemma 11. If u∗

F (a∗) = 1, where u∗

F is defined by (15) IF (a∗) is defined by (29)
then

IF (a∗) = 0.

P r o o f . If a∗ = (a1, a2, . . . , an) ∈ An ⊂ A∗, if u∗

F (a∗) = 1 and u∗

F is defined by
(15) then obviously uF (ai) = 1 for all i = 1, 2, . . . , n. Hence IF (ai) = 0 as follows
from Remark 10 and, consequently, IF (a∗) = 0 as follows from (29). �

Remark 12. If, generally, IF (a) = − log2 uF (a) and if a1, a2, . . . , an, . . . is a se-
quence of signals such that

lim
i→∞

uF (ai) → 0

then

lim
i→∞

IF (ai) = ∞,

as follows from (28) if we define IF (a) = − log2 uF (a).

3.4. Transformations of information measure

Let us consider an alphabet A, the set of messages A∗, and an m-tuple of uncertainty
measures u(1), u(2), . . . , u(m). In other words, we consider an m-tuple of information
sources (A, u(1)), (A, u(2)), . . . , (A, u(m)), where m = 1, 2, . . . The equality between
some uncertainty measures is not excluded, hence, the relation u(i)(a) = u(j)(a) for
all a ∈ A and some i, j ∈ {1, 2, . . . , m} is admissible.

Let us consider an m-tuple of information measures I(1), I(2), . . . , I(m) of the
sources (A, u(1)), . . . , (A, u(m)), respectively, too. The correspondence of sources
need not be one-to-one in the sense that even if u(i)(a) = u(j)(a) for all a ∈ A and
all a∗ ∈ A∗, the inequality I(i)(a∗) 6= I(j)(a∗) for some a∗ ∈ A∗ is admissible, as
well.

The topic to be answered in this subsection regards the conditions under which
some combination of information measures over one alphabet A, with properties
formulated in preceding paragraphs, preserves the general properties of information
measures, i. e., conditions (16) and (17).

Theorem 1. Let A be an alphabet and (A, u(1)), (A, u(2)), . . . , (A, u(m)) be in-
formation sources with information measures I(1), I(2), . . . , I(m), respectively, for
m = 1, 2, . . .. Let f : Rm → R be a real-valued function of m variables. Let

f(0, 0, . . . , 0) = 0 (30)

f is non-decreasing in all variables, i. e., if x = (x1, . . . , xm) ∈ Rm, (31)

y = (y1, . . . , ym) ∈ Rm and yi ≥ xi for all i ∈ {1, 2, . . . , m}, then f(y) ≥ f(x).

Then the mapping u∗ : A∗ → R such that for any a∗ ∈ A∗

u∗(a∗) = f
(

u∗(1)(a∗), . . . , u∗(m)(a∗)
)
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is an uncertainty measure over the alphabet A, and the mapping I : A∗ → R such
that for any a∗ ∈ A∗

I(a∗) = f
(

I(1)(a∗), . . . , I(m)(a∗)
)

is an information measure of the source (A∗, u∗).

P r o o f . To prove the first statement, it is necessary to verify the validity of
(6), (7), (8) for u∗(a∗) defined by means of f . The validity of (6) for all u∗(i),
i = 1, 2, . . . , m, in combination with (30) means that u∗(0) = 0, and in combi-
nation with (31) it means that u∗(a∗) ≥ 0 for all a∗ ∈ A∗. The validity of (7) for
any a∗ = (a) ∈ A ⊂ A∗ follows from its validity for all u∗(i), immediately. Finally,
(8) is fulfilled for all u∗(i), i = 1, 2, . . . , m, and hence, by (31)

u∗(a∗) = f
(

u∗(1)(a∗), . . . , u∗(m)(a∗)
)

≤ f
(

min(u∗(1)(a1), . . . , u
∗(1)(an)), . . . , min(u∗(m)(a1), . . . , u

∗(m)(an))
)

= min
(

f(u∗(m)(a1), . . . , u
∗(m)(an))), . . . , f(u∗(m)(a1, . . . , u

∗(m)(an)))
)

= min (u(a1), . . . , u(an)) .

The proof of the second statement is based on the verification of validity of
conditions (16) and (17).

If for some a∗ ∈ A∗, I(a∗) = f(I(1)(a∗), . . . , I(n)(a∗)) then by (30) and (31)
I(a∗) = 0 if I(j)(a∗) = 0 for all j = 1, 2, . . . , m, and I(a∗) ≥ I(j)(a∗) = 0 if I(j)(a∗) >

0 for some j. Finally, if for some a∗, b∗ ∈ A∗ and for some j ∈ {1, 2, . . . , m}
u∗(j)(a∗) ≥ u∗(j)(b∗) then, by (7), I(j)(a∗) ≤ I(j)(b∗). If the above conclusion is true
for all j = 1, 2, . . . , m, then by (31), also

f
(

I(1)(a∗), . . . , I(m)(a∗)
)

≤ f
(

I(1)(b∗), . . . , I(m)(b∗)
)

,

and, consequently, I(a∗) ≤ I(b∗) as follows from (31). �

Corollary. The above Theorem 1 immediately implies that: If (A, u) is an infor-
mation source, if I(1) and I(2) are two information measures on (A, u), and r > 0 is
a real number, then the mapping I : A∗ → R such that for all a∗ ∈ A∗

I(a∗) = r · I(1)(a∗), or

I(a∗) = I(1)(a∗) + I(2)(a∗), or

I(a∗) = I(1)(a∗) · I(2)(a∗), or

I(a∗) = max
(

I(1)(a∗), I(2)(a∗)
)

, or

I(a∗) = min
(

I(1)(a∗), I(2)(a∗)
)

are information measures on (A∗, u∗).
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Theorem 2. Let a∗ = (a1, . . . , an) ∈ An ⊂ A∗, where (A, u) is an information
source. Let I(a∗) and I(a1), . . . , I(an) be information measures of a∗, a1, . . . , an,
respectively. Then

I(a∗) ≥ max (I(a1), . . . , I(a2), . . . , I(an)) .

P r o o f . The statement follows from (8) and (17). By (8)

u(a∗) ≤ u(ai) for all i = 1, . . . , n.

Condition (17) means that

I(a∗) ≥ I(ai) for all i = 1, . . . , n,

which proves the statement. �

The previous theorem shows that the information measure I defined in this section
is cummulative, as demanded by postulate C of Section 2, and by condition (8).

4. MORE ABOUT FUZZY INFORMATION MEASURES

As mentioned in Subsection 3.3.c, there already exists a significant set of information
sources (A, uF ), where A is an alphabet and uF is a membership function of a
fuzzy subset of A, with values characterizing the possibility with which some signal
produced by the considered fuzzy source, can be interpreted as a ∈ A.

4.1. The probabilistic patterns in fuzzy information measure

To recollect the formal definitions of fuzzy information, we can refer Subsection 3.3.c,
namely formulas (27) and (28). Especially (28), and its extension on the class A∗

IF (a∗) = − log2 uF (a∗), (32)

which is a natural consequence (or rather premise) of (27). This approach to the
measurement of vague information emitted by fuzzy source is formally correct, as
well as the attention paid to it in the referred literature.

Nevertheless, there exist several features of that approach deserving some discus-
sion. It is a very close paraphrase of the Shannon probabilistic model, in spite of
the essential difference between the randomness and vagueness. The next special
comments to the fuzzy information measure IF treated in 3.3.c, and following from,
e. g. [2, 4, 15, 20, 30], summarize its main contraversory components.

— The fuzzy uncertainty and fuzzy information are, in the referred theory, dealt
as implicitly additive, mathematical objects. This additivity can be recog-
nized in the fuzzy entropy (27) and it was reflected also in formula (29). It is
motivated by the successful pattern of the probabilistic model, in spite of the
fact that the fuzzy set theoretical concepts display rather monotonicity than
additivity (see, e. g., [13, 14, 31, 32]).



Information Measures and Uncertainty of Particular Symbols 159

— The logarithmic function used in (27) and, consequently, (18), is natural and
unavoidable in the probabilistic model. Thanks to it, the multiplicative prob-
abilities in (10) or (11), regarding also the probabilistic uncertainty measure
uP , are transformed into additive information measure IP : A∗ → R. If we, in
the case of fuzzy information measure IF , do not insist on the additivity, the
application of logarithms is correct but rather redundant.

— The binary logarithm usually (not always) used in the definition of probabilistic
information measure is comfortable for practical handling the informational
properties of sources with binary alphabet A = {0, 1}, nevertheless, is not
necessary even in the case of fuzzy information sources.

Let us suggest and discuss some alternative models of fuzzy information motivated
by the previous, rather heuristic, comments.

4.2. Alternative fuzzy information source

Let us consider an information source (A, uF ) with fuzzy uncertainty measure uF ∈
F(A). It can be extended on F(A∗) by means of (15), i. e.,

uF (a∗) = min (uF (a1), . . . , uF (an))

for any a∗ = (a1, . . . , an) ∈ An ⊂ A∗.
Definitoric relation (15) represents, in fact, the first step to the alternative ap-

proach to fuzzy information, based on the paradigm of monotonicity of fuzzy mea-
sures and, generally, fuzzy operations. Let us define the monotonous fuzzy informa-

tion IM : A∗ → R by means of

IM (a∗) = 1 − uF (a∗), for a∗ ∈ A∗. (33)

Lemma 12. If a∗ = (a1, . . . , an) ∈ An then

IM (a∗) = max (IM (a1), . . . , IM (an)) .

P r o o f . The statement follows from (15) and (33), as

IM (a∗) = 1 − uF (a∗) = 1 − min (uF (a1), . . . , uF (an))

= max (1 − uF (a1), . . . , 1 − uF (an)) = max (IM (a1), . . . , IM (an)) . �

Remark 13. IM (a∗) ∈ [0, 1] as follows from the assumption that uF ∈ F(A), and
from (15) and (33).

Theorem 3. The monotonous fuzzy information is an information measure fulfill-
ing (16) and (17).

P r o o f . IM (a∗) ≥ 0 as follows from Remark 13. Condition (17) follows from (33),
immediately. �
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4.3. Interpretations

The alternative concept of fuzzy information related to particular symbols and their
finite sequences, suggested in this section, can be interpreted in the following way.

Meanwhile the classical probabilistic information can be interpreted as a conse-
quence of randomness in the emission of symbols, the fuzzy information represents
rather the vagueness connected with the phenomena of their acquisition and per-
ception. There exist at least two types of situations in which the fuzzy approach to
uncertain information can be effective – both of them are connected with subjective
estimation of possibilities of symbols.

The first one of them represents an alternative to the (subjective or objective)
probability of symbols produced by an uncertain source. The construction of a
probability distribution is based on the knowledge of massive real data or on a
multilateral analysis of personal preferences and attitudes. Both such procedures
assume relative stability of input data and especially of the situation represented by
them which can be partly substituted by fuzzy set theoretical tools.

The second situation in which the application of fuzzy information appears nat-
ural, regards the interpretation of already emitted and accepted but vaguely cog-
nizable symbol or message. For example, written historical artefacts, heavily noised
telecommunicated messages, remote sensing under complicated meteorological con-
ditions, and similar events. The uncertainty is not generated by randomness, but
rather by vagueness, and the approach characterized by (33) is not only formally
correct but also adequate to the problem.

Anyhow – the monotonicity paradigma accepted by fuzzy set theoretical models
and formally represented by the application of maxima and minima in processing
fuzzy set theoretical models, is more adequate and natural for the construction of
mathematical models including vague components. It regards the vague information
sources and measurement of their uncertainty.

5. CONCLUSIVE REMARKS

The previous chapters were devoted to the description and analysis of informa-
tion inherited in the uncertain phenomena, from the point of view of information-
theoretical models. The attention was focused on the type of uncertainty which is
called vagueness and formally represented by fuzzy sets. It is natural – the random-
ness, represented by the probabilistic concepts, is well known and deeply studied by
the classical Shannon information theory [26], and the imprecision treated by the
interval calculus is partly quite simple, partly can be transferred in the frame of
fuzzy sets, too.

Nevertheless, there exist models and mathematical tools, usually connected with
fuzzy sets but offering essential generalization and extension of their methods and
concept. It regards, especially, triangular norms, aggregation operations and copu-
las, and some other related topics (see, e. g., [3, 5, 22] and many other works), where
namely the theory of aggregation operators and closely related theory of copulas offer
very promising effects. Especially the concept of aggregation operators appears very
useful for application in the data and information processing in information sciences.
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Finally, it is worth mentioning one field of study in which an effective handling
of information and its measure can be significant. The information theory was
originally developed for the analysis of information transmission under regular and
relatively stable conditions with random noise and constant properties of the techni-
cal transmission channels. The probabilistic information theory offers optimal tools
by means of which we are able to cope that problem.

But the uncertainty and information play a crucial role also in another type of
human activity, namely in the decision-making and strategic behaviour (cf. [8, 9, 23]
or also [18] and many other works). Here, the typical information and knowledge
is vague, subjective and imprecise, its parameters are not stabilized, and its inter-
pretation is often rather chaotic. All these properties practical exclude, or at least
limit, the application of probabilistic information theoretical methods, and justify
the use of alternative models of information.
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